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Abstract. Rock fractures organize as networks, exhibiting
natural variation in their spatial arrangements. Therefore,
identifying, quantifying, and comparing variations in spa-
tial arrangements within network geometries are of inter-
est when explicit fracture representations or discrete frac-5

ture network models are chosen to capture the influence of
fractures on bulk rock behaviour. Treating fracture networks
as spatial graphs, we introduce a novel approach to quan-
tify spatial variation. The method combines graph similar-
ity measures with hierarchical clustering and is applied to10

investigate the spatial variation within large-scale 2-D frac-
ture networks digitized from the well-known Lilstock lime-
stone pavements, Bristol Channel, UK. We consider three
large, fractured regions, comprising nearly 300 000 fractures
spread over 14 200 m2 from the Lilstock pavements. Using a15

moving-window sampling approach, we first subsample the
large networks into subgraphs. Four graph similarity mea-
sures – fingerprint distance, D-measure, Network Laplacian
spectral descriptor (NetLSD), and portrait divergence – that
encapsulate topological relationships and geometry of frac-20

ture networks are then used to compute pair-wise subgraph
distances serving as input for the statistical hierarchical clus-
tering technique. In the form of hierarchical dendrograms
and derived spatial variation maps, the results indicate spatial
autocorrelation with localized spatial clusters that gradually25

vary over distances of tens of metres with visually discern-
able and quantifiable boundaries. Fractures within the iden-
tified clusters exhibit differences in fracture orientations and
topology. The comparison of graph similarity-derived clus-
ters with fracture persistence measures indicates an intra-30

network spatial variation that is not immediately obvious

from the ubiquitous fracture intensity and density maps. The
proposed method provides a quantitative way to identify spa-
tial variations in fracture networks, guiding stochastic and
geostatistical approaches to fracture network modelling. 35

1 Introduction

Fracture networks in rocks develop due to loading paths that
vary over geological timescale (Laubach et al., 2019). The
evolution of the network exhibits characteristics of a com-
plex system. There is feedback between the evolving spa- 40

tial structure and the rock substrate in which the networks
are positioned (Laubach et al., 2018). The resulting spatial
arrangement that emerges after cumulative network evolu-
tion is of considerable interest as it influences flow, trans-
port, and geomechanical stability in multiple anthropogenic 45

subsurface applications such as geothermal energy (Vidal
et al., 2017), nuclear waste disposal (Wang and Hudson,
2015), aquifer management (Witherspoon, 1986), and hy-
drocarbon exploitation (Nelson, 2001). Systematically docu-
menting near-surface fracture patterns is essential, for exam- 50

ple, in mining applications where fracture patterns often pro-
vide clues to ore deposit patterns (Jelsma et al., 2004), and in
geotechnical engineering, where fractures influence stability
in human-made structures such as tunnels (Lei et al., 2017).

An important property of natural fracture networks is that 55

of spatial organization, which means that the arrangements
are not random but follow a statistically discernable pattern.
One can view the spatial arrangement of fractures as a set of
objects within a geographical reference system. Within such
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2 R. Prabhakaran et al.: Investigating spatial heterogeneity within fracture networks

a framework, fracture objects are either regularly spaced, ir-
regularly spaced with statistically significant regions of close
spacing, and irregularly spaced with statistically insignificant
regions of close spacing (Laubach et al., 2018). An alter-
nate framework is a network, where fracture objects are de-5

scribed in relation to one another (Valentini et al., 2007; An-
dresen et al., 2013; Sanderson and Nixon, 2015). Spatial vari-
ations in fracture network organization are quite common.
The physical phenomena commonly used to explain spatial
variation in fracture arrangements are stress shadowing, layer10

thickness differences, host rock lithology, layered mechan-
ical anisotropy, high-strain events such as faulting/folding,
and diagenesis. However, it is generally not easy to asso-
ciate a type of spatial arrangement to any unique set of in-
put boundary conditions as similar loading paths can lead to15

diverging patterns, and dissimilar loading paths can lead to
converging patterns (Laubach et al., 2019).

Quantifying variations in spatial arrangements of fractures
involves the sampling of fracture data. Such quantifications
can be in the form of 1-D (using scanline methods, bore-20

hole sampling), in 2-D (fracture trace maps from outcrop
imagery), or 3-D (ground-penetrating radar, microseismic).
1-D scanlines provide a method to quantify arrangements
and variation, and several statistical measures have been pro-
posed, such as fracture spacing (Priest and Hudson, 1976),25

fracture intensity (Dershowitz and Herda, 1992), coefficient
of variation (Gillespie et al., 1993), normalized correlation
count (Marrett et al., 2018), and cumulative spacing deriva-
tive (Bistacchi et al., 2020). These measurements, however,
only indicate the variation of fracture arrangements on the30

scanline and fail to depict the variation in directions away
from the scanline direction. Scanlines do not provide infor-
mation on properties such as fracture length, spatial arrange-
ments, and relationships with other fractures.

2-D fracture trace maps are especially useful, as this type35

of data combines both geometric and topological informa-
tion in the form of a network. Recent advances in unmanned
aerial vehicle (UAV)-photogrammetry (Bemis et al., 2014;
Bisdom et al., 2017) and automated image processing algo-
rithms (Prabhakaran et al., 2019) have led to large datasets40

of 2-D fracture traces that reveal much more about network
attributes than is possible from 1-D sampling. Given such
large datasets with rich information, it is pertinent to directly
quantify spatial variation from the network structure. Spa-
tial fracture persistence (Dershowitz and Herda, 1992) can45

quantify 2-D spatial variation but only considers some as-
pects of the network (such as the sum of trace lengths, num-
ber of traces, etc., within a sampling region). Thus, there is
a need for more advanced techniques specific to 2-D fracture
trace data and which can use the combined geometric and50

topological structure.
From a geostatistical perspective, the concept of spatial

variability describes how a measurable attribute varies across
a spatial domain (Deutsch, 2002). Quantifying magnitude
and directional dependence of the variability can also be done55

using geostatistical tools, provided there is a means to mea-
sure variability across multiple spatial samples. The variabil-
ity in fracture data has typically been reduced to variability
in attributes (such as fracture length by sampling area, num-
ber of intersections, number of sets, and orientations), and 60

attribute variability used to make decisions of stationarity.
The identification of representative element volumes (REVs)
then follows from the choice of stationarity. However, given
that natural fracture networks display spatial heterogeneity,
the suitability of such REVs based on stationarity assump- 65

tions needs to be re-examined. Therefore, it is interesting to
compare network variation (rather than attribute variation)
across the spatial domain. Any comparative method must re-
tain topological and geometric structures encoded within the
spatial samples. 70

