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Abstract. We investigate the spatial variation of 2D fracture networks digitized from the well-known Lilstock limestone pave-

ments, Bristol Channel, UK. By treating fracture networks as spatial graphs, we utilize a novel approach combining graph

similarity measures and hierarchical clustering to identify spatial clusters within fracture networks and quantify spatial vari-

ation. We use four graph similarity measures: fingerprint distance, D-measure, NetLSD, and portrait divergence to compare

fracture graphs. The technique takes into account both topological relationship and geometry of the networks and is applied to5

three large fractured regions consisting of nearly 300,000 fractures spread over 14,200 sq.m. The results indicates presence of

spatial clusters within fracture networks with that vary gradually over distances of tens of metres. One region is not influenced

by faulting but still displays variation in background fracturing. Variation in fracture development in the other two regions are

interpreted to be primarily influenced by proximity to faults that gradually gives way to background fracturing. Comparative

analysis of the graph similarity-derived clusters with fracture persistence measures indicate that there is a general correspon-10

dence between patterns; however, additional variations are highlighted that is not obvious from fracture intensity and density

plots. The proposed method provides a quantitative way to identify spatial variations in fracture networks which can be used

to guide stochastic and geostatistical approaches to fracture network modelling.

1 Introduction

Fracture networks in rocks develop due to loading paths that vary over geological time-scale (Laubach et al., 2019). The evolu-15

tion of the network exhibits characteristics of a complex system. There is feedback between the evolving spatial structure and

the rock substrate in which the networks are positioned (Laubach et al., 2018). The resulting spatial arrangement that emerges

after cumulative network evolution is of considerable interest as it influences flow, transport, and geomechanical stability in

multiple anthropogenic subsurface applications such as geothermal energy (Vidal et al., 2017), nuclear waste disposal (Wang

and Hudson, 2015), aquifer management (Witherspoon, 1986), and hydrocarbon exploitation (Nelson, 2001). Systematically20

documenting near-surface fracture patterns is essential, for example, in mining applications where they often provide clues to

ore deposit patterns (Jelsma et al., 2004), and in geotechnical engineering, where fractures influence stability in human-made

structures such as tunnels (Lei et al., 2017).

1

https://doi.org/10.5194/se-2021-45
Preprint. Discussion started: 21 April 2021
c© Author(s) 2021. CC BY 4.0 License.



An important property of natural fracture networks (NFRs) is that of spatial organization which means that the arrangements

are not random but follow a statistically discernable pattern. One can view the spatial arrangement of fractures as a set of25

objects within a geographical reference system. Within such a framework, fracture objects are either clustered, periodically-

spaced, irregularly spaced, or regularly-spaced (Laubach et al., 2018). An alternate framework is a network, where fracture

objects are described in relation to one another (Valentini et al., 2007; Andresen et al., 2013; Sanderson and Nixon, 2015).

Regardless of how fractures’ spatial arrangement is defined, quantitative analysis of spatial arrangements invariably leads to

quantification of spatial variation. Fracture networks exhibit considerable spatial variability in their organisation. The physical30

phenomena commonly used to explain such variation are stress shadowing, layer thickness differences, host rock lithology,

layered mechanical anisotropy, high-strain events such as faulting/folding, and diagenesis. It is generally not easy to associate

a type of spatial arrangement to any unique set of input boundary conditions as similar loading paths can lead to diverging

patterns, and dissimilar loading paths can lead to converging patterns (Laubach et al., 2019).

Quantifying variations in spatial arrangements of fractures involves the sampling of fracture data. Such quantifications can35

be in the form of 1D (using scanline methods, borehole sampling), in 2D (fracture trace maps from outcrop imagery), or 3D

(ground-penetrating radar, microseismic). 1D scanlines provide a method to quantify arrangements and variation, and several

statistical measures have been proposed such as fracture spacing (Priest and Hudson, 1976), fracture intensity (Dershowitz

and Herda, 1992), coefficient of variation (Gillespie et al., 1993), normalized correlation count (Marrett et al., 2018), and

cumulative spacing derivative (Bistacchi et al., 2020). These measurements, however, only indicate the variation of fracture40

arrangements on the scanline and fail to depict the variation in directions away from the scanline direction. Other issues are

associated with scanlines such as censoring and truncation effects, scale-dependence, and minimum sample size requirements.

2D fracture trace maps are especially useful as this type of data combines both geometric and topological information in the

form of a network. Recent advances in UAV-photogrammetry (Bemis et al., 2014; Bisdom et al., 2017) and automated image

processing algorithms (Prabhakaran et al., 2019) have led to large datasets of 2D fracture traces that reveal much more about45

network attributes than is possible from 1D sampling. Given such large datasets with rich information, it is pertinent to directly

quantify spatial variation from the network structure. Spatial fracture persistence (Dershowitz and Herda, 1992) can quantify

2D spatial variation but only considers some aspects of the network (such as the sum of trace lengths, number of traces, etc.,

within a sampling region). There is a need for more advanced techniques that are specific to 2D fracture trace data and which

can make use of the combined geometric and topological structure.50

From a geostatistical perspective, the concept of spatial variability describes how a measurable attribute varies across a

spatial domain (Deutsch, 2002). Quantifying magnitude and directional dependence of the variability can also be done using

geostatistical tools, provided there is a means to measure variability across multiple spatial samples. The variability in fracture

data has typically been reduced to variability in attributes (such as fracture length by sampling area, number of intersections,

number of sets, orientations, etc.), and attribute variability used to make decisions of stationarity. The identification of repre-55

sentative element volumes (REVs) then follows from the choice of stationarity. However, given that any given spatial network

(except regular lattices) is inherently non-stationary, the suitability of such REVs based on stationarity assumptions needs to be
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re-examined. Therefore, it is of interest to compare network variation (rather than attribute variation) across the spatial domain.

Any comparative method must retain topological and geometric structures encoded within the spatial samples.

