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Abstract.

Rock fractures organize as networks, exhibiting natural variation in their spatial arrangements. Therefore, identifying, quan-

tifying, and comparing variations in spatial arrangements within network geometries are of interest when explicit fracture

representations or discrete fracture network models are chosen to capture the influence of fractures on bulk rock behaviour.

Treating fracture networks as spatial graphs, we introduce a novel approach to quantify spatial variation. The method com-5

bines graph similarity measures with hierarchical clustering and is applied to investigate the spatial variation within large-scale

2D fracture networks digitized from the well-known Lilstock limestone pavements, Bristol Channel, UK. We consider three

large, fractured regions, comprising nearly 300,000 fractures spread over 14,200 sq.m. from the Lilstock pavements. Using a

moving-window sampling approach, we first subsample the large networks into sub-graphs. Four graph similarity measures:

fingerprint distance, D-measure, NetLSD, and portrait divergence, that encapsulate topological relationships and geometry10

of fracture networks, are then used to compute pair-wise sub-graph distances serving as input for the statistical hierarchical

clustering technique. In the form of hierarchical dendrograms and derived spatial variation maps, the results indicate spatial

autocorrelation with localized spatial clusters that gradually vary over distances of tens of metres with visually discernable and

quantifiable boundaries. Fractures within the identified clusters exhibit differences in fracture orientations and topology. The

comparison of graph similarity-derived clusters with fracture persistence measures indicates an intra-network spatial variation15

that is not immediately obvious from the ubiquitous fracture intensity and density maps. The proposed method provides a

quantitative way to identify spatial variations in fracture networks, guiding stochastic and geostatistical approaches to fracture

network modelling.

1 Introduction

Fracture networks in rocks develop due to loading paths that vary over geological time-scale (Laubach et al., 2019). The evolu-20

tion of the network exhibits characteristics of a complex system. There is feedback between the evolving spatial structure and

the rock substrate in which the networks are positioned (Laubach et al., 2018). The resulting spatial arrangement that emerges

after cumulative network evolution is of considerable interest as it influences flow, transport, and geomechanical stability in

multiple anthropogenic subsurface applications such as geothermal energy (Vidal et al., 2017), nuclear waste disposal (Wang
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and Hudson, 2015), aquifer management (Witherspoon, 1986), and hydrocarbon exploitation (Nelson, 2001). Systematically25

documenting near-surface fracture patterns is essential, for example, in mining applications where fracture patterns often pro-

vide clues to ore deposit patterns (Jelsma et al., 2004), and in geotechnical engineering, where fractures influence stability in

human-made structures such as tunnels (Lei et al., 2017).

An important property of natural fracture networks is that of spatial organization, which means that the arrangements are

not random but follow a statistically discernable pattern. One can view the spatial arrangement of fractures as a set of objects30

within a geographical reference system. Within such a framework, fracture objects are either regularly spaced, irregularly

spaced with statistically significant regions of close spacing, and irregularly spaced with statistically insignificant regions of

close spacing (Laubach et al., 2018). An alternate framework is a network, where fracture objects are described in relation to

one another (Valentini et al., 2007; Andresen et al., 2013; Sanderson and Nixon, 2015). Spatial variations in fracture network

organization are quite common. The physical phenomena commonly used to explain spatial variation in fracture arrangements35

are stress shadowing, layer thickness differences, host rock lithology, layered mechanical anisotropy, high-strain events such

as faulting/folding, and diagenesis. However, it is generally not easy to associate a type of spatial arrangement to any unique

set of input boundary conditions as similar loading paths can lead to diverging patterns, and dissimilar loading paths can lead

to converging patterns (Laubach et al., 2019).

Quantifying variations in spatial arrangements of fractures involves the sampling of fracture data. Such quantifications can40

be in the form of 1D (using scanline methods, borehole sampling), in 2D (fracture trace maps from outcrop imagery), or 3D

(ground-penetrating radar, microseismic). 1D scanlines provide a method to quantify arrangements and variation, and several

statistical measures have been proposed, such as fracture spacing (Priest and Hudson, 1976), fracture intensity (Dershowitz

and Herda, 1992), coefficient of variation (Gillespie et al., 1993), normalized correlation count (Marrett et al., 2018), and

cumulative spacing derivative (Bistacchi et al., 2020). These measurements, however, only indicate the variation of fracture45

arrangements on the scanline and fail to depict the variation in directions away from the scanline direction. Scanlines do not

provide information on properties such as fracture length, spatial arrangements, and relationships with other fractures.

2D fracture trace maps are especially useful as this type of data combines both geometric and topological information in the

form of a network. Recent advances in UAV-photogrammetry (Bemis et al., 2014; Bisdom et al., 2017) and automated image

processing algorithms (Prabhakaran et al., 2019) have led to large datasets of 2D fracture traces that reveal much more about50

network attributes than is possible from 1D sampling. Given such large datasets with rich information, it is pertinent to directly

quantify spatial variation from the network structure. Spatial fracture persistence (Dershowitz and Herda, 1992) can quantify

2D spatial variation but only considers some aspects of the network (such as the sum of trace lengths, number of traces, etc.,

within a sampling region). Thus, there is a need for more advanced techniques specific to 2D fracture trace data and which can

use the combined geometric and topological structure.55

From a geostatistical perspective, the concept of spatial variability describes how a measurable attribute varies across a

spatial domain (Deutsch, 2002). Quantifying magnitude and directional dependence of the variability can also be done using

geostatistical tools, provided there is a means to measure variability across multiple spatial samples. The variability in fracture

data has typically been reduced to variability in attributes (such as fracture length by sampling area, number of intersections,
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number of sets, and orientations), and attribute variability used to make decisions of stationarity. The identification of repre-60

sentative element volumes (REVs) then follows from the choice of stationarity. However, given that natural fracture networks

display spatial heterogeneity, the suitability of such REVs based on stationarity assumptions needs to be re-examined. There-

fore, it is interesting to compare network variation (rather than attribute variation) across the spatial domain. Any comparative

method must retain topological and geometric structures encoded within the spatial samples.