2 Graph theory in fracture network analysis

2.1 Fracture networks as graphs

Many authors have suggested using graph theory for the
characterization of fracture networks (such as Valentini et al.,
2007; Andresen et al., 2013; Vevatne et al., 2014; Sanderson 75

and Nixon, 2015; Sanderson et al., 2019). In graph theory and
network science, graphs are structures that comprise a set of
edges and vertices representing relationships between data.
In fracture networks, the vertices are intersections between
fractures, and the edges represented by fracture segments 80

connecting the vertices (Sanderson and Nixon, 2015). By
assigning positional information to the vertices (also called
nodes), fractures in the form of graphs encapsulate both topo-
logical and spatial information (Sanderson et al., 2019). An
alternate graph representation is when fractures from tip to 85

tip are vertices, and intersections with other fractures are
edges. Barthelemy (2018) refers to these types of represen-
tations as “primal” and “dual” forms, respectively. Others,
such as Doolaeghe et al. (2020), call the two representations
“intersection graphs” and “fracture graphs”. 90

We depict an example of a fracture network in its primal
form (see Fig. 1a) and in its dual form (see Fig. 1b). The de-
gree of a graph node is simply the number of edges that are
incident at a particular node. As seen in the primal graph in
Fig. 1c, the maximum node degree is 6, with the most com- 95

mon degree value being 3. This type of degree distribution is
typical for a spatial graph in which physical constraints limit
the maximum possible node degree. We may note that node
degrees in spatial graph representations of fracture networks
are most likely to be 1, 3, or 4. For fracture networks inter- 100

preted from outcrop images as depicted in Fig. 1a, eroded
fractures and enlarged apertures may lead to higher degrees
due to issues in resolving closely spaced nodes.

In the case of the alternate representation, referred to as
dual graphs by Barthelemy (2018) and depicted in Fig. 1d, 105

the maximum degree can be much higher, and the longest
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R. Prabhakaran et al.: Investigating spatial heterogeneity within fracture networks 3

Figure 1. Comparing primal and dual forms of a fracture network from data published by Prabhakaran et al. (2021b): (a) a fracture network
depicted in the primal form with dimensions in metres, (b) corresponding dual representation of the fracture network with node sizing
proportional to dual graph node degree and plotted using a force layout, (c) node degree distribution of primal graph, and (d) node degree
distribution of the dual graph.

Figure 2. (a) An unweighted planar graph with six nodes and seven edges, (b) adjacency matrix of unweighted graph, (c) a weighted planar
graph with edge weights proportional to Euclidean distances between connecting nodes, (d) weighted sparse adjacency matrix for weighted
planar graph, (e) a directed, unweighted graph, and (f) adjacency matrix of directed graph.
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4 R. Prabhakaran et al.: Investigating spatial heterogeneity within fracture networks

fractures that have the highest number of intersections also
have the highest degree. Andresen et al. (2013) and Vevatne
et al. (2014) suggested that fracture networks are disassorta-
tive in that shorter fractures preferentially attach on to the
longer fractures. The property of disassortativity is quan-5

titatively defined using assortativity coefficients (Newman,
2002) with disassortative networks having negative assorta-
tivity coefficients. Andresen et al. (2013) and Vevatne et al.
(2014) report negative assortativity coefficients for fracture
networks that are represented in the dual form. Prabhakaran10

et al. (2021b) found such a correlation between dual graph
node degree and length.

In graph representations, weights can be assigned to edges
that are proportional to the importance of that edge. In the
case of fracture networks in the primal form, this can be the15

Euclidean distance between the nodes (or fracture edge inter-
sections). The weight may also be the direction cosine of the
particular edge that indicates orientation. In the dual graph
representation, intersections between fractures represent the
edges. Therefore, the edge weight may be specified in terms20

of intersection angle. Graphs may also be directed with a spe-
cific direction to edges. In the case of spatial graphs derived
from fracture networks, an undirected but weighted repre-
sentation is sufficient. Figure 2a, c, and e depict examples
of unweighted, weighted, and directed planar graphs, respec-25

tively. The corresponding adjacency matrices are depicted in
Fig. 2b, d, and f.

2.2 Graph distance measures to quantify network
similarity

Several graph similarity measures exist within the graph the-30

ory literature to compare graphs (see Hartle et al., 2020;
Tantardini et al., 2019; Emmert-Streib et al., 2016, for re-
cent reviews). Graph comparisons are a challenging, non-
trivial problem in terms of computing complexity (Schieber
et al., 2017). Still, various measures exist that can capture35

and highlight useful aspects of the graph structure that facili-
tate comparisons. Graph isomorphism between two graphs
implies that there exists a series of necessary conditions
such as an equal number of nodes, edges, degree sequences,
and sufficient conditions such as equal adjacency matrices40

(Van Steen, 2010). An isomorphism test on two graphs, G1
and G2, can only yield two results, either isomorphic or not.
Graph similarity can therefore be differentiated from graph
isomorphism in that the latter comparison can only return
a binary outcome. Graph similarity on G1 and G2, on the45

other hand, returns a real-valued quantity that converges to
zero when the two graphs approach isomorphism (or com-
plete similarity).