2 Graph theory in fracture network analysis60

2.1 Fracture networks as graphs

Many authors have suggested using graph theory for the characterization of fracture networks (Valentini et al., 2007; Andresen

et al., 2013; Vevatne et al., 2014; Sanderson and Nixon, 2015; Sanderson et al., 2019). In graph theory and network science,

graphs are structures that comprise a set of edges and vertices representing relationships between data. In fracture networks,

the vertices are intersections between fractures and the edges represented by fracture segments connecting the vertices. By65

assigning positional information to the vertices (also nodes), fractures in the form of graphs encapsulate both topological and

spatial information. An alternate graph representation is when fractures from tip-to-tip are vertices, and intersections with other

fractures are edges. Barthelemy (2018) refers to these types of representations as the primal and dual forms respectively. Others

such as Doolaeghe et al. (2020), call the two representations as intersection graphs and fracture graphs.

We depict an example of a fracture network in its primal form (see Fig. 1.a) and in its dual form (see Fig. 1.b). The degree70

of a graph node is simply the number of edges that intersect the particular node. As can be seen in the case of the primal graph

in Fig. 1.c, the maximum node degree is 6, with the most common degree value being 3. This type of degree distribution is

typical for a spatial graph in which physical constraints limit the maximum possible degree of a node. In the case of the dual

graph, as depicted in Fig. 1.d, the maximum degree can be much higher, and the longest fractures that have the highest number

of intersections also have the highest degree. Andresen et al. (2013) and Vevatne et al. (2014) suggested that fracture networks75

are therefore disassortative in that shorter fractures preferentially attach on to the longer fractures. Prabhakaran et al. (2021b)

also found such a correlation between dual graph node degree and length.

In the graph representation, the weights assigned to edges are proportional to the importance of that edge. In the case of

fracture networks in the primal form, this can be the euclidean distance between the nodes (or fracture edge intersections).

The weight may also be the direction cosine of the particular edge that indicates orientation. In the dual graph representation,80

intersections between fractures represent the edges. Therefore the edge weight may be specified in terms of intersection angle.

3

https://doi.org/10.5194/se-2021-45
Preprint. Discussion started: 21 April 2021
c© Author(s) 2021. CC BY 4.0 License.

DaveS
Comment on Text
This is only true for the node/branch models (e.g. Sanderson and Nixon 2015) but not for other representations (e.g. Andresen et al 2013).


DaveS
Inserted Text
 (e.g. Sanderson et al. 2019)


DaveS
Comment on Text
The use of the term "dual" is NOT that use in mathematics of Graph theory, where the dual involves interchange of nodes and regions, rather that nodes and branches/edges.

DaveS
Cross-Out

DaveS
Inserted Text
incident at a

DaveS
Comment on Text
In fracture networks the degree is almost ubiquitously 1, 3, or 4, with higher degrees almost always arising due to problems in resolving closely spaces nodes.




1 2 3 4 5 6
0

500

1000

1500

16 17 18 19 20 21 22 23 24
11

12

13

14

15

16

17

18

19 (a) (b)

(c) (d)

x-coord [m]

y-
co

or
d 

[m
]

Node Degree [-] Node Degree [-]

N
o.

 o
f N

od
es

N
o.

 o
f N

od
es

Figure 1. Comparing primal and dual forms of a fracture network from data published by Prabhakaran et al. (2021b) (a) a fracture network

depicted in the primal form with dimensions in metres (b) corresponding dual representation of the fracture network with node sizing

proportional to dual graph node degree, plotted using a force layout (c) node degree distribution of primal graph (d) node degree distribution

of the dual graph

2.2 Graph distance measures to quantify network similarity

Several graph similarity measures exist within the graph theory literature to compare graphs (see Hartle et al., 2020; Tantardini

et al., 2019; Emmert-Streib et al., 2016 for recent reviews). Graph comparisons are a challenging, non-trivial problem in terms

of computing complexity (Schieber et al., 2017). Still, various measures exist that can capture and highlight useful aspects of85

the graph structure that facilitate comparisons. Graph similarity may be differentiated from graph isomorphism in that the latter

comparison can only return a binary outcome. An isomorphism test on two graphs G1 and G2 can only yield two results, either

isomorphic or not. Graph similarity on G1 and G2, on the other hand, should return a real-valued quantity that converges to

zero when the two graphs approach isomorphism (or complete similarity).

Tantardini et al. (2019) classify distance measures based on whether the metric is capable of comparing graphs with an90

unequal number of nodes or not. The metrics may also be classified based on whether they can also handle weighted and

directed graphs. In the case of spatial graphs derived from fracture networks, an undirected but weighted representation is
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Figure 2. A simple example of hierarchical clustering using euclidean distance (a) 10 randomly positioned points (b) dendrogram computed

from hierarchical clustering using the euclidean distance depicting clusters of the 10 individual points at different levels organized into a

hierarchy

sufficient. Using a graph-similarity measure on a fracture network, we can explore spatial variations in network structure by

comparing multiple sampling points.

2.3 Combining dissimilarity measures with clustering algorithms95

Since we are interested in quantifying spatial variability, we may recast the problem as that of identifying clusters within

the network. Clustering is also referred to as unsupervised classification and is a process of finding groups within a set of

objects with an assigned measurement (Everitt et al., 2011). If we consider a dataset, D = [X1,X2, ...Xn], containing ’n’ data

samples, clustering then implies arranging the elements of D into ’m’ distinct subsets, C = [C1,C2, ...Cm], where m ≤ n.

From a statistical perspective, the clustering task is different from classification because the former is exploratory whereas the100

latter is predictive although both attempt to assign labels. Therefore clustering must precede classification.