2 Graph theory in fracture network analysis65

2.1 Fracture networks as graphs
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Figure 1. Comparing primal and dual forms of a fracture network from data published by Prabhakaran et al. (2021b) (a) a fracture network

depicted in the primal form with dimensions in metres (b) corresponding dual representation of the fracture network with node sizing pro-

portional to dual graph node degree and plotted using a force layout (c) node degree distribution of primal graph (d) node degree distribution

of the dual graph

Many authors have suggested using graph theory for the characterization of fracture networks (such as Valentini et al., 2007;

Andresen et al., 2013; Vevatne et al., 2014; Sanderson and Nixon, 2015; Sanderson et al., 2019). In graph theory and network

science, graphs are structures that comprise a set of edges and vertices representing relationships between data. In fracture

networks, the vertices are intersections between fractures, and the edges represented by fracture segments connecting the70
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vertices (Sanderson and Nixon, 2015). By assigning positional information to the vertices (also called nodes), fractures in the

form of graphs encapsulate both topological and spatial information (Sanderson et al., 2019). An alternate graph representation

is when fractures from tip-to-tip are vertices, and intersections with other fractures are edges. Barthelemy (2018) refers to

these types of representations as to primal and dual forms, respectively. Others, such as Doolaeghe et al. (2020), call the two

representations as intersection graphs and fracture graphs.75

We depict an example of a fracture network in its primal form (see Fig. 1.a) and in its dual form (see Fig. 1.b). The degree of

a graph node is simply the number of edges that are incident at a particular node. As seen in the primal graph in Fig. 1(c), the

maximum node degree is 6, with the most common degree value being 3. This type of degree distribution is typical for a spatial

graph in which physical constraints limit the maximum possible node degree. We may note that node degrees in spatial graph

representations of fracture networks are most likely to be 1,3, or 4. For fracture networks interpreted from outcrop images as80

depicted in Fig. 1(a), eroded fractures and enlarged apertures may lead to higher degrees due to issues in resolving closely

spaced nodes.
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Figure 2. (a) An unweighted planar graph with six nodes and seven edges (b) adjacency matrix of unweighted graph (c) a weighted planar

graph with edge weights proportional to euclidean distances between connecting nodes (d) weighted sparse adjacency matrix for weighted

planar graph (e) a directed, unweighted graph (f) adjacency matrix of directed graph
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In the case of the alternate representation, referred to as dual graphs by Barthelemy (2018) and depicted in Fig. 1(d), the

maximum degree can be much higher, and the longest fractures that have the highest number of intersections also have the

highest degree. Andresen et al. (2013) and Vevatne et al. (2014) suggested that fracture networks are disassortative in that85

shorter fractures preferentially attach on to the longer fractures. The property of disassortativity is quantitatively defined using

assortativity coefficients (Newman, 2002) with disassortative networks having negative assortativity coefficients. Andresen

et al. (2013) and Vevatne et al. (2014) report negative assortativity coefficients for fracture networks that are represented in the

dual form. Prabhakaran et al. (2021b) found such a correlation between dual graph node degree and length.

In graph representations, weights can be assigned to edges that are proportional to the importance of that edge. In the case90

of fracture networks in the primal form, this can be the euclidean distance between the nodes (or fracture edge intersections).

The weight may also be the direction cosine of the particular edge that indicates orientation. In the dual graph representation,

intersections between fractures represent the edges. Therefore the edge weight may be specified in terms of intersection angle.

Graphs may also be directed with a specific direction to edges. In the case of spatial graphs derived from fracture networks,

an undirected but weighted representation is sufficient. Fig. 2(a), Fig. 2(c), and Fig. 2(e) depicts examples of unweighted,95

weighted, and directed planar graphs, respectively. The corresponding adjacency matrices are depicted in Fig. 2(b), Fig. 2(d),

and Fig. 2(f).

2.2 Graph distance measures to quantify network similarity

Several graph similarity measures exist within the graph theory literature to compare graphs (see Hartle et al., 2020; Tantardini

et al., 2019; Emmert-Streib et al., 2016 for recent reviews). Graph comparisons are a challenging, non-trivial problem in terms100

of computing complexity (Schieber et al., 2017). Still, various measures exist that can capture and highlight useful aspects

of the graph structure that facilitate comparisons. Graph isomorphism between two graphs implies that there exists a series

of necessary conditions such as an equal number of nodes, edges, degree sequences, and sufficient conditions such as equal

adjacency matrices (Van Steen, 2010). An isomorphism test on two graphs G1 and G2, can only yield two results, either

isomorphic or not. Graph similarity can therefore be differentiated from graph isomorphism in that the latter comparison can105

only return a binary outcome. Graph similarity on G1 and G2, on the other hand, returns a real-valued quantity that converges

to zero when the two graphs approach isomorphism (or complete similarity).

Tantardini et al. (2019) classify distance measures based on whether the metric is capable of comparing graphs with an

unequal number of nodes or not. The metrics may also be classified based on whether they can also handle weighted and

directed graphs. Using a graph-similarity measure on a fracture network, we can explore spatial variations in network structure110

by comparing multiple sampling points.

2.3 Combining dissimilarity measures with clustering algorithms

Since we are interested in quantifying spatial variability, we may recast the problem as that of identifying clusters within

the network. Clustering is also referred to as unsupervised classification and is a process of finding groups within a set of

objects with an assigned measurement (Everitt et al., 2011). If we consider a dataset, D = [X1,X2, ...Xn], containing ’n’ data115
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Figure 3. A simple example of hierarchical clustering using euclidean distance (a) 10 randomly positioned points in 2D space (b) dendrogram

computed from hierarchical clustering using the euclidean distance depicting clusters of the 10 individual points at different levels organized

into a hierarchy. The procedure of hierarchical clustering is shown in Algorithm 1.

samples, clustering then implies arranging the elements of D into ’m’ distinct subsets, C = [C1,C2, ...Cm], where m ≤ n.

From a statistical perspective, the clustering task is different from classification because the former is exploratory, whereas the

latter is predictive, although both attempt to assign labels. Therefore clustering must precede classification.

In the existing literature on fracture networks, assigning labels to specific perceived archetypal networks (or end-members) is

standard. These typologies include terms such as orthogonal, nested, ladder-like, conjugated, polygonal, corridors, etc. (Bruna120

et al., 2019a,b; Peacock et al., 2018). However, when faced with the reality of outcrop-derived 2D fracture trace data, it is not

easy to assign such labels. Therefore, clustering is a significant and necessary step in exploratory fracture data analysis.

Hierarchical clustering (HC) is an unsupervised statistical clustering method (Kaufman, 1990) that can identify clusters

within a set of observations given a distance matrix computed by applying a well-defined distance function, pair-wise on each

observation. In contrast to other clustering methods such as k-means or k-medoids, which require an a priori known number of125

clusters as input arguments, HC re-organizes observations into hierarchical representations from which the user can pick a level

of granularity. At the lowest level, there is just one cluster containing all the observations. At the highest level, the number of

clusters is equal to the observations. HC algorithms are referred to as agglomerative or divisive depending upon whether they

begin from a lower level or from the highest level. The clustering then organises the discrete data into a hierarchical dendrogram

structure that positions the clusters based on the magnitude of similarity. By combining graph distance computations across130

spatially distinct samplings with unsupervised HC, cluster detection automatically leads to quantified spatial variation. A

simple example of HC is illustrated on a set of randomly distributed points in space (see Fig. 3.a). The result is the hierarchical

dendrogram structure depicted in Fig. 3(b).
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3 Fracture Datasets

Figure 4. Overview of fracture networks corresponding to the three considered regions. This map is derived from an open image dataset

published by Weismüller et al. (2020) and available for download with a CC-BY license