Tantardini et al. (2019) classify distance measures based
on whether the metric is capable of comparing graphs with50

an unequal number of nodes or not. The metrics may also be
classified based on whether they can also handle weighted
and directed graphs. Using a graph similarity measure on a

fracture network, we can explore spatial variations in net-
work structure by comparing multiple sampling points. 55

2.3 Combining dissimilarity measures with clustering
algorithms

Since we are interested in quantifying spatial variability,
we may recast the problem as that of identifying clusters
within the network. Clustering is also referred to as unsu- 60

pervised classification and is a process of finding groups
within a set of objects with an assigned measurement (Everitt
et al., 2011). If we consider a dataset, D = [X1,X2, . . .Xn],
containing “n” data samples, clustering then implies ar-
ranging the elements of D into “m” distinct subsets, C = 65

[C1,C2, . . .Cm], wherem≤ n. From a statistical perspective,
the clustering task is different from classification because
the former is exploratory, whereas the latter is predictive, al-
though both attempt to assign labels. Therefore, clustering
must precede classification. 70

In the existing literature on fracture networks, assigning
labels to specific perceived archetypal networks (or end-
members) is standard. These typologies include terms such
as orthogonal, nested, ladder-like, conjugated, polygonal,
corridors, etc. (Bruna et al., 2019a, b; Peacock et al., 2018). 75

However, when faced with the reality of outcrop-derived 2-
D fracture trace data, it is not easy to assign such labels.
Therefore, clustering is a significant and necessary step in
exploratory fracture data analysis.

Hierarchical clustering (HC) is an unsupervised statistical 80

clustering method (Kaufman, 1990) that can identify clus-
ters within a set of observations given a distance matrix com-
puted by applying a well-defined distance function, pair-wise
on each observation. In contrast to other clustering meth-
ods such as k means or k medoids, which require an a pri- 85

ori known number of clusters as input arguments, HC re-
organizes observations into hierarchical representations from
which the user can pick a level of granularity. At the lowest
level, there is just one cluster containing all the observations.
At the highest level, the number of clusters is equal to the 90

observations. HC algorithms are referred to as “agglomera-
tive” or “divisive” depending upon whether they begin from
a lower level or from the highest level. The clustering then
organizes the discrete data into a hierarchical dendrogram
structure that positions the clusters based on the magnitude of 95

similarity. By combining graph distance computations across
spatially distinct samplings with unsupervised HC, cluster
detection automatically leads to quantified spatial variation.
A simple example of HC is illustrated on a set of randomly
distributed points in space (see Fig. 3a). The result is the hi- 100

erarchical dendrogram structure depicted in Fig. 3b.
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Figure 3. A simple example of hierarchical clustering using Euclidean distance: (a) 10 randomly positioned points in 2-D space and (b) a
dendrogram computed from hierarchical clustering using the Euclidean distance depicting clusters of the 10 individual points at different
levels organized into a hierarchy. The procedure of hierarchical clustering is shown in Algorithm 1.

3 Fracture datasets

To validate the proposed approach based on graph distance
metrics and hierarchical clustering, we utilize a 2-D joint
fracture dataset from the Lilstock pavement in the Bristol
Channel, UK (Prabhakaran et al., 2021b). The dataset con-5

sists of fracture joints automatically traced using a technique
described in Prabhakaran et al. (2019) from UAV photogram-
metric data published by Weismüller et al. (2020). The joint
networks correspond to Jurassic limestones with very dense
joint networks spread across multiple layers. The joints are10

stratabound and perpendicular to bedding. We consider three
large-scale fracture networks from this dataset, as depicted in
Fig. 4. There is considerable spatial variation in the jointing.
From previous literature documenting joints within the Lil-
stock pavements, the spatial variation is attributed to multiple15

reasons.
The proposed explanations include proximity and influ-

ence of faults explained by fluid-driven radial-jointing em-
anating from asperities within fault (e.g. Rawnsley et al.,
1998; Gillespie et al., 1993), spatial variation of thicknesses20

of intercalated limestone and shale layers (e.g. Belayneh,
2004), proximity to high-deformation features such as fold-
ing (e.g. Belayneh and Cosgrove, 2004), the interplay be-
tween regional and local stresses resulting in complex stress
fields (e.g. Whitaker and Engelder, 2005), inheritance from25

the spatial distribution of pre-existing vein/stylolite networks
that influenced later joint network development (e.g. Wyller,
2019; Dart et al., 1995), and synkinematic cementation in
veins affecting later development of joints (Hooker and Katz,
2015). Recent work on fractures at the Kilve outcrop (Proc-30

ter and Sanderson, 2018), exposing the same geological units
as those considered in this work, concludes that anomalous
fracture intensity exists in fracturing at various locations and
suggest that variability in fracture intensity cannot be fully

Table 1. Summary statistics for the three regions.

Region Approx. Fractures Edges Nodes
area (m2)

Region 1 6017 124 006 364 703 228 661
Region 2 6749 141 344 365 333 235 089
Region 3 1473 28 892 78 151 49 771

explained by variations in thickness, compositional, or textu- 35

ral variations.
From this dataset, we utilize fracture networks correspond-

ing to three contiguous regions. Figure 4 depicts the three ar-
eas’ spatial extent, labelled as Regions 1 to 3. The intensity
of fracturing is such that the spatial graphs corresponding to 40

each region have a single connected component. Table 1 tab-
ulates summary statistics for the three networks. The number
of edges and nodes correspond to the primal graph repre-
sentation. The “fractures” in Table 1 are sequences of graph
edges that are clubbed together based on continuity and a 45

strike direction threshold (or number of dual graph nodes).
Regions 1 and 2 correspond to a single stratigraphic layer
but, due to erosion, they are not contiguous within the out-
crop. We treat them separately in our analysis of spatial vari-
ation. 50