In the existing literature on fracture networks, assigning labels to specific perceived archetypal networks (or end-members) is

standard. These typologies include terms such as orthogonal, nested, ladder-like, conjugated, polygonal, corridors, etc. (Bruna

et al., 2019a,b; Peacock et al., 2018). However, when faced with the reality of outcrop-derived 2D fracture trace data, it is not

easy to assign such labels. Therefore, clustering is a significant and necessary step in exploratory fracture data analysis.105

HC is an unsupervised statistical clustering method (Kaufman, 1990) which can identify clusters within a set of observations

given a distance matrix computed by applying a well-defined distance function, pair-wise on each observation. In contrast to

other clustering methods such as k-means or k-medoids which require an a priori known number of clusters as input arguments,

HC re-organizes observations into hierarchical representations from which the user can pick a level of granularity. At the

lowest level, there is just one cluster containing all the observations. At the highest level, the number of clusters are equal to the110
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observations. HC algorithms are referred to as agglomerative or divisive depending upon whether they begin from a lower level

or from the highest level. The clustering then organises the discrete data into a hierarchical dendrogram structure that positions

the clusters based on magnitude of similarity. By combining graph distance computations across spatially distinct samplings

with unsupervised HC, cluster detection automatically leads to quantified spatial variation. A simple example of HC on a set

of randomly distributed points in space is depicted in Fig. 2 with the associated dendrogram structure.115

3 Fracture Datasets
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Figure 3. Overview of fracture networks corresponding to the three considered regions. This map is derived from an opem image dataset

published by Weismüller et al. (2020) and available for download with a CC-BY license

To validate the proposed approach based on graph distance metrics and hierarchical clustering, we utilize a 2D fracture

dataset from the Lilstock pavement in the Bristol Channel, UK (Prabhakaran et al., 2021b). The dataset consists of fractures
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automatically traced using a technique described in Prabhakaran et al. (2019) from UAV photogrammetric data published

by Weismüller et al. (2020). The fracture networks correspond to Jurassic limestones with very dense joint networks spread120

across multiple layers. The joints are stratabound and perpendicular to bedding. There is considerable spatial variation in

the jointing. From previous literature documenting joints within the Lilstock pavements, the spatial variation is attributed to

multiple reasons. These include:

– proximity and influence of faults explained by fluid-driven radial-jointing emanating from asperities within fault (Rawns-

ley et al., 1998; Gillespie et al., 1993 etc)125

– spatial variation of thicknesses of intercalated limestone and shale layers (Belayneh, 2004)

– proximity to high-deformation features such as folding (Belayneh and Cosgrove, 2004)

– interplay between regional and local stresses resulting in complex stress fields (Whitaker and Engelder, 2005)

– inheritance from spatial distribution of pre-existing vein / stylolite networks that influenced later joint network develop-

ment (Wyller, 2019; Dart et al., 1995)130

From this dataset, we utilize fracture networks corresponding to three contiguous regions. Figure. 3 depicts the three areas’

spatial extent labelled as Regions 1 to 3. The intensity of fracturing is such that the spatial graphs corresponding to each

region have a single connected component. Table 1 tabulates summary statistics for the three networks. What is referred to

as fractures in this Table 1 are sequences of graph edges that are clubbed together based on continuity and a strike direction

threshold. Regions 1 and 2 correspond to a single stratigraphic layer but owing to erosion they are not contiguous within the135

outcrop. We treat them separately in our analysis of spatial variation.

Table 1. Summary statistics for the three regions

Region Approx. area (sq.m) Fractures Edges Nodes

Region 1 6017 124006 364703 228661

Region 2 6749 141344 365333 235089

Region 3 1473 28892 78151 49771

The networks have significant intra- and inter-network variability in fracturing. Figure. 4 illustrates these differences. The

fracture orientations of Region 1 depict discernable angular bins of fracture orientations. On the other hand, rose plots of

Regions 2 and 3 show considerable scatter owing to the presence of long and curved fractures. The length distributions are

also different, with Region 2 having the longest fractures and Region 1 the shortest. The long fractures in Regions 2 and 3 also140

exhibit large degrees of curvature, as can be seen when fractures are plotted based on logarithmic length bins. The distribution

of joints within a particular length bin is also highly variable.
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Figure 4. Comparison of the three regions in terms of networks, orientations and length distributions. Map dimensions are in metres. This

image has been modified from Prabhakaran et al. (2021b) with permission

4 Methods

4.1 Sub-sampling the network data

We circularly sample the fracture networks on a cartesian grid with a sub-graph extracted within a circular region centered at145

each grid point. The grid spacing-to-circle diameter is maintained such that neighboring sub-graphs share some portion of the

area (see Fig. 5).Near the networks’ boundaries, the sub-graphs are either too small or result in disconnected graph components.

We neglect these samples so that they do not affect the clustering results. The process of circular sampling creates edge nodes

with degree 1 which has the effect of altering node topology by introducing isolated, degree-1 nodes. To prevent this from

having an impact on clustering results, we remove all edges from the sub-graphs emanating from degree-1 nodes that contact150
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Figure 5. Sub-sampling of a fracture graph corresponding to full region into sub-graphs of 7.5 m diameter and spacing of 5 m

the periphery of the circular sample. This effect is illustrated in Fig. 6. Each sub-graph can now be compared to every other

sub-graph using a graph distance metric to compute a pair-wise distance matrix. The distance matrix serves as the input to the

hierarchical clustering algorithm.

(a) (b) (c)

Figure 6. Treating isolated nodes and dangling edges that arise due to circular-sampling (a) circularly ampled subgraph with a diameter of

7.5 m (b) edges connected to isolated nodes intersected by circle (c) subgraph after removing isolated nodes and corresponding dangling

edges

For N sub-graphs, the number of comparisons necessary are N(N−1)
2 . The computational complexity of graph comparison

increases polynomially with the size of sub-graphs in terms of node sizes. Since the number of comparisons also increases155

quadratically with the number of sub-graphs, we seek to balance grid spacing and sampling diameter. For Regions 1 and 2,

we choose a spacing of 5 metres for circularly-sampled subgraphs with a diameter of 7.5 m. For Region 3, which is also the
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Table 2. Number of subgraphs obtained per region

Region No. of sub-graphs

Region 1 219

Region 2 212

Region 3 117

smallest region, a spacing of 5 metres would lead to quite a smaller number of sub-graphs. Therefore, we use a more dense

spacing of 3 metres with a diameter of 7.5 m. Table 2 tabulates the number of sub-graphs pertaining to each region.