To validate the proposed approach based on graph distance metrics and hierarchical clustering, we utilize a 2D joint fracture135

dataset from the Lilstock pavement in the Bristol Channel, UK (Prabhakaran et al., 2021b). The dataset consists of fracture

joints automatically traced using a technique described in Prabhakaran et al. (2019) from UAV photogrammetric data published

by Weismüller et al. (2020). The joint networks correspond to Jurassic limestones with very dense joint networks spread across

multiple layers. The joints are stratabound and perpendicular to bedding. We consider three large-scale fracture networks from

this dataset, as depicted in Fig. 4. There is considerable spatial variation in the jointing. From previous literature documenting140

joints within the Lilstock pavements, the spatial variation is attributed to multiple reasons.
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The proposed explanations include proximity and influence of faults explained by fluid-driven radial-jointing emanating

from asperities within fault (e.g., Rawnsley et al., 1998; Gillespie et al., 1993), spatial variation of thicknesses of intercalated

limestone and shale layers (e.g., Belayneh, 2004), proximity to high-deformation features such as folding (e.g., Belayneh

and Cosgrove, 2004), the interplay between regional and local stresses resulting in complex stress fields (e.g., Whitaker and145

Engelder, 2005), inheritance from the spatial distribution of pre-existing vein/stylolite networks that influenced later joint

network development (e.g., Wyller, 2019; Dart et al., 1995), and synkinematic cementation in veins affecting later development

of joints (Hooker and Katz, 2015). Recent work on fractures at the Kilve outcrop (Procter and Sanderson, 2018), exposing the

same geological units as those considered in this work, conclude that anomalous fracture intensity exists in fracturing at various

locations and suggest that variability in fracture intensity cannot be fully explained by variations in thickness, compositional,150

or textural variations.

Table 1. Summary statistics for the three regions

Region Approx. area (sq.m) Fractures Edges Nodes

Region 1 6017 124006 364703 228661

Region 2 6749 141344 365333 235089

Region 3 1473 28892 78151 49771
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Figure 5. Comparison of the three regions in terms of networks, orientations and length distributions. Map dimensions are in metres. This

image has been modified from Prabhakaran et al. (2021b) with permission

From this dataset, we utilize fracture networks corresponding to three contiguous regions. Figure. 4 depicts the three areas’

spatial extent labelled as Regions 1 to 3. The intensity of fracturing is such that the spatial graphs corresponding to each region

have a single connected component. Table 1 tabulates summary statistics for the three networks. The number of edges and

nodes correspond to the primal graph representation. What is referred to as fractures in Table 1 are sequences of graph edges155

that are clubbed together based on continuity and a strike direction threshold (or number of dual graph nodes). Regions 1 and

2 correspond to a single stratigraphic layer but, owing to erosion, they are not contiguous within the outcrop. We treat them

separately in our analysis of spatial variation.

The detailed resolution, topological accuracy, and spatial extent of the traced networks make the dataset appropriate for a de-

tailed analysis of spatial variation in fracturing. The networks have significant intra- and inter-network variability in fracturing.160
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Figure. 5, Fig. 6, and Fig. 7 illustrate these differences. From Fig. 5, the fracture orientations of Region 1 depict discernable

angular bins of fracture orientations. On the other hand, rose plots of Regions 2 and 3 show considerable scatter owing to the

presence of long and curved fractures. Fracture length distributions are different, with Region 2 having the longest fractures

and Region 1 the shortest. The distribution of joints within a particular length bin is also highly variable. In Fig. 6, the cumu-

lative variation in the strike along individual fracture edges that comprise a tip-to-tip fracture is plotted as a function of the165

total length. The slope of the scatter plots give an indication of the fracture curvature. The slope of the scatter plot is higher in

Regions 2 and 3 than in Region 1. We interpret the curvature to, therefore, be the least in Region 1.
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the three regions
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4 Methods

4.1 Sub-sampling the network data
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Figure 8. Sub-sampling of a fracture graph corresponding to full region into sub-graphs of 7.5 m diameter and spacing of 5 m

We circularly sample the fracture networks on a cartesian grid with a sub-graph extracted within a circular region centered170

at each grid point. The grid spacing-to-circle diameter is maintained such that neighboring sub-graphs share some portion

of the area (see Fig. 8). Near the networks’ boundaries, the sub-graphs are either too small or result in disconnected graph

components. We neglect these samples so that they do not affect the clustering results. The process of circular sampling creates

edge nodes with degree 1, which has the effect of altering node topology by introducing isolated, degree-1 nodes. To prevent

this from impacting clustering results, we remove all edges from the sub-graphs emanating from degree-1 nodes that contact175

the periphery of the circular sample. This effect is illustrated in Fig. 9. Each sub-graph can now be compared to every other

sub-graph using a graph distance metric to compute a pair-wise distance matrix. The distance matrix serves as the input to the

hierarchical clustering algorithm.

Table 2. Number of subgraphs obtained per region

Region No. of sub-graphs

Region 1 219

Region 2 212

Region 3 117
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(a) (b) (c)

Figure 9. Treating isolated nodes and dangling edges that arise due to circular-sampling (a) circularly sampled subgraph with a diameter

of 7.5 m (b) edges connected to isolated nodes intersected by circle (c) subgraph after removing isolated nodes and corresponding dangling

edges

For N sub-graphs, the number of comparisons necessary are N(N−1)
2 . The computational complexity of graph comparison

increases polynomially with the size of sub-graphs in terms of node sizes. Since the number of comparisons increases quadrati-180

cally with the number of sub-graphs, we seek to balance grid spacing and sampling diameter. For Regions 1 and 2, we choose a

spacing of 5 metres for circularly sampled subgraphs with a diameter of 7.5 m. For Region 3, which is also the smallest region,

a spacing of 5 metres would lead to quite a smaller number of sub-graphs. Therefore, we use a more dense spacing of 3 metres

with a diameter of 7.5 m. Table 2 tabulates the number of sub-graphs pertaining to each region.

4.2 Graph similarity measures185

We use the following four graph similarity measures to compare the sub-graphs.

– Fingerprint Distance (Louf and Barthelemy, 2014)

– D-measure (Schieber et al., 2017)

– NetLSD (Tsitsulin et al., 2018)

– Portrait Divergence (Bagrow and Bollt, 2019)190

The performance of these similarity measures have been validated previously by Hartle et al. (2020) and Tantardini et al.

(2019) for a variety of benchmark graph datasets. Each similarity measure is described briefly in the following subsections.

The reader is referred to the references above for further details on the similarity measures.