The detailed resolution, topological accuracy, and spatial
extent of the traced networks make the dataset appropriate
for a detailed analysis of spatial variation in fracturing. The
networks have significant intra- and inter-network variability
in fracturing. Figures 5, 6, and 7 illustrate these differences. 55

From Fig. 5, the fracture orientations of Region 1 depict dis-
cernable angular bins of fracture orientations. On the other
hand, rose plots of Regions 2 and 3 show considerable scat-
ter due to the presence of long and curved fractures. Fracture
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6 R. Prabhakaran et al.: Investigating spatial heterogeneity within fracture networks

Figure 4. Overview of fracture networks corresponding to the three considered regions. This map is derived from an open image dataset
published by Weismüller et al. (2020) and available for download with a CC-BY license.

length distributions are different, with Region 2 having the
longest fractures and Region 1 the shortest. The distribution
of joints within a particular length bin is also highly variable.
In Fig. 6, the cumulative variation in the strike along individ-
ual fracture edges that comprise a tip-to-tip fracture is plotted5

as a function of the total length. The slope of the scatter plots
gives an indication of the fracture curvature. The slope of the
scatter plot is higher in Regions 2 and 3 than in Region 1. We
interpret the curvature to therefore be the lowest in Region 1.

4 Methods10

4.1 Subsampling the network data

We circularly sample the fracture networks on a cartesian
grid with a subgraph extracted within a circular region cen-
tred at each grid point. The grid spacing to circle diameter
is maintained such that neighbouring subgraphs share some15

portion of the area (see Fig. 8). Near the networks’ bound-
aries, the subgraphs are either too small or result in discon-
nected graph components. We neglect these samples so that
they do not affect the clustering results. The process of cir-
cular sampling creates edge nodes with degree 1, which has20

the effect of altering node topology by introducing isolated,
degree-1 nodes. To prevent this from impacting clustering
results, we remove all edges from the subgraphs emanating

Table 2. Number of subgraphs obtained per region.

Region No. of subgraphs

Region 1 219
Region 2 212
Region 3 117

from degree-1 nodes that contact the periphery of the circu-
lar sample. This effect is illustrated in Fig. 9. Each subgraph 25

can now be compared to every other subgraph using a graph
distance metric to compute a pair-wise distance matrix. The
distance matrix serves as the input to the hierarchical cluster-
ing algorithm.

For N subgraphs, the number of comparisons necessary 30

are N(N−1)
2 . The computational complexity of graph com-

parison increases polynomially with the size of subgraphs in
terms of node sizes. Since the number of comparisons in-
creases quadratically with the number of subgraphs, we seek
to balance grid spacing and sampling diameter. For Regions 35

1 and 2, we choose a spacing of 5 km for circularly sampled
subgraphs with a diameter of 7.5 m. For Region 3, which is
also the smallest region, a spacing of 5 km would lead to
quite a smaller number of subgraphs. Therefore, we use a
more dense spacing of 3 km with a diameter of 7.5 m. Ta- 40
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Figure 5. Comparison of the three regions in terms of networks, orientations, and length distributions. Map dimensions are in metres. This
image has been modified from Prabhakaran et al. (2021b) with permission.

Figure 6. Correlation between sum of strike differences of fracture segments constituting tip-to-tip fractures versus total fracture length for
the three regions.

ble 2 tabulates the number of subgraphs pertaining to each
region.

4.2 Graph similarity measures

We use the following four graph similarity measures to com-
pare the subgraphs:5

– fingerprint distance (Louf and Barthelemy, 2014);

– D-measure (Schieber et al., 2017);

– Network Laplacian spectral descriptor (NetLSD) (Tsit-
sulin et al., 2018);

– portrait divergence (Bagrow and Bollt, 2019). 10
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Figure 7. Cutout from Region 2 depicting the detailed resolution of the fracture dataset.

Figure 8. Subsampling of a fracture graph corresponding to full region into subgraphs of 7.5 m diameter and spacing of 5 m.

The performance of these similarity measures have been
validated previously by Hartle et al. (2020) and Tantardini
et al. (2019) for a variety of benchmark graph datasets. Each
similarity measure is described briefly in the following sub-
sections. The reader is referred to the references above for5

further details on the similarity measures.

4.2.1 Fingerprint distance

The fingerprint distance introduced by Louf and Barthelemy
(2014) is purely geometric and combines statistics of block
faces and shape factors in computing a probability distribu- 10

tion of a spatial graph. Louf and Barthelemy (2014) formu-
lated the measure in the context of quantifying differences
in street patterns. A “block” denotes the 2-D region enclosed
by graph edges. For any given spatial graph, this corresponds

Solid Earth, 12, 1–51, 2021 https://doi.org/10.5194/se-12-1-2021
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Figure 9. Treating isolated nodes and dangling edges that arise due to circular sampling: (a) a circularly sampled subgraph with a diameter
of 7.5 m, (b) edges connected to isolated nodes intersected by circle, and (c) subgraph after removing isolated nodes and corresponding
dangling edges.

to the number of bounded subgraphs or primary cycles. We
neglect isolated fractures and those having dead ends when
computing these blocks. Given the network intensity in our
dataset, such isolated fractures are minimal. Every block has
an associated shape factor, “φ” which is expressed in terms5

of block area “A” and circumscribing circle area, “Ac”:

φ =
A

Ac
. (1)

The value of φ is always smaller than 1, with larger val-
ues meaning that the block-face shape is closer to that of a
regular polygon. Figure 10a depicts shape factors of regular10

polygons versus that of polygons derived from spatial net-
works in Fig. 10b. No unique correspondence exists between
a particular shape and a magnitude of φ; however, the overall
distribution of φ indicates reveals block shape distribution
patterns and highlights differences between spatial graphs.15