4.2 Graph similarity measures160

We use the following four graph similarity measures to compare the sub-graphs.

– Fingerprint Distance (Louf and Barthelemy, 2014)

– D-measure (Schieber et al., 2017)

– NetLSD (Tsitsulin et al., 2018)

– Portrait Divergence (Bagrow and Bollt, 2019)165

The performance of these similarity measures has been validated previously by Hartle et al. (2020) and Tantardini et al.

(2019) for a variety of benchmark graph datasets. Each similarity measure is described briefly in the following subsections.

4.2.1 Fingerprint distance

The fingerprint distance introduced by Louf and Barthelemy (2014) is purely geometric and combines statistics of block faces

and shape factors in computing a probability distribution of a spatial graph. This measure was formulated in the context of170

quantifying differences in street patterns. A block denotes the 2D region enclosed by graph edges. For any given spatial graph,

this corresponds to the number of bounded sub-graphs or primary cycles. Isolated fractures and those having dead ends are

neglected when computing these blocks. Given the network intensity in our dataset, such isolated fractures are minimal. Every

block has an associated shape factor, ’φ’ which is expressed in terms of block area ’A’ and circumscribing circle area, ’Ac’ ,

φ=
A

Ac
(1)175

The value of φ is always smaller than 1, with larger values meaning greater regularity. No unique correspondence exists

between a particular shape and a magnitude of φ; however, the overall distribution of φ indicates regularity within a network

and highlights differences between spatial graphs. Shape factor alone does not fully serve as a similarity measure as blocks can

have similar shapes but different face areas. The distribution of the block-face regions is binned logarithmically to integrate
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information from the shape factor and block area distributions. A conditional probability distribution, P (φ|A)P (A), is then180

defined representing the contribution of P (φ) for each area bin and the summation of which yields the fingerprint curve, P (φ),

P (φ) =
∑

A

P (φ|A)P (A). (2)

An example of a fingerprint, so named by Louf and Barthelemy (2014), is depicted in Fig. 7 with the distribution curves

for three area bins. The curve encapsulates information based on shape factors and block areas, including the proportional

contribution from all logarithmic area bins considered. Denoting fα(φ) as the ratio of the number of faces with a shape factor185

’φ’ that lie in a bin ’α’ over the total number of faces for that graph, a distance dα between two graphs Ga and Gb is computed

by integrating over fα(φ) for the two different graphs. The distance based on fα(φ) of the two graphs for a single area bin is

defined as:

dα(Ga,Gb) =

1∫

0

|faα(φ)− f bα(φ)|ndφ (3)

As per Louf and Barthelemy (2014), the value of n can either be 1 or 2. We choose n= 1 in our computation. The global190

fingerprint distance DFP between Ga and Gb can then be computed summing over all area bins α,

DFP (Ga,Gb) =
∑

α

dα(Ga,Gb)2 (4)

We have attached our MATLAB implementation of the fingerprint distance in Prabhakaran (2021). We computed the distance

matrix for all sub-graphs corresponding to the three regions using this implementation.

11
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(b) (c)

(d) (e)

P (Ø)

Ø

(a)

Figure 7. (a) 8.6 m x 6.75 m sub-graph tile from Region 1 highlighted in orange (b) enlarged view of selected image tile (c) fracture network

corresponding to image as a spatial graph (d) block face areas coloured as per three area bins, 0-100 cm2, 100-1000 cm2, and 1000-10000

cm2 (e) P (Φ) or fingerprint of the sub-graph depicting the combined effects of area and shape factor (Φ) pertaining to the three area bins.

This map has been created from images contained in the open dataset (CC-BY license) published by Weismüller et al. (2020)
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4.2.2 D-measure195

The D-measure introduced by Schieber et al. (2017) is a three-component distance metric with weighting constants for each

component. The three properties of graphs compared are the network node dispersion (NND), node distance distribution (µ),

and the alpha centrality (α). The dissimilarity measure, DDM is the weighted sum:

DDM (g,h) = w1

√
J (µg,µh)
log2

+w2

∣∣∣
√
NND(g)−

√
NND(h)

∣∣∣+ w3

2

(√
J (Pα(g),Pα(h))

log2
+

√
J (Pα(gc),Pα(hc′))

log2

)
,

(5)

where J indicates the Jensen-Shannon divergence. The constants w1, w2, and w3 in Eq.5 are real and non-negative weights200

such that w1 +w3 +w3 = 1.

As per Schieber et al. (2017) the first term in Eq.5 compares averaged connectivity node’s patterns as per node distance

distribution. Schieber et al. (2017) defines NND, within the second term, as a measure of the heterogeneity of a graph w.r.t

connectivity distances that capture global topological differences. The NND is computed as:

NND(G) =
J (P1, ....,PN )
log(d+ 1)

, (6)205

where the numerator in Eq.6 is the Jensen Shannon divergence of N connectivity distance distributions [P1,P2.....PN ].