4.2.1 Fingerprint distance
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Figure 10. (a) shape factors for regular block shapes with equal edge lengths (b) shape factors for polygonal blocks resulting from real

fracture networks in Region 1 (dimensions are relative)

The fingerprint distance introduced by Louf and Barthelemy (2014) is purely geometric and combines statistics of block195

faces and shape factors in computing a probability distribution of a spatial graph. Louf and Barthelemy (2014) formulated the

measure in the context of quantifying differences in street patterns. A block denotes the 2D region enclosed by graph edges. For

any given spatial graph, this corresponds to the number of bounded sub-graphs or primary cycles. We neglect isolated fractures

and those having dead ends when computing these blocks. Given the network intensity in our dataset, such isolated fractures

are minimal. Every block has an associated shape factor, ’φ’ which is expressed in terms of block area ’A’ and circumscribing200

circle area, ’Ac’ ,

φ=
A

Ac
(1)
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Figure 11. (a) Overview of Region 1 with two selected 1000 x 1000 pixel image tiles (b) enlarged view of first image tile (c) fracture network

corresponding to first tile as a spatial graph with dimensions of 8.6 m x 6.75 m and having 3583 edges and 2382 nodes (d) block face areas

coloured as per three area bins, 0-100 cm2, 100-1000 cm2, and 1000-10000 cm2 (e) P (φ) or fingerprint of the sub-graph depicting the

combined effects of area and shape factor, φ pertaining to the three area bins. (f) enlarged view of second image tile (g) fracture network

corresponding to second image tile as a spatial graph with 5418 edges and 3539 nodes (h) block face areas binned logarithmically (i)

fingerprint of second spatial graph. (a),(b), and (f) are derived from images contained in the open dataset (CC-BY license) published by

Weismüller et al. (2020)

The value of φ is always smaller than 1, with larger values meaning that the block face shape is closer to that of a regular

polygon. Figure. 10(a) depicts shape factors of regular polygons versus that of polygons derived from spatial networks in Fig.

15



10(b). No unique correspondence exists between a particular shape and a magnitude of φ; however, the overall distribution205

of φ indicates reveals block shape distribution patterns and highlights differences between spatial graphs. The shape factor

alone does not fully serve as a similarity measure as blocks can have similar shapes but different face areas. The distribution

of the block-face areas is binned logarithmically to integrate information from the shape factor and block area distributions. A

conditional probability distribution, P (φ|A)P (A), is then defined representing the contribution of P (φ) for each area bin and

the summation of which yields the fingerprint curve, P (φ),210

P (φ) =
∑
A

P (φ|A)P (A). (2)

An example of a fingerprint, so named by Louf and Barthelemy (2014), is depicted in Fig. 11(e) and Fig. 11(j), with the

distribution curves for three area bins, for two fracture networks derived from image tiles (see Figs. 11.b,c,f,g) corresponding

to Region 1 (Fig. 11.a). The curves in Fig. 11(e) and Fig. 11(j) encapsulates information based on shape factors and block areas

(see Figs. 11.d,h), including the proportional contribution from all logarithmic area bins considered.215

Denoting fα(φ) as the ratio of the number of faces with a shape factor ’φ’ that lie in a bin ’α’ over the total number of

faces for that graph, a distance dα between two graphs Ga and Gb is computed by integrating over fα(φ) for the two different

graphs. The distance based on fα(φ) of the two graphs for a single area bin is defined as:

dα(Ga,Gb) =

1∫
0

|faα(φ)− f bα(φ)|ndφ (3)

As per Louf and Barthelemy (2014), the value of n can either be 1 or 2. We choose n= 1 in our computation. The global220

fingerprint distance DFP between Ga and Gb can then be computed summing over all area bins α,

DFP (Ga,Gb) =
∑
α

dα(Ga,Gb)
2 (4)

We have attached our MATLAB implementation of the fingerprint distance in the code supplement. We computed the

distance matrix for all sub-graphs corresponding to the three regions using this implementation.

4.2.2 D-measure225

The D-measure introduced by Schieber et al. (2017) is a three-component distance metric with weighting constants for each

component. The three properties of graphs compared are the network node dispersion (NND), node distance distribution (µ),

and the alpha centrality (α). The dissimilarity measure, DDM , is the weighted sum:

DDM (g,h) = w1

√
J (µg,µh)
log2

+w2

∣∣∣√NND(g)−
√
NND(h)

∣∣∣+ w3

2

(√
J (Pα(g),Pα(h))

log2
+

√
J (Pα(gc),Pα(hc

′))

log2

)
,

16



(5)

where J indicates the Jensen-Shannon divergence. The constants w1, w2, and w3 in Eq.5 are real and non-negative weights230

such that w1 +w3 +w3 = 1.

As per Schieber et al. (2017) the first term in Eq.5 compares averaged connectivity node’s patterns as per node distance

distribution. Schieber et al. (2017) define NND, within the second term, as a measure of the heterogeneity of a graph with

respect to connectivity distances that capture global topological differences. The NND is computed as:

NND(G) =
J (P1, ....,PN )

log(d+1)
, (6)235
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Figure 12. D-measure components for the two example fracture graphs comparing α-centrality of nodes, distributions of α-centrality, NND

distributions, and node distance distributions
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where the numerator in Eq.6 is the Jensen Shannon divergence of N connectivity distance distributions [P1,P2.....PN ].

Pi is constructed as Pi = pi(j) where pi(j) is the fraction of nodes connected to node i at distance j. The Jensen-Shannon

divergence of [P1,P2.....PN ] is expressed as:

J (P1, ....,PN ) =
1

N

∑
i,j

pi log

(
pi(j)

µj

)
. (7)

µj in Eq.7 is the average of N distributions and can be written as,240

µj =
1

N

N∑
i=1

pi(j). (8)

The third term in Eq.5 is based on probability density functions associated with alpha centrality of graph Pα(g) and alpha

centrality of the graph complement Pα(gc). The value of weights was suggested by Schieber et al. (2017) as w1 = w2 = 0.45

and w3 = 0.1. We use the implementation provided by Schieber et al. (2017) with these sets of weights to build the distance

matrices for all sub-graphs within the three regions of interest. We depict in Fig. 12 for the two example fracture networks, the245

three properties that are used in computing the D-measure.

4.2.3 Portrait Divergence

The Portrait Divergence similarity score derives from network portraits introduced by Bagrow et al. (2008) for unweighted

graphs and extended to weighted graphs by Bagrow and Bollt (2019). For a graph g with N nodes, the network portrait is

defined as a matrix Blk where each entry is the number of nodes with k nodes at l distance. The limits of l and k are 0 ≤ l250

≤ d and 0 ≤ k ≤ N − 1, with d being the diameter of the graph. The row entries of the network matrix Blk are probability

distributions of a random node having k nodes at a distance l:

P (k|l) = Blk
N

(9)

For a second graph h, if the network matrix is B′lk with a corresponding probability distribution of Q(k|l) and diameter d′, the

Kullback Leibler (KL) divergence between P (k|l) and Q(k|l) is expressed as:255

KL(P (k|l)||P (k|l)) =
max(d,d′)∑

l=0

N∑
k=0

P (k, l)log
P (k, l)

Q(k, l)
(10)

The portrait divergence DPD(g,h) is computed by the Jensen Shannon divergence between P (k|l) and Q(k|l):

DPD(g,h) = JSD(P (k|l),Q(k|l). (11)

This can be expressed in terms of Kullback Leibler divergences and mixture distributions as:

DPD(g,h) =
1

2
(KL(P ||M)+KL(Q||M)) (12)260
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where the mixture distribution M of P (k|l) and Q(k|l) is given by:

M =
1

2
(P (k|l)+Q(k|l)) (13)