The shape factor alone does not fully serve as a similarity
measure as blocks can have similar shapes but different face
areas. The distribution of the block-face areas is binned log-
arithmically to integrate information from the shape factor
and block area distributions. A conditional probability distri-20

bution, P(φ|A)P (A), is then defined representing the contri-
bution of P(φ) for each area bin and the summation of which
yields the fingerprint curve, P(φ):

P(φ)=
∑
A

P(φ|A)P (A). (2)

An example of a “fingerprint”, so named by Louf and25

Barthelemy (2014), is depicted in Fig. 11e and j, with the dis-
tribution curves for three area bins, for two fracture networks
derived from image tiles (see Fig. 11b, c, f, and g) corre-
sponding to Region 1 (Fig. 11a). The curves in Fig. 11e and j
encapsulate information based on shape factors and block ar-30

eas (see Fig. 11d and h), including the proportional contribu-
tion from all logarithmic area bins considered.

Denoting fα(φ) as the ratio of the number of faces with a
shape factor “φ” that lie in a bin “α” over the total number
of faces for that graph, a distance dα between two graphs35

Ga and Gb is computed by integrating over fα(φ) for the
two different graphs. The distance based on fα(φ) of the two
graphs for a single area bin is defined as

dα(Ga,Gb)=

1∫
0

∣∣∣f aα (φ)− f bα (φ)∣∣∣ndφ. (3)

As per Louf and Barthelemy (2014), the value of n can 40

either be 1 or 2. We choose n= 1 in our computation. The
global fingerprint distanceDFP betweenGa andGb can then
be computed summing over all area bins α:

DFP(Ga,Gb)=
∑
α

dα(Ga,Gb)
2. (4)

We have attached our MATLAB implementation of the fin- 45

gerprint distance in the code Supplement. We computed the
distance matrix for all subgraphs corresponding to the three
regions using this implementation.

4.2.2 D-measure

The D-measure introduced by Schieber et al. (2017) is a 50

three-component distance metric with weighting constants
for each component. The three properties of graphs com-
pared are the network node dispersion (NND), node distance
distribution (µ), and the alpha (α) centrality. The dissimilar-
ity measure, DDM, is the weighted sum: 55

DDM(g,h)= w1

√
J (µg,µh)

log2

+w2

∣∣∣√NND(g)−
√

NND(h)
∣∣∣

+
w3

2

(√
J (Pα(g),Pα(h))

log2

+

√
J (Pα(gc),Pα(hc

′

))

log2

 , (5)

https://doi.org/10.5194/se-12-1-2021 Solid Earth, 12, 1–51, 2021



10 R. Prabhakaran et al.: Investigating spatial heterogeneity within fracture networks

Figure 10. (a) Shape factors for regular block shapes with equal edge lengths and (b) shape factors for polygonal blocks resulting from real
fracture networks in Region 1 (dimensions are relative).

where J indicates the Jensen–Shannon divergence. The con-
stants w1, w2, and w3 in Eq. (5) are real and non-negative
weights such that w1+w3+w3 = 1.

As per Schieber et al. (2017), the first term in Eq. (5) com-
pares averaged connectivity node’s patterns as per node dis-5

tance distribution. Schieber et al. (2017) define NND, within
the second term, as a measure of the heterogeneity of a graph
with respect to connectivity distances that capture global
topological differences. The NND is computed as

NND(G)=
J (P1, . . .,PN )

log(d + 1)
, (6)10

where the numerator in Eq. (6) is the Jensen–Shannon
divergence of N connectivity distance distributions
[P1,P2. . .PN ]. Pi is constructed as Pi = pi(j), where pi(j)
is the fraction of nodes connected to node i at distance
j . The Jensen–Shannon divergence of [P1,P2. . .PN ] is15

expressed as

J (P1, . . .,PN )=
1
N

∑
i,j

pi log
(
pi(j)

µj

)
. (7)

µj in Eq. (7) is the average of N distributions and can be
written as

µj =
1
N

N∑
i=1

pi(j). (8)20

The third term in Eq. (5) is based on probability density
functions associated with α centrality of graph Pα(g) and
α centrality of the graph complement Pα(gc). The value of
weights was suggested by Schieber et al. (2017) as w1 =

w2 = 0.45 and w3 = 0.1. We use the implementation pro- 25

vided by Schieber et al. (2017) with these sets of weights
to build the distance matrices for all subgraphs within the
three regions of interest. We depict in Fig. 12, for the two
example fracture networks, the three properties that are used
in computing the D-measure. 30

4.2.3 Portrait divergence

The portrait divergence similarity score derives from network
portraits introduced by Bagrow et al. (2008) for unweighted
graphs and extended to weighted graphs by Bagrow and Bollt
(2019). For a graph g with N nodes, the network portrait 35

is defined as a matrix Blk , where each entry is the number
of nodes with k nodes at l distance. The limits of l and k
are 0≤ l ≤ d and 0≤ k ≤N − 1, with d being the diameter
of the graph. The row entries of the network matrix Blk are
probability distributions of a random node having k nodes at 40

a distance l:

P(k|l)=
Blk

N
. (9)

For a second graph h, if the network matrix is B ′lk with a
corresponding probability distribution of Q(k|l) and diame-
ter d ′, the Kullback–Leibler (KL) divergence between P(k|l) 45

and Q(k|l) is expressed as

KL(P (k|l)||P(k|l))=
max(d,d ′)∑
l=0

N∑
k=0

P(k, l) log
P(k, l)

Q(k, l)
. (10)

The portrait divergence DPD(g,h) is computed by the
Jensen–Shannon divergence between P(k|l) and Q(k|l):

DPD(g,h)= JSD(P (k|l),Q(k|l). (11) 50
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Figure 11. (a) Overview of Region 1 with two selected 1000× 1000 pixel image tiles, (b) enlarged view of first image tile, (c) fracture
network corresponding to first tile as a spatial graph with dimensions of 8.6m× 6.75 m and having 3583 edges and 2382 nodes, (d) block-
face areas coloured as per three area bins (0–100, 100–1000, and 1000–10 000 cm2), (e) P(φ) or fingerprint of the subgraph depicting the
combined effects of area and shape factor, φ pertaining to the three area bins. (f) Enlarged view of second image tile, (g) fracture network
corresponding to second image tile as a spatial graph with 5418 edges and 3539 nodes, (h) block-face areas binned logarithmically, and (i)
fingerprint of second spatial graph. Panels (a, b), and (f) are derived from images contained in the open dataset (CC-BY license) published
by Weismüller et al. (2020).