Pi is constructed as Pi = pi(j) where pi(j) is the fraction of nodes connected to node i at distance j. The Jensen-Shannon

divergence of [P1,P2.....PN ] is expressed as:

J (P1, ....,PN ) =
1
N

∑

i,j

pi log
(
pi(j)
µj

)
. (7)

µj in Eq.7 is the average of N distributions and can be written as,210

µj =
1
N

N∑

i=1

pi(j). (8)

The third term in Eq.5 is based on probability density functions associated with alpha centrality of graph Pα(g) and alpha

centrality of the graph complement Pα(gc). The value of weights was suggested by Schieber et al. (2017) as w1 = w2 = 0.45

and w3 = 0.1. We use the implementation provided by Schieber et al. (2017) with these sets of weights to build the distance

matrices for all sub-graphs within the three regions of interest.215

4.2.3 Portrait Divergence

The Portrait Divergence similarity score derives from network portraits introduced by Bagrow et al. (2008) for unweighted

graphs and extended to weighted graphs by Bagrow and Bollt (2019). For a graph g with N nodes, the network portrait is

13
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defined as a matrix Blk where each entry is the number of nodes with k nodes at l distance. The limits of l and k are 0 ≤ l

≤ d and 0 ≤ k ≤ N − 1 with d being the diameter of the graph. The row entries of the network matrix Blk are probability220

distributions of a random node having k nodes at a distance l:

P (k|l) =
Blk
N

(9)

For a second graph h, if the network matrix is B′lk with a corresponding probability distribution of Q(k|l) and diameter d′, the

Kullback Leibler (KL) divergence between P (k|l) and Q(k|l) is expressed as:

KL(P (k|l)||P (k|l)) =
max(d,d′)∑

l=0

N∑

k=0

P (k, l)log
P (k, l)
Q(k, l)

(10)225

The portrait divergence DPD(g,h) is computed by the Jensen Shannon divergence between P (k|l) and Q(k|l):

DPD(g,h) = JSD(P (k|l),Q(k|l). (11)

This can be expressed in terms of Kullback Leibler divergences and mixture distributions as:

DPD(g,h) =
1
2
(KL(P ||M) +KL(Q||M)) (12)

where the mixture distribution M of P (k|l) and Q(k|l) is given by:230

M =
1
2
(P (k|l) +Q(k|l)) (13)

The portrait divergence measure provides a single value 0 ≤ DPD(g,h) ≤ 1 for any pair of graphs. Bagrow and Bollt (2019)

applied the portrait divergence measure to both synthetic and real world networks. The code implementation of portrait di-

vergence attached with Bagrow and Bollt (2019) is used to construct the distance matrices for all sub-graphs within the three

regions of interest.235

4.2.4 Laplacian Spectral Descriptor

The NetLSD distance was introduced by Tsitsulin et al. (2018). It is based on a Frobenius norm computed between heat trace

signatures of normalized Laplacian matrices of two graphs. For a graph g with a normalized Laplacians L and n nodes, a heat

kernel matrix is defined as:

Ht = e−tL =
n∑

j=1

e−tλjφjφ
T
j (14)240

Using the heat kernel matrix Ht, a heat trace ht is defined as:

ht =
n∑

j=1

e−tλj (15)
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For a second graph g′ with a heat trace signature of h′t, the NetLSD distance DLSD is then the Frobenius norm of the two heat

signatures as:

DLSD = ||ht,h′t||Frobenius (16)245

We use the NetLSD python package implemented by Tsitsulin et al. (2018) to calculate the distance matrices associated with

sub-graphs from each region.

4.3 Hierarchical Clustering

After sub-sampling the fracture networks (see Section 4.1) and using the graph distance metrics described in Section 4.2 to

construct distance matrices, we apply hierarchical clustering. HC can be done in an agglomerative versus divisive manner250

(Hennig et al., 2016). We utilize the agglomerative approach, which generally follows the steps described in Algorithm 1.

Based on how linking of clusters is done as per Algorithm 1(iii), HC can be classified into methods such as single linkage,

complete linkage, unweighted pair-group average, weighted pair-group average, unweighted pair-group centroid, weighted pair

group centroid, and Ward’s method (Wierzchoń and Kłopotek, 2018). Ward’s method performs the linkage by minimizing the

sum-of-squares of distances between objects and cluster centre. We use Ward’s method implemented within the R statistical255

programming environment to do the HC for all the sub-graph distance data.

Algorithm 1 Agglomerative Clustering

Input: Data D = [X1,X2, ....Xn]

Output: Dendrogram C = [C1,C2...Cm]

(i). Initialization. m clusters of one element each with pair-wise distances computed and stored in symmetric square distance matrix Ddist

(ii). form pair Ci and Cj that are closest within C

(iii). form cluster Ck = Ci ∪Cj and generate a new dendrogram node

(iv). update Ddist after computing distance between Ck and C −Ck

(v). delete rows and columns corresponding to Ci, Cj from Ddist and add rows and columns pertaining to Ck

(vi). repeat (i) - (v) till only a single cluster remains

5 Results

We visualize HC clusters using heatmaps of distance matrices, dendrograms, and spatial plots. We plot a heatmap of the

pair-wise sample distances symmetrically with the associated hierarchy on a dendrogram. This plot along with weighted-sum-

of-squares plots enables picking of number of clusters and decisions on the height at which to cut the dendrogram. In this260

section, we present the clustering results in the form of heatmaps, dendrograms, and spatial clusters for all the regions.
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5.1 Region 1

Table 3 tabulates the cluster results for all four distance measures. Figure. 8 depicts the combined heatmap and dendrogram

plots with the identification of five top clusters for each of the four considered distance measures. We choose to depict the top

five clusters in the spatial plots to compare results generated for the four distance measures. The spatial distribution of these265

clusters is overlain over the network in Fig. 9 to compare clustering results for all four distance measures along with spatial

fracture persistence P20 and P21 computed using box-counting (box size of 0.5 × 0.5 m).

Table 3. Summary of sub-graphs within each cluster of Region 1

Metric→ FP DM LSD PD

Cluster 1 83 74 91 85

Cluster 2 71 59 61 44

Cluster 3 36 49 44 33

Cluster 4 26 20 12 33

Cluster 5 3 17 11 24

Total 219

Clusters in the spatial plot in Fig. 9 are depicted as discs representing each sub-graph with a single colour assigned for

every subsample within the cluster. The results indicate different types of cluster partitions for each distance measure. These

differences are not immediately observable from the fracture persistence plots in Fig. 9(e) and Fig. 9(f). The clustering resulting270

from the fingerprint, D-measure, and portrait divergence, immediately show spatial autocorrelation trends as seen in Fig. 9(a),

Fig. 9(b), and Fig. 9(d), respectively. NetLSD is the exception depicting a speckled pattern with no discernable smooth variation

as is observable in Fig. 9(c).