The portrait divergence measure provides a single value 0 ≤ DPD(g,h) ≤ 1 for any pair of graphs. Bagrow and Bollt (2019)

applied the portrait divergence measure to both synthetic and real world networks. The code implementation of portrait di-

vergence attached with Bagrow and Bollt (2019) is used to construct the distance matrices for all sub-graphs within the three265

regions of interest. The network portrait or the Blk matrix for the example fracture graphs are depicted as heatmaps in Fig. 13.
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Figure 13. Heatmap representations of network portrait sparse matrices (Blk) for the two example fracture graphs

4.2.4 Laplacian Spectral Descriptor

The NetLSD distance was introduced by Tsitsulin et al. (2018). It is based on a Frobenius norm computed between heat trace

signatures of normalized Laplacian matrices of two graphs. For a graph g with a normalized Laplacians L and n nodes, a heat

kernel matrix is defined as:270

Ht = e−tL =

n∑
j=1

e−tλjφjφ
T
j (14)

Using the heat kernel matrix Ht, a heat trace ht is defined as:

ht =

n∑
j=1

e−tλj (15)

For a second graph g′ with a heat trace signature of h′t, the NetLSD distance DLSD is then the Frobenius norm of the two heat

signatures as:275

DLSD = ||ht,h′t||Frobenius (16)
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Figure 14. Comparing heat trace signature vectors for the two example fracture graphs computed using NetLSD

Figure. 14 depicts heat trace signatures computed using the NetLSD python package implemented by Tsitsulin et al. (2018)

for the two example fracture graphs. We use this package to populate the distance matrices associated with sub-graphs from

each region.

The values of graph similarity computed using the four metrics described by Equations. (4), (5), (12), and (16) for the two280

example fracture graphs depicted in Fig. 11(c) and Fig. 11(g) are summarized in Table. 3.

Table 3. Summary of graph similarities computed for example fracture networks

Graph Similarity Value

Fingerprint Distance [DFP ] 0.1414

D-measure [DDM ] 0.1244

Portrait Divergence [DPD] 0.2926

NetLSD [DLSD] 0.0147

4.3 Hierarchical Clustering

After sub-sampling the fracture networks (see Section 4.1) and using the graph distance metrics described in Section 4.2

to construct distance matrices, we apply hierarchical clustering. HC can be done in an agglomerative versus divisive manner

(Hennig et al., 2016). We utilize the agglomerative approach, which generally follows the steps described in Algorithm 1.285
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Algorithm 1 Agglomerative Clustering

Input: Data D = [X1,X2, ....Xn]

Output: Dendrogram C = [C1,C2...Cm]

(i). Initialization.m clusters of one element each with pair-wise distances computed and stored in symmetric square distance matrixDdist

(ii). form pair Ci and Cj that are closest within C

(iii). form cluster Ck = Ci ∪Cj and generate a new dendrogram node

(iv). update Ddist after computing distance between Ck and C −Ck

(v). delete rows and columns corresponding to Ci, Cj from Ddist and add rows and columns pertaining to Ck

(vi). repeat (i) - (v) till only a single cluster remains

Based on how linking of clusters is done as per Algorithm 1(iii), HC can be classified into methods such as single linkage,

complete linkage, unweighted pair-group average, weighted pair-group average, unweighted pair-group centroid, weighted pair

group centroid, and Ward’s method (Wierzchoń and Kłopotek, 2018). Ward’s method performs the linkage by minimizing the

sum-of-squares of distances between objects and cluster centres. We use Ward’s method implemented within the R statistical

programming environment to apply the HC to all the sub-graph distance data.290

5 Results

We first show region-wise results of graph property computations. Intra-region spatial clustering resulting from the combined

application of graph similarity measures with HC is then discussed. We use the following abbreviations for brevity throughout

the section: FP - fingerprint distance, DM - D-measure, LSD - NetLSD, PD - portrait divergence.

5.1 Region-wise graph characteristics295

Fingerprints pertaining to the regions is depicted in Fig. 15(a). The peak of the fingerprint plot is highest at a shape factor

of 0.4 for Region 1 and increases to above 0.5 for Regions 2 and 3. Histograms in Fig. 15(a) depict the number of polygons

within each area bin pertaining to fracture networks in each region. The network portraits or Blk matrices of each sub-graph

within the three regions are combined to create ensemble region-wise network portraits depicted as heatmaps in Fig. 15(b).

The non-zero entries in the Blk matrices, indicated by warmer colours in the heatmaps, have visibly different patterns. Heat300

traces for the sub-graphs in each region are shown in Fig. 15(c). Figure. 16 depicts the variation of the network properties that

are components of the D-measure distance i.e., α- centrality, NND, and µ for sub-graphs for the three regions.
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Figure 16. Region-wise properties used to compute the D-measure represented as ensemble plots of α-centrality, network node dispersion

(NND), and node distance (µ) distributions for subgraphs
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5.2 Intra-region spatial variation

Intra-region spatial variation results can be presented as distance matrix heatmaps corresponding to each graph similarity

metric. Dendrograms depict the hierarchical organization of the sub-graphs corresponding to similarity entries within the305

distance matrix entries. The intra-regional variation is more intuitively illustrated spatially by showing sub-graphs using an

appropriate colour scheme that groups similar clusters under colours picked within a linear spectrum. This section presents the

clustering results for all three regions using a combination of dendrograms, spatial cluster maps, and heatmaps.

5.2.1 Analysis of spatial variation in Region 1

The spatial distribution of clusters pertaining to the four distance metrics overlain over the network is shown in Fig. 17(a)-(d)310

along with the associated dendrograms for the top 10 clusters. The sub-graphs are represented by coloured discs that follow

a diverging colour scheme. The number of sub-graphs within each of the top 10 clusters is also listed under the dendrogram

branches. It may be noted that the top 10 clusters are shown to depict, analyse, and compare the spatial variation across distance

measures. A complete, uncut dendrogram and associated heatmaps of the similarity measures are depicted in Appendix Fig.

A1. We can cut the dendrogram at different heights guided by slope changes in the weighted sum of squares plots shown315

in Fig. A1. The boundaries of spatial clusters vary with the dendrogram cut height, with sub-regions emerging by traversing

deeper into the dendrogram. This variation is depicted in Appendix Figs. B1 - B4 for a range of clusters varying from 4-10.

The number of sub-samples for the four similarity measures pertaining to a dendrogram cut of k = 10 is tabulated in Table. 4.

Table 4. Summary of sub-graphs within each cluster of Region 1 for k = 10

Metric ↓ cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

FP 3 36 24 47 2 24 41 16 20 6

DM 24 25 5 15 17 19 40 39 10 25

LSD 12 17 21 23 16 28 11 30 13 48

PD 38 17 3 5 24 25 79 13 6 9

Total 219

We can observe that spatial autocorrelation exists for the FP (Fig. 17.a), DM (Fig. 17.b), and PD (Fig. 17.d) similarity

measures. The LSD yields a speckled pattern with no obvious spatial autocorrelation (Fig. 17.c). In order to compare clustering320

results derived from the graph similarity measures, the spatial fracture persistence P20 and P21 computed using box-counting

(box size of 0.5× 0.5 m) is depicted in Fig. 17(e) and Fig. 17(f), respectively. Comparing clusters derived from graph similarity

measures to the fracture persistence plots reveals boundaries within the network that are not easily discernable from the latter.