This can be expressed in terms of Kullback–Leibler diver-
gences and mixture distributions as

DPD(g,h)=
1
2
(KL(P ||M)+KL(Q||M)), (12)

where the mixture distribution M of P(k|l) and Q(k|l) is
given by5

M =
1
2
(P (k|l)+Q(k|l)). (13)

The portrait divergence measure provides a single value
0≤DPD(g,h)≤ 1 for any pair of graphs. Bagrow and Bollt

(2019) applied the portrait divergence measure to both syn-
thetic and real-world networks. The code implementation of 10

portrait divergence attached with Bagrow and Bollt (2019)
is used to construct the distance matrices for all subgraphs
within the three regions of interest. The network portrait or
the Blk matrix for the example fracture graphs are depicted
as heatmaps in Fig. 13. 15

4.2.4 Laplacian spectral descriptor

The NetLSD distance was introduced by Tsitsulin et al.
(2018). It is based on a Frobenius norm computed between
heat trace signatures of normalized Laplacian matrices of two
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Figure 12. D-measure components for the two example fracture graphs comparing α centrality of nodes, distributions of α centrality, NND
distributions, and node distance distributions.

Figure 13. Heatmap representations of network portrait sparse matrices (Blk) for the two example fracture graphs.

graphs. For a graph g with a normalized Laplacians L and n
nodes, a heat kernel matrix is defined as

Ht = e
−tL
=

n∑
j=1

e−tλjφjφ
T
j . (14)

Using the heat kernel matrix Ht, a heat trace ht is defined as

ht =

n∑
j=1

e−tλj . (15)5

For a second graph g′ with a heat trace signature of h′t, the
NetLSD distanceDLSD is then the Frobenius norm of the two
heat signatures as

DLSD = ||ht,h
′
t||Frobenius. (16)

Figure 14 depicts heat trace signatures computed using 10

the NetLSD Python package implemented by Tsitsulin et al.
(2018) for the two example fracture graphs. We use this pack-
age to populate the distance matrices associated with sub-
graphs from each region.
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Figure 14. Comparing heat trace signature vectors for the two ex-
ample fracture graphs computed using NetLSD.

Table 3. Summary of graph similarities computed for example frac-
ture networks.

Graph similarity Value

Fingerprint distance [DFP] 0.1414
D-measure [DDM] 0.1244
Portrait divergence [DPD] 0.2926
NetLSD [DLSD] 0.0147

The values of graph similarity computed using the four
metrics described by Eqs. (4), (5), (12), and (16) for the two
example fracture graphs depicted in Fig. 11c and g are sum-
marized in Table 3.

4.3 Hierarchical clustering5

After subsampling the fracture networks (see Sect. 4.1) and
using the graph distance metrics described in Sect. 4.2 to
construct distance matrices, we apply hierarchical clustering.10

HC can be done in an agglomerative versus divisive man-
ner (Hennig et al., 2016). We utilize the agglomerative ap-
proach, which generally follows the steps described in Al-

gorithm 1. Based on how linking of clusters is done as per
Algorithm 1(iii), HC can be classified into methods such as 15

single linkage, complete linkage, unweighted pair-group av-
erage, weighted pair-group average, unweighted pair-group
centroid, weighted pair-group centroid, and Ward’s method
(Wierzchoń and Kłopotek, 2018). Ward’s method performs
the linkage by minimizing the sum of squares of distances 20

between objects and cluster centres. We use Ward’s method
implemented within the R statistical programming environ-
ment to apply the HC to all the subgraph distance data.

5 Results

We first show region-wise results of graph property com- 25

putations. Intra-region spatial clustering resulting from the
combined application of graph similarity measures with HC
is then discussed. We use the following abbreviations for
brevity throughout the section: FP – fingerprint distance, DM
– D-measure, LSD – NetLSD, PD – portrait divergence. 30

5.1 Region-wise graph characteristics

Fingerprints pertaining to the regions are depicted in
Fig. 15a. The peak of the fingerprint plot is highest at a shape
factor of 0.4 for Region 1 and increases to above 0.5 for Re-
gions 2 and 3. Histograms in Fig. 15a depict the number of 35

polygons within each area bin pertaining to fracture networks
in each region. The network portraits or Blk matrices of each
subgraph within the three regions are combined to create en-
semble region-wise network portraits depicted as heatmaps
in Fig. 15b. The non-zero entries in the Blk matrices, indi- 40

cated by warmer colours in the heatmaps, have visibly differ-
ent patterns. Heat traces for the subgraphs in each region are
shown in Fig. 15c. Figure 16 depicts the variation of the net-
work properties that are components of the D-measure dis-
tance, i.e. α centrality, NND, and µ for subgraphs for the 45

three regions.

5.2 Intra-region spatial variation

Intra-region spatial variation results can be presented as dis-
tance matrix heatmaps corresponding to each graph similar-
ity metric. Dendrograms depict the hierarchical organization 50

of the subgraphs corresponding to similarity entries within
the distance matrix entries. The intra-regional variation is
more intuitively illustrated spatially by showing subgraphs
using an appropriate colour scheme that groups similar clus-
ters under colours picked within a linear spectrum. This sec- 55

tion presents the clustering results for all three regions us-
ing a combination of dendrograms, spatial cluster maps, and
heatmaps.
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14 R. Prabhakaran et al.: Investigating spatial heterogeneity within fracture networks

Figure 15. Region-wise graph properties: (a) fingerprints, (b) network portrait ensembles, and (c) heat trace vectors.