Figure. 10 depicts the spatial clustering results from the fingerprint distance with cut-out archetypal examples depicting

the variation in fracturing. The clustering seems to have a N-S variation trend as observed from the spatial plot. The trend is275

corroborated by observing the dendrogram which splits into two main branches. The branch corresponding to the southern

clusters, depicted in orange and red, further branches out with 83 and 26 subgraph samples. The other branch with sub-

branches of 71 and 26 samples, depicted in yellow and light blue correspond to the northern region. An outlier branch exists

with 3 samples (in dark blue). The samples extracted from each cluster depicts different styles of fracturing.

A similar variation is observable from the zoomed-in sections of cluster maps for the D-measure distance (see Fig. 11).280

However, the cluster demarcations are less stark than with the fingerprint distance with a notable stippled pattern. Observing

the dendrogram, the region can be divided into a branch consisting of a thin sliver in the N-E (in dark blue) and the remaining

area. This branch also includes a sub-branch in orange, which consists of boundary sub-graphs which were partially sampled.

These seem to affect the D-measure clustering resulting in the appearance of this boundary cluster. The second branch diverges

into a cluster in the western region (in red). The remainder of the region consists of the clusters depicted in yellow that is285

concentrated in the centre of the region and the light-blue cluster that is the predominant type.
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The results of PD measure also depict the N-S variation (see Fig. 12) in the clustering. Similar to the D-measure, the PD also

seems to be sensitive to subgraph completeness as can be seen by a boundary cluster in orange. Observing further branches of

the dendrogram, we can observe a cluster in red which closely correspond to the trend of high fracture persistence (compare

with Fig. 9(e) and Fig. 9(f)). Delving deeper into the dendrogram is a cluster (in yellow) corresponding to a thin sliver in the290

N-E of the region. The remainder of the region consists of a cluster, depicted in blue to the south, and a cluster (in light blue)

to the east.
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Figure 8. Combined symmetric heatmap of distance matrix and dendrograms, dendrograms with major clusters and sum-of-squares elbow

plots for Region 1 (a) Fingerprint (b) D-measure (c) NetLSD (d) Portrait Divergence
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Figure 9. Region 1 clustering results computed using (a) fingerprint distance (b) D-measure distance (c) NetLSD distance (d) Portrait

Divergence distance (e) spatial P20 (f) spatial P21
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Figure 10. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the fingerprint distance in

Region 1
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Figure 11. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the D-measure distance in

Region 1
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Figure 12. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the portrait divergence

distance in Region 1 22
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5.2 Region 2

Figure. 13 depicts the combined heatmap and dendrogram result for Region 2. Table 4 tabulates the cluster results. Similar

to Region 1, the clusters identified from the four metrics show differences (see Fig. 14), but in Region 2 we are now able295

to see even more pronounced variation. The FP, DM, and PD show well-demarcated clusters, with LSD showing a speckled

clustering. All four measures correctly identify the region of radial fracturing as described by Gillespie et al. (1993). There

are clear transition regions away from the influence of the fault located towards the SE of Region2, roughly following fracture

persistence trend that progressively increases from SE to NW.

Table 4. Summary of sub-graphs within each cluster of Region 2

Metric→ FP DM LSD PD

Cluster 1 93 49 81 96

Cluster 2 62 47 68 60

Cluster 3 42 39 31 35

Cluster 4 11 39 24 19

Cluster 5 4 38 8 2

Total 212

The clustering is depicted in further detail for the fingerprint distance in Fig. 15 with 10 x 10 m samples extracted from the300

major groupings. The smallest cluster (depicted in blue) shows the radial fracturing pattern which changes away from the fault

towards the NW as can be seen in the sample labelled in yellow. Further moving NW, the fracturing motif changes again with

a noticeable increase in fracture density evidenced by cluster in orange. The westernmost cluster has a different style which

may be linked to the north eastern cluster in Region 1.

As is observable from Fig. 16 and similar to the fingerprint, the D-measure also identifies a cluster representing the radial305

fractures (dark blue). The adjoining cluster away from the fault-affected region depicts a sub-region where the presence of the

radial faults has subsided. The fracturing motif is observably more dense towards the NW as evidenced from the cluster in

orange. The western-most extremity of Region 2 depicts a visibly different fracturing style (in red).

The clustering identified by the portrait divergence (see Fig. 17) is roughly similar to that of the D-measure. The PD is able

to demarcate a smaller region within the radial fractures which correspond to the areas with lowest fracturing density. Also the310

results seem to be affected by boundary sub-graphs for which the clustering does not show autocorrelation. This is perhaps

due to the sub-graphs being incomplete. The PD is also not able to delineate the westernmost cluster which the fingerprint and

D-Measure could identify.
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Figure 13. (Combined symmetric heatmap of distance matrix and dendrograms, dendrograms with major clusters, and sum-of-squares elbow

plots for Region 2 (a) Fingerprint (b) D-measure (c) NetLSD (d) Portrait Divergence
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Figure 14. Region 2 hierarchical clustering results computed using (a) Fingerprint distance (b) D-measure distance (c) NetLSD distance (d)

Portrait Divergence distance (e) spatial P20 plotted using box-counting (f) spatial P21 plotted using box-counting
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Figure 15. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the fingerprint distance in

Region 2 26
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Figure 16. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the D-measure distance in

Region 2 27
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Figure 17. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the portrait divergence

distance in Region 2 28
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5.3 Region 3

Figure. 18 depicts the heatmap and dendrogram results for Region 3. For all the distance measures, there are clearly discernable315

clusters from the dendrograms. Figure. 19 depicts the clusters spatially and Table 5 tabulates the corresponding subgraphs. In

general, there is a spatial variation in the fracturing in E-W direction as is observable from clustering results of FP, DM, and

PD distances. Similar to the Regions 1 and 2, the NetLSD distance results in a speckled pattern where spatial autocorrelation

is uncertain.