Since LSD does not show spatial autocorrelation, we do not analyse it further.

Fig. 18(a)-(c) depicts topology histograms and rose plots of the clusters pertaining to the remaining three similarity measures.325

The orientation rose plots and topological summaries are generated by combining all circular samples identified under a cluster

into ten clusters sub-graphs from the larger region fracture graph. It can be observed from the rose plots that the clusters have
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varying fracture orientations that transitions across the hierarchy identified by the dendrograms. The topological summaries of

the clusters do not vary significantly. Appendix Figs. C1-C3 depicts zoomed-in sub-graphs corresponding to each of the top 10

clusters that visually confirm the intra-regional variation.330

We briefly describe the characteristics of the clustering results prefixing ’n’ to the number of subsamples within a cluster to

refer to a particular cluster at a k=10 dendrogram cut. From Fig. 17(a) and the zoomed-in archetypal examples in Fig. C1, the

clustering derived from FP seems to have a N-S variation trend. The trend is corroborated by observing the dendrogram, which

splits into a northern branch comprising of clusters n36, n24b, n47 and a southern branch with clusters n6, n20, n41, n16, n2,

n24a. An outlier branch n3 exists at the boundary between northern and southern branches.335

A similar variation is observable from the result of DM (see Fig. 17.b). However, the cluster demarcations are less stark than

with FP with a notable stippled pattern. A major dendrogram division is a branch consisting of a thin sliver in the N-E (clusters

n24, n25b, n5, n15) which also include some boundary periphery samplings in the wast and south of Region 1. The south-

western sliver is mainly contained in a branch containing cluster n17. The central parts of Region 1 fall under the dendrogram

branch containing clusters n39, n10, n25a. The remainder of the Region 1 is covered by branch containing clusters n19 &340

n40. Fig. C2 depicts archetypal examples of sub-graphs relevant to each cluster for DM.

The results of PD also depict N-S variation (see Fig. 17.d) in the clustering. Similar to DM, PD is also sensitive to the

sub-graph completeness with peripheral clusters represented under n13. The branches comprising n13, n6, n9, and n38, n17

closely correspond to the trend of high fracture persistence (compare with Fig. 17.e and Fig. 17.f). Similar to results from FP

and DM, the thin sliver in the N-E of Region 1 is captured under the branch with clusters n3, n5, n24. The remainder of Region345

1 falls under clusters n25, n79. Fig. C3 depicts archetypal examples of sub-graphs corresponding to each cluster for PD.
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Figure 17. Hierarchical clustering results for Region 1 depicting the top 10 clusters using (a) Fingerprint distance (b) D-measure distance (c)

NetLSD distance (d) Portrait Divergence distance (e) spatial P20 (f) spatial P21
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Portrait divergence

27



5.2.2 Analysis of spatial variation in Region 2

Spatial distribution along with dendrograms of top ten clusters pertaining to the four graph similarity measures for Region 2

is depicted in Fig. 19. The full dendrograms and heatmaps are placed in Appendix Fig. A2. The variation of spatial clusters

with different choices of dendrogram cut-heights is shown in Appendix Figs. B5 - B8. The number of sub-samples for the four350

similarity measures pertaining to a dendrogram cut of k = 10 is tabulated in Table. 5. Similar to Region 1, there is marked

spatial autocorrelation with FP (Fig. 19.a), DM (Fig. 19.b), and PD (Fig. 19.d), whereas the LSD (Fig. 19.c) shows a speckled

pattern. The spatial clustering results can be compared with the fracture persistence plots in Fig. 19(e) and Fig. 19(f).

Table 5. Summary of sub-graphs within each cluster of Region 2 for k = 10

Metric ↓ cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

FP 20 22 41 52 9 17 36 8 3 4

DM 19 20 14 25 10 16 23 38 23 24

LSD 2 6 31 28 53 9 15 38 5 25

PD 17 30 17 8 24 15 28 24 15 34

Total 212

Node degree histograms and rose plots depict the differences in network topology and fracture orientations between the

identified clusters pertaining to FP (Fig. 20.a), DM (Fig. 20.b), and PD (Fig. 20.c). For all three measures, the shape of rose355

plots indicates a transition of principal orientations smoothly across clusters. For example in Fig. 20(a) for FP, the more

complex fracturing in the west of Region 2 is depicted by cluster n20 with a very diffuse rose plot, changing orientations to a

predominantly orthogonal pattern in cluster n03. The DM (clusters n16 and n10 in Fig. 20.b) and PD (clusters n08 and n17b in

Fig. 20.c) also identify this region of orthogonal fracturing. The corresponding topological summaries also depict an increased

proportion of degree-4 nodes as compared to the histograms of other clusters.360

From FP clustering results (see Fig. 19.a), the dendrogram identifies a western branch with clusters n20 and n22. The branch

comprising of clusters n8, n3, n4 correspond to the radial fracturing region identified by Gillespie et al. (1993) that originates

from the fault in the SE of Region 2. Clusters n9, n17, n36 all under a branch covering parts of Region 2 further away from

the radial fracturing region. Clusters n41, n52 originate under a branch forming the northern and eastern boundaries of Region

2. Fig. C4 depicts archetypal sub-graphs under each cluster in detail for FP. The clustering results of DM (Fig. 19.b) and PD365

(Fig. 19.d) appear to be similar and with dendrograms roughly splitting into three main branches that correspond to specific

portions of Region 1. First is the radial fracturing area represented by branch forming clusters n10, n16, n23b for D-measure

(Fig. 19.b) and branch forming clusters n17b, n8 for the portrait divergence (Fig. 19.d). The area to the N-W periphery of

Region 2, farthest away from the fault, is represented by branch forming clusters n19, n20, n14, n25 for DM and by branch

forming clusters n24a, n15a, n34 for PD. The transition region branch is represented within the DM dendrogram by clusters370

n38, n23a, n24 and within the PD dendrogram by clusters n24b, n15b, n28. Fig. C5 and Fig. C6 depict detailed sub-graph

examples for DM and PD, respectively.
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Figure 19. Hierarchical clustering results for Region 2 depicting the top 10 clusters using (a) Fingerprint distance (b) D-measure distance (c)

NetLSD distance (d) Portrait Divergence distance. (e) spatial P20 (f) spatial P21
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5.2.3 Analysis of spatial variation in Region 3

The spatial distribution along with dendrograms of the top 10 clusters pertaining to the four graph similarity measures for

Region 3 is depicted in Fig. 21. The full dendrograms and heatmaps are placed in Appendix Fig. A3. The variation of spatial375

clusters with different choices of dendrogram cut-heights (and number of clusters) is shown in Appendix Figs. B9 - B12.