5.2.1 Analysis of spatial variation in Region 1

The spatial distribution of clusters pertaining to the four dis-
tance metrics overlain over the network is shown in Fig. 17a–
d along with the associated dendrograms for the top 10 clus-
ters. The subgraphs are represented by coloured discs that5

follow a diverging colour scheme. The number of subgraphs
within each of the top 10 clusters is also listed under the den-
drogram branches. It may be noted that the top 10 clusters

are shown to depict, analyse, and compare the spatial vari-
ation across distance measures. A complete, uncut dendro- 10

gram and associated heatmaps of the similarity measures are
depicted in Fig. A1 in the Appendix. We can cut the den-
drogram at different heights guided by slope changes in the
weighted sum of squares plots shown in Fig. A1. The bound-
aries of spatial clusters vary with the dendrogram cut height, 15

with subregions emerging by traversing deeper into the den-
drogram. This variation is depicted in Figs. B1–B4 in the

Solid Earth, 12, 1–51, 2021 https://doi.org/10.5194/se-12-1-2021
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Figure 16. Region-wise properties used to compute the D-measure represented as ensemble plots of α centrality, network node dispersion
(NND), and node distance (µ) distributions for subgraphs.

Appendix for a range of clusters varying from 4–10TS1 . The
number of subsamples for the four similarity measures per-
taining to a dendrogram cut of k = 10 is tabulated in Table 4.

We can observe that spatial autocorrelation exists for the
FP (Fig. 17a), DM (Fig. 17b), and PD (Fig. 17d) similar-5

ity measures. The LSD yields a speckled pattern with no
obvious spatial autocorrelation (Fig. 17c). In order to com-
pare clustering results derived from the graph similarity mea-
sures, the spatial fracture persistence P20 and P21 computed
using box counting (box size of 0.5× 0.5 m) is depicted in10

Fig. 17e and f, respectively. Comparing clusters derived from
graph similarity measures to the fracture persistence plots re-
veals boundaries within the network that are not easily dis-
cernable from the latter. Since LSD does not show spatial
autocorrelation, we do not analyse it further.15

Figure 18a–c depict topology histograms and rose plots of
the clusters pertaining to the remaining three similarity mea-
sures. The orientation rose plots and topological summaries
are generated by combining all circular samples identified
under a cluster into 10 cluster subgraphs from the larger re- 20

gion fracture graph. It can be observed from the rose plots
that the clusters have varying fracture orientations that tran-
sitions across the hierarchy identified by the dendrograms.
The topological summaries of the clusters do not vary sig-
nificantly. Figures C1–C3 in the Appendix depict zoomed-in 25

subgraphs corresponding to each of the top 10 clusters that
visually confirm the intra-regional variation.

We briefly describe the characteristics of the clustering
results prefixing “n” to the number of subsamples within a
cluster to refer to a particular cluster at a k = 10 dendrogram 30
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Table 4. Summary of subgraphs within each cluster of Region 1 for k = 10.

Metric ↓ Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

FP 3 36 24 47 2 24 41 16 20 6
DM 24 25 5 15 17 19 40 39 10 25
LSD 12 17 21 23 16 28 11 30 13 48
PD 38 17 3 5 24 25 79 13 6 9

Total 219

cut. From Fig. 17a and the zoomed-in archetypal examples
in Fig. C1, the clustering derived from FP seems to have a
N–S variation trend. The trend is corroborated by observing
the dendrogram, which splits into a northern branch com-
prising of clusters n36, n24b, and n47 and a southern branch5

with clusters n6, n20, n41, n16, n2, and n24a . An outlier
branch n3 exists at the boundary between northern and south-
ern branches.

A similar variation is observable from the result of DM
(see Fig. 17b). However, the cluster demarcations are less10

stark than with FP with a notable stippled pattern. A major
dendrogram division is a branch consisting of a thin sliver in
the NE (clusters n24, n25b, n5, and n15) which also include
some boundary periphery samplings in the west and south of
Region 1. The southwestern sliver is mainly contained in a15

branch containing cluster n17. The central parts of Region 1
fall under the dendrogram branch containing clusters n39,
n10, and n25a . The remainder of the Region 1 is covered by
branch containing clusters n19 and n40. Figure C2 depicts
archetypal examples of subgraphs relevant to each cluster for20

DM.
The results of PD also depict N–S variation (see Fig. 17d)

in the clustering. Similar to DM, PD is also sensitive to the
subgraph completeness with peripheral clusters represented
under n13. The branches comprising n13, n6, n9, n38, and25

n17 closely correspond to the trend of high fracture persis-
tence (compare with Fig. 17e and f). Similar to results from
FP and DM, the thin sliver in the NE of Region 1 is captured
under the branch with clusters n3, n5, and n24. The remain-
der of Region 1 falls under clusters n25 and n79. Figure C330

depicts archetypal examples of subgraphs corresponding to
each cluster for PD.