Table 5. Summary of sub-graphs within each cluster of Region 3

Metric→ FP DM LSD PD

Cluster 1 38 45 44 41

Cluster 2 33 37 38 30

Cluster 3 29 24 16 26

Cluster 4 15 10 10 14

Cluster 5 2 1 9 6

Total 117

Clustering results from the FP distance is depicted in Fig. 20 with 10 x 10 m cutouts from each sub-region depicting320

differences in fracturing style corresponding to the top four clusters. The western grouping (in red) contains long, curved

fractures that strike NW-SE. This pattern changes as we move east to the adjacent cluster (in orange) where long fractures

begin to trend NE-SW. The central region of Region 3 has a different fracturing motif with longer fractures now trending

E-N-E (in yellow). At the eastern extremity of Region 3, the long fractures are striking E-W.

Similarly, Fig. 21 depicts 10 x 10 m samplings from clusters identified by the D-Measure distance within Region 3. Overall,325

the pattern variation is that of a large grouping in the western sub-region (in orange), and a smaller one in the extremities of

both east and west (in red). The central region contains a cluster (in light blue) that is flanked on either end by a cluster in

yellow. The zoomed-in samples depicts the gradual transition from long fractures striking to the NW-SE in the western end to

long fractures striking E-W.

The clusters identified by the PD also show an E-W transition in fracturing (see Fig. 22) as is evident from extracted samples.330

In the western region, similar to the result of FP distance, there are two clusters (in yellow and orange). Moving eastwards,

there is a clearly demarcated central region (dark and light blue) after which the orange cluster repeats itself in the eastern

boundary. Comparing with the fracture persistence maps in Fig. 19(e) and Fig. 19(f), the PD clustering seem to be able to

differentiate out regions of high fracturing density (dark blue).
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Figure 18. (left) Combined symmetric heatmap of distance matrix and dendrogram for all four distance metrics (centre) enlarged dendrogram

depicting height at which the top clusters are extracted (right) weight sum of squares of distances depicting possible number of clusters (FP-

Fingerprint, DM-D-measure, LSD-NetLSD, PD-Portrait Divergence)
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Figure 19. Region 3 hierarchical clustering results (a) clusters computed using fingerprint distance (b) clusters computed using D-measure

distance (c) clusters computed using NetLSD distance (d) clusters computed using Portrait Divergence distance (e) spatial P20 plotted using

box-counting (f) spatial P21 plotted using box-counting
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Figure 20. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the fingerprint distance in

Region 3 32
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Figure 21. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the D-measure distance in

Region 3 33
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Figure 22. 10 m x 10 m samples depicting variation in fracturing style as identified in the largest four clusters by the portrait divergence

distance in Region 3 34
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6 Discussion335

Within the structural geology literature, the quantitative fracture persistence measures of Dershowitz and Herda (1992), the

topological approach of Sanderson and Nixon (2015), and qualitative descriptions are most commonly resorted to for compar-

ing 2D fracture networks. The lack of quantitative measures for spatial network data is partially due to the lack of extensive

2D fracture trace data. Using the fully mapped UAV-derived dataset of a very large fracture set, it is possible to investigate

variations in 2D fracture network organization in a systematic manner.340

In this contribution, we treat 2D fracture networks as planar graph structures and apply graph similarity measures to quanti-

tatively compare sub-samplings within large fracture networks and discover clusters of similarity. The unsupervised statistical

learning technique of HC was used along with graph distance metrics to extract spatial clusters. Sub-graphs within a spatial

cluster are more similar to each other than other clusters. A hierarchy of patterns are derived based on similarity scores and

these can be examined at deeper levels.345

One can argue that variation exists at multiple length scales, and more granular inquiry would lead to different clusters.

While our choices of grid-spacing and sub-sampling of graphs were to keep computational requirements in mind, it is possible

to do more dense sub-sampling than what we have already achieved to highlight spatial variations within a given network

further. The clusters that we have depicted are particular to the spacing and sampling diameters that we have chosen. In this

section, we discuss some additional perspectives and issues related to our methodology and results.350

– Linking spatial variation patterns to fracturing drivers The results indicate that spatial variation in fracture networks

is not always obvious from the ubiquitously used fracture persistence measures, such as P20 and P21. The proposed

method highlights variations in network structure which can then help draw inferences into possible drivers for the spatial

differences. In the case of Regions 2 and 3, the proximity to the fault influences network development. Such a model has

been proposed by Peacock and Sanderson (1995), Gillespie et al. (2011), and Wyller (2019) where the oldest fractures355

are long and radial emanating from local asperities within the fault. These older fractures then influence the development

of younger fractures. This is observed in Region 2, where clusters form roughly parallel to the E-N-E trending fault with

direction of variation to the N-W. Region 3 is positioned between two such asperity epicentres. There are long, radial

fractures on the eastern and western extremities with a transition region in-between. The direction of cluster variation

trends E-W. Region 1 is not affected by faulting and the network differences can be interpreted as background-variation.360

Since Regions 1 and 2, pertain to a single layer, the N-E regions of Region 1 show visual similarities between the

westernmost extremities of Region 2. The intraregional variations in Region 1 could be due to layer thickness variation

although we do not have sufficient thickness data to confirm this.