Similar to the Region 1 and 2 results, there is marked spatial autocorrelation with FP (Fig. 21.a), DM (Fig. 21.b), and PD (Fig.

21.d), whereas the LSD (Fig. 21.c) shows a stippled pattern. The spatial clustering results can be compared with the fracture

persistence plots in Fig. 21(e) and Fig. 21(f). The number of sub-samples for the four similarity measures associated with a

dendrogram cut of k = 10 is tabulated in Table. 6.380

Table 6. Summary of sub-graphs within each cluster of Region 3 for k = 10

Metric ↓ cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10

FP 2 5 28 11 27 6 9 4 11 14

DM 24 15 6 16 1 5 5 25 3 17

LSD 9 25 4 9 6 5 5 10 16 28

PD 7 23 25 1 5 21 4 16 3 12

Total 117

Node degree histograms and rose plots depict the differences in network topology and fracture orientations between the

identified clusters relating to FP (Fig. 22.a), DM (Fig. 22.b), and PD (Fig. 22.c). For all three measures, the shape of rose

plots indicates a transition of principal orientations smoothly across clusters. For example, in Fig. 22(a) for the fingerprint

measure, the cluster n06 in the west of Region 3 has three main sets that become orthogonal in cluster n09, the nearest cluster

eastwards. Cluster n05 at the eastern extremity of Region 3 has an orthogonal pattern that has rotated almost 80 degrees385

clockwise compared to the western boundary. Orientations of fractures clusters between the eastern-most and western-most

clusters show transitions between the extremal archetypes.

From the FP clustering results (Fig. 21.a), the spatial variation appears to have an E-W trend. From the dendrogram, an

eastern branch comprising clusters n6, n9, 4, 11a, 14 and a western branch consisting of clusters n5, n28, n11b, n27 can

be identified. An outlier branch with Cluster n2 appears at the interface between the eastern and western branches. Detailed390

visualization of archetypal sub-graphs relating to each of the FP clusters is presented in Fig. C7. The dendrogram structure

and spatial clustering for the DM (Fig. 21.b) depicts a central region represented by a branch containing clusters n24, n15, n6,

n16. The eastern and western peripheries organize as clusters n1, n5a, n5b, n25, n3, n17 under a second branch. Underneath

this branch, clusters n1, n5a, n5b correspond to extremities of the Region 3, which are not fully sampled. The dendrogram

structure for the PD (Fig. 21.d) is similar with clusters n7, n23, n25 organizing under the branch representing the central region395

and clusters n1, n5, n21, n4, n16, n3, n12 forming the eastern and western peripheral regions. Clusters n1 and n5 pertain

to extremities of Region 3, which are not fully sampled. Figure. C8 and Fig. C9 depict zoomed-in sections of the sub-graphs

relating to each of the top clusters that confirm the detected intra-regional variation for DM and PD, respectively.
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Figure 21. Hierarchical clustering results for Region 3 depicting the top 10 clusters using (a) Fingerprint distance (b) D-measure distance (c)

NetLSD distance (d) Portrait Divergence distance (e) spatial P20 (f) spatial P21
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6 Discussion

Within the structural geology literature, the quantitative fracture persistence measures of Dershowitz and Herda (1992), the400

topological approach of Sanderson and Nixon (2015), and qualitative descriptions are most commonly resorted to for compar-

ing 2D fracture networks. The lack of quantitative measures for spatial network data is partially due to the lack of extensive

2D fracture trace data. Using the fully mapped, UAV-derived dataset of an extensive fracture network, it is possible to system-

atically investigate 2D fracture network organization variations.

In this contribution, we treat 2D fracture networks as planar graph structures and apply graph similarity measures to quanti-405

tatively compare sub-samplings within large fracture networks and discover clusters of similarity. The statistical technique of

HC was used along with graph distance metrics to extract spatial clusters. Sub-graphs within a spatial cluster are more similar

to each other than other clusters. A hierarchy of patterns is derived based on similarity scores, which can be examined at deeper

levels.

One can argue that variation exists at multiple length scales, and more granular inquiry would lead to different clusters. While410

our choices of grid-spacing and sub-sampling of graphs were to keep computational requirements in mind, it is possible to do

more dense sub-sampling than what we have already achieved to further highlight spatial variations within a given network.

The clusters that we have depicted are particular to the spacing and sampling diameters that we have chosen. In this section,

we discuss some additional perspectives and issues related to our methodology and results.

– Linking spatial variation patterns to fracturing drivers The results indicate that spatial variation in fracture networks415

is not always evident from the ubiquitously used fracture persistence measures, such as P20 and P21. The proposed

method highlights variations in network structure which can then help draw inferences into possible drivers for the

spatial differences. In the case of Regions 2 and 3, the proximity to the fault influences network development. Such

a model has been proposed by Peacock and Sanderson (1995), Gillespie et al. (2011), and Wyller (2019), where the

oldest fractures are long and radial, emanating from local asperities within the fault. These older fractures then influence420

the development of younger fractures. This is observed in Region 2, where clusters form roughly parallel to the E-N-E

striking fault with the direction of variation to the N-W. Region 3 is positioned between two such asperity epicentres.

There are long, radial fractures on the eastern and western extremities with a transition region in-between. The direction

of cluster variation trends E-W. Fracture pattern variation in Region 1 is not affected by faulting. Since Regions 1 and

2, pertain to a single layer, the N-E regions of Region 1 show visual similarities between the westernmost extremities of425

Region 2. The intraregional variations in Region 1 could be due to layer thickness variation, although we do not have

sufficient thickness data to confirm this.

The analysis of spatial variation can assist in deciphering fracture timing. Given the temporal nature of network forma-

tion, it is desirable to delineate network evolution into relative episodes of fracturing. In previous analyses specific to the

Lilstock dataset used in this contribution, Passchier et al. (2021) identified jointing sets with timing history based on frac-430

ture length, strike, and topological relationships. Although the temporal history is identified from joints that were picked

manually but not wholly by Passchier et al. (2021), there is still a discernable spatial variation where some jointing sets
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are localized while others occur throughout the outcrop. Identifying spatial clustering in complete networks provides a

basis by which joint sets can then be arranged in a hierarchy of temporal development.

– On the choice of a graph distance metric We have restricted our investigation scope to four state-of-the-art graph435

similarity distances from the recent graph theory literature. Many more graph distances applicable to spatial graphs

exist (Hartle et al., 2020; Tantardini et al., 2019); furthermore, the best means remain an open problem in network

science research. Some novel distance measures are not graph-based but derive from persistent homology (such as

Feng, 2020). In this approach that considers the shape of data, persistence diagrams are generated from spatial graphs,

and bottleneck distances are combined with hierarchical clustering to discover clusters. The results from Feng (2020)440

compared favourably to that of Louf and Barthelemy (2014) when applied to patterns of cities.