The analysis of spatial variation can assist in deciphering fracture timing. Given the temporal nature of network forma-

tion, it is desirable to delineate network evolution into relative episodes of fracturing. In previous analyses specific to365

the Lilstock dataset used in this contribution, Passchier et al. (2021) identified jointing sets with timing history based

on fracture length, strike, and topological relationships. Although the temporal history is identified from joints that were

picked manually but not fully by Passchier et al. (2021), there is still a discernable spatial variation where some jointing
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sets are localized while others occur throughout the outcrop. Identifying spatial clustering in complete networks provides

a basis by which joint sets can then be arranged in a hierarchy of temporal development.370

– On the choice of a graph distance metric We have restricted our investigation scope to four state-of-the-art graph

similarity distances from the recent graph theory literature. Many more graph distances applicable to spatial graphs exist

(Hartle et al., 2020; Tantardini et al., 2019), and the best means remains an open problem in network science research.

Some novel distance measures are not graph-based but derive from persistent homology (such as Feng, 2020). In this

approach that considers the shape of data, persistence diagrams are generated from spatial graphs, and bottleneck dis-375

tances are used in combination with hierarchical clustering to discover clusters. The results from Feng (2020) compared

favourably to that of Louf and Barthelemy (2014) when applied to patterns of cities.

As may be observed from our results, the metrics highlight certain aspects of the fracture network while not considering

others. For instance, the fingerprint distance only considers block area and shape factor distributions of the blocks and

neglects orientations. The other three distances use graph properties directly, and hence orientation information (or the380

lack of it) is a consequence of how the spatial graph is defined. We used weighted graphs that incorporate euclidean

distance between nodes as edge weights for the similarity computations. However, each edge also has a striking attribute

to completely describe its position in 2D space (in the case of 3D, it needs a dip). Ideally, the edge weight should then be

a vector, w = [l,θ] incorporating both lengths, ’l’ and orientation, ’θ’, but the distance metrics we use do not allow the

use of non-scalar weights. Incorporating both length and strike into a single scalar can be done using a normalized dot385

product, and we will tackle this issue in future work.

– Do REV’s exist for fracture networks In the context of fractured reservoir modelling, identification of a representa-

tive elemental volume (REV) aids continuum-based simulation approaches. However, the complexities of fluid-flow and

transport through fractured porous media require an explicit representation of fractures. Given the difficulties associ-

ated with obtaining realistic network geometries, stochastic-process-based methods derived from sparse fracture data390

are commonplace. These methods are often unable to represent inherent non-stationarity in spatial variation (Thovert

et al., 2017) and work by Andresen et al. (2013) find that DFNs from nature exhibit disassortativity, which is not a

property of generated networks. Other techniques based on multipoint statistics (Bruna et al., 2019b) attempt image-

based approaches to modelling non-stationary networks. Estrada and Sheerin (2017) presents a different approach in

which DFNs are directly generated as spatial graphs (referred to as random rectangular graphs). Such a method can395

incorporate insights from outcrop-derived NFRs.

Regardless of the method used to extrapolate, stationariness decisions have to be made based on hard data, and this

is where our approach is helpful. We can use outcrop-derived networks to define and delineate stationarity’s spatial

boundaries and assign a particular type of network with due cognition of the inherent graph structure. Much literature

exists on linking fracture patterns to high-deformation drivers such as folding, faulting, and diapirism, with the goal400

being to identify and correlate appropriate outcrop analogues to particular subsurface conditions. As our clustering

results indicate, at the dimensional scales of sampling we have used, Tobler’s first law of geography is applicable to
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fracture networks. A representative network based on network similarity can be derived. The method can be applied

to analogues for which data already exists. Further work is however, required to differentiate fluid-flow and transport

responses of the identified cluster type.405

– Other clustering methods We have used a combination of HC and graph distance metrics to delineate regions within a

spatial graph and arrange them in a hierarchy of similarities. Within the graph theory literature, there are other non-HC

methods based on graph properties such as modularity (Blondel et al., 2008; Traag et al., 2019) or by graph spectral parti-

tioning (Fiedler, 1973; Spielman and Teng, 2007). Recent developments using graph neural networks and graph machine

learning include modifications on the concept of modularity (Tsitsulin et al., 2020) and spectral methods (Bianchi et al.,410

2020) towards the goal of graph partitioning.

7 Conclusions

This contribution presents a method to automatically identify spatial clusters and quantify intra-network spatial variation within

2D fracture networks. We test the technique on 2D trace data from a prominent limestone outcrop within the Lilstock pave-

ments, located off the southern coast of the Bristol Channel, UK. The fracture network data that spans three separate regions415

and covers over 14200 sq.m is converted to the form of planar graph structures, spatially sampled into sub-graphs, and then

compared using four different graph-distance measures. The pair-wise similarities in the form of distance matrices are used to

identify spatially-similar regions using the statistical technique of hierarchically clustering. The results obtained by clustering

with the four graph-distance measures (fingerprint distance, D-measure, NetLSD, and Portrait Divergence) reveal interesting

intra-network spatial similarity patterns that are not easily discernable from existing global or local fracture network descriptors.420

The spatial autocorrelation is not easily discernable with the NetLSD distance compared to the other methods. The delineations

of these intra-network sub-patterns provide a way to identify representative elemental volumes that preserve fracture networks’

topological and geometric properties. The presence of these sub-regions can also serve as a guide to making decisions on

stationarity w.r.t geostatistical modelling.

Code and data availability. A MATLAB implementation to compute graph fingerprints and fingerprint distance is available on the Github425

repository https://github.com/rahulprabhakaran/Fracture_Fingerprint/tree/v.1.0.0 [last access: 19 April 2021; see 10.5281/zenodo.4699961,

Prabhakaran (2021)]. The implementation of the D-measure in the form of an R script is available as supplementary code with Schieber

et al. (2017). The NetLSD python package used to compute the LSD distance as described in Tsitsulin et al. (2018) is available at https:

//pypi.org/project/NetLSD/. The code implementation for portrait divergence developed by Bagrow and Bollt (2019) can be obtained from

https://github.com/bagrow/network-portrait-divergence/.430

The circularly sampled fracture subgraphs are derived from the open fracture network dataset published by Prabhakaran (2021). The

circularly sampled subgraphs are available for download as a data supplement to this manuscript (Prabhakaran et al., 2021a).
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