As may be observed from our results, the metrics highlight certain aspects of the fracture network while not considering

others. For instance, the fingerprint distance only considers block area and shape factor distributions of the blocks and

neglects orientations. The other three distances use graph properties directly, and hence orientation information (or the

lack of it) is a consequence of how the spatial graph is defined. We used weighted graphs that incorporate euclidean445

distance between nodes as edge weights for the similarity computations. However, each edge also has a striking attribute

to completely describe its position in 2D space (in the case of 3D, it needs a dip). Ideally, the edge weight should then be

a vector, w = [l,θ] incorporating both lengths, ’l’ and orientation, ’θ’, but the distance metrics we use do not allow the

use of non-scalar weights.

– Do REV’s exist for fracture networks In the context of fractured reservoir modelling, identification of a representa-450

tive elemental volume (REV) aids continuum-based simulation approaches. However, the complexities of fluid flow and

transport through fractured porous media require an explicit representation of fractures. Given the difficulties associ-

ated with obtaining realistic network geometries, stochastic-process-based methods derived from sparse fracture data

are commonplace. However, these methods are often unable to represent inherent non-stationarity in spatial variation

(Thovert et al., 2017), and work by Andresen et al. (2013) find that DFNs from nature exhibit disassortativity, which455

is not a property of generated networks. Other techniques based on multipoint statistics (Bruna et al., 2019b) attempt

image-based approaches to modelling non-stationary networks. Estrada and Sheerin (2017) present a different approach

in which DFNs are directly generated as spatial graphs (referred to as random rectangular graphs). Such a method can

incorporate insights from outcrop-derived NFRs.

Regardless of the method used to extrapolate, stationarity decisions have to be made based on hard data, and this is where460

our approach is helpful. We can use outcrop-derived networks to define and delineate stationarity’s spatial boundaries and

assign a particular type of network with due cognition of the inherent graph structure. Much literature exists on linking

fracture patterns to high-deformation drivers such as folding, faulting, and diapirism, with the goal being to identify

and correlate appropriate outcrop analogues to particular subsurface conditions. As our clustering results indicate, at the

dimensional scales of sampling we have used, Tobler’s first law of geography applies to fracture networks. Therefore, a465

representative network based on network similarity can be derived. The method can be applied to analogues for which
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data already exists. Further work is required to differentiate fluid-flow and transport responses of the identified cluster

type.

– Other clustering methods We have used a combination of HC and graph distance metrics to delineate regions within a

spatial graph and arrange them in a hierarchy of similarities. Within the graph theory literature, there are other non-HC470

methods based on graph properties such as modularity (Newman and Girvan, 2004; Blondel et al., 2008; Traag et al.,

2019) or by graph spectral partitioning (Fiedler, 1973; Spielman and Teng, 2007). Recent developments using graph

neural networks and graph machine learning include modifications on the concept of modularity (Tsitsulin et al., 2020)

and spectral methods (Bianchi et al., 2020) towards the goal of partitioning graphs into clusters.

7 Conclusions475

This contribution presents a method to automatically identify spatial clusters and quantify intra-network spatial variation within

2D fracture networks. We test the technique on 2D trace data from a prominent limestone outcrop within the Lilstock pave-

ments, located off the southern coast of the Bristol Channel, UK. The fracture network data that spans three separate regions

and covers over 14,200 sq.m is converted to the form of planar graph structures, spatially sampled into sub-graphs, and then

compared using four different graph-distance measures. The pair-wise similarities in the form of distance matrices are used to480

arrange region-wise sub-graphs into a hierarchical relationship structure, also referred to as a dendrogram, using the statistical

technique of hierarchical clustering. Positional order information from the dendrogram is used to render maps depicting the

spatial variation within the fracture networks. The delineations of these intra-network sub-patterns provide a way to identify

representative elemental volumes that preserve fracture networks’ topological and geometric properties. The presence of these

sub-regions can also serve as a guide to making decisions on stationarity with respect to geostatistical modelling. The main485

findings of the study are summarized as:

– representing fracture networks as graphs enable combining hierarchical clustering and graph-distance metrics to reveal

interesting intra-network spatial similarity patterns not otherwise discernable from existing global or local fracture net-

work descriptors.

– organization of fracture network sub-graphs based on pair-wise similarities into a hierarchical tree enables identifica-490

tion of spatial clustering at different dendrogram heights with newer and more granular cluster boundaries emerging at

successively deeper levels of enquiry.

– spatial autocorrelation is more apparent with the fingerprint, D-measure, and the portrait divergence distances than the

NetLSD, which yields speckled patterns with little or no spatial autocorrelation.

– spatial variation maps deriving from hierarchical clustering using the D-measure and portrait divergence identify similar495

spatial clusters and cluster boundaries. However, with the fingerprint distance, the cluster boundaries are different.
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– fracture segment orientations show gradual variation in segment strikes across the identified clusters despite orientation

not being explicitly considered and only euclidean distance being used to weight spatial graph edges.

Code and data availability. A MATLAB implementation to compute graph fingerprints and fingerprint distance is available on the Github

repository https://github.com/rahulprabhakaran/Fracture_Fingerprint/tree/v.1.0.0 [last access: 19 April 2021; see 10.5281/zenodo.4699961,500

Prabhakaran (2021)]. The implementation of the D-measure in the form of an R script is available as supplementary code with Schieber

et al. (2017). The NetLSD python package used to compute the LSD distance as described in Tsitsulin et al. (2018) is available at https:

//pypi.org/project/NetLSD/. The code implementation for portrait divergence developed by Bagrow and Bollt (2019) can be obtained from

https://github.com/bagrow/network-portrait-divergence/.

The circularly sampled fracture subgraphs are derived from the open fracture network dataset published by Prabhakaran (2021). The505

circularly sampled subgraphs are available for download as a data supplement to this manuscript (Prabhakaran et al., 2021a).

Appendix A: Heatmaps and dendrograms
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Appendix B: Spatial variation for different levels of dendrogram cuts
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Figure B1. Variation in cluster boundaries for ’k’ clusters in Region 1 using Fingerprint Distance
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Figure B2. Variation in cluster boundaries for ’k’ clusters in Region 1 using D-Measure
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Figure B3. Variation in cluster boundaries for ’k’ clusters in Region 1 using NetLSD
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Figure B4. Variation in cluster boundaries for ’k’ clusters in Region 1 using Portrait Divergence
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Figure B5. Variation in cluster boundaries for ’k’ clusters in Region 2 using Fingerprint Distance
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Figure B6. Variation in cluster boundaries for ’k’ clusters in Region 2 using D-Measure
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Figure B7. Variation in cluster boundaries for ’k’ clusters in Region 2 using NetLSD
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Figure B8. Variation in cluster boundaries for ’k’ clusters in Region 2 using Portrait Divergence
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Figure B9. Variation in cluster boundaries for ’k’ clusters in Region 3 using Fingerprint Distance
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Figure B10. Variation in cluster boundaries for ’k’ clusters in Region 3 using D-Measure
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Figure B11. Variation in cluster boundaries for ’k’ clusters in Region 3 using NetLSD
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Figure B12. Variation in cluster boundaries for ’k’ clusters in Region 3 using Portrait Divergence
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Appendix C: Detailed spatial heterogeneity maps
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