5.2.2 Analysis of spatial variation in Region 2

Spatial distribution along with dendrograms of top 10 clus-
ters pertaining to the four graph similarity measures for Re-35

gion 2 is depicted in Fig. 19. The full dendrograms and
heatmaps are placed in Fig. A2 in the Appendix. The vari-
ation of spatial clusters with different choices of dendrogram
cut heights is shown in Figs. B5–B8 in the Appendix. The
number of subsamples for the four similarity measures per-40

taining to a dendrogram cut of k = 10 is tabulated in Ta-
ble 5. Similar to Region 1, there is marked spatial autocorre-

lation with FP (Fig. 19a), DM (Fig. 19b), and PD (Fig. 19d),
whereas the LSD (Fig. 19c) shows a speckled pattern. The
spatial clustering results can be compared with the fracture 45

persistence plots in Fig. 19e and f.
Node degree histograms and rose plots depict the dif-

ferences in network topology and fracture orientations be-
tween the identified clusters pertaining to FP (Fig. 20a), DM
(Fig. 20b), and PD (Fig. 20c). For all three measures, the 50

shape of rose plots indicates a transition of principal orienta-
tions smoothly across clusters. For example, in Fig. 20a for
FP, the more complex fracturing in the west of Region 2 is de-
picted by cluster n20 with a very diffuse rose plot, changing
orientations to a predominantly orthogonal pattern in clus- 55

ter n03. The DM (clusters n16 and n10 in Fig. 20b) and PD
(clusters n08 and n17b in Fig. 20c) also identify this region of
orthogonal fracturing. The corresponding topological sum-
maries also depict an increased proportion of degree-4 nodes
as compared to the histograms of other clusters. 60

From FP clustering results (see Fig. 19a), the dendrogram
identifies a western branch with clusters n20 and n22. The
branch comprising of clusters n8, n3, and n4 correspond
to the radial fracturing region identified by Gillespie et al.
(1993) that originates from the fault in the SE of Region 2. 65

Clusters n9, n17, and n36 all under a branch covering parts
of Region 2 further away from the radial fracturing region.
Clusters n41 and n52 originate under a branch forming the
northern and eastern boundaries of Region 2. Figure C4 de-
picts archetypal subgraphs under each cluster in detail for FP. 70

The clustering results of DM (Fig. 19b) and PD (Fig. 19d)
appear to be similar and with dendrograms roughly splitting
into three main branches that correspond to specific portions
of Region 1. First is the radial fracturing area represented by
branch-forming clusters n10, n16, and n23b for D-measure 75

(Fig. 19b) and branch-forming clusters n17b and n8 for the
portrait divergence (Fig. 19d). The area to the NW periph-
ery of Region 2, farthest away from the fault, is represented
by branch-forming clusters n19, n20, n14, and n25 for DM
and by branch-forming clusters n24a , n15a , and n34 for PD. 80

The transition region branch is represented within the DM
dendrogram by clusters n38, n23a , and n24 and within the
PD dendrogram by clusters n24b, n15b, and n28. Figures C5
and C6 depict detailed subgraph examples for DM and PD,
respectively. 85
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Figure 17. Hierarchical clustering results for Region 1 depicting the top 10 clusters using (a) fingerprint distance, (b) D-measure distance,
(c) NetLSD distance, (d) portrait divergence distance, (e) spatial P20, and (f) spatial P21.

Table 5. Summary of subgraphs within each cluster of Region 2 for k = 10.

Metric ↓ Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

FP 20 22 41 52 9 17 36 8 3 4
DM 19 20 14 25 10 16 23 38 23 24
LSD 2 6 31 28 53 9 15 38 5 25
PD 17 30 17 8 24 15 28 24 15 34

Total 212

5.2.3 Analysis of spatial variation in Region 3

The spatial distribution along with dendrograms of the top
10 clusters pertaining to the four graph similarity measures
for Region 3 is depicted in Fig. 21. The full dendrograms
and heatmaps are placed in Fig. A3 in the Appendix. The5

variation of spatial clusters with different choices of den-
drogram cut heights (and number of clusters) is shown in

Figs. B9–B12 in the Appendix. Similar to the Region 1 and
2 results, there is marked spatial autocorrelation with FP
(Fig. 21a), DM (Fig. 21b), and PD (Fig. 21d), whereas the 10

LSD (Fig. 21c) shows a stippled pattern. The spatial clus-
tering results can be compared with the fracture persistence
plots in Fig. 21e and f. The number of subsamples for the
four similarity measures associated with a dendrogram cut
of k = 10 is tabulated in Table 6. 15
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Figure 18. Variation in fracture orientations and topological summary for Region 1 corresponding to (a) fingerprint distance, (b) D-measure,
and (c) portrait divergence.

Table 6. Summary of subgraphs within each cluster of Region 3 for k = 10.

Metric ↓ Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

FP 2 5 28 11 27 6 9 4 11 14
DM 24 15 6 16 1 5 5 25 3 17
LSD 9 25 4 9 6 5 5 10 16 28
PD 7 23 25 1 5 21 4 16 3 12

Total 117
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Figure 19. Hierarchical clustering results for Region 2 depicting the top 10 clusters using (a) fingerprint distance, (b) D-measure distance,
(c) NetLSD distance, (d) portrait divergence distance, (e) spatial P20, and (f) spatial P21.

Node degree histograms and rose plots depict the dif-
ferences in network topology and fracture orientations be-
tween the identified clusters relating to FP (Fig. 22a), DM
(Fig. 22b), and PD (Fig. 22c). For all three measures, the
shape of rose plots indicates a transition of principal orienta-5

tions smoothly across clusters. For example, in Fig. 22a for
the fingerprint measure, the cluster n06 in the west of Re-
gion 3 has three main sets that become orthogonal in cluster
n09, the nearest cluster eastwards. Cluster n05 at the eastern
extremity of Region 3 has an orthogonal pattern that has ro-10

tated almost 80◦ clockwise compared to the western bound-
ary. Orientations of fractures clusters between the eastern-

most and western-most clusters show transitions between the
extremal archetypes.

From the FP clustering results (Fig. 21a), the spatial varia- 15

tion appears to have an E–W trend. From the dendrogram, an
eastern branch comprising clusters n6, n9, n4, n11a , and n14
and a western branch consisting of clusters n5, n28, n11b,
and n27 can be identified. An outlier branch with cluster
n2 appears at the interface between the eastern and west- 20

ern branches. Detailed visualization of archetypal subgraphs
relating to each of the FP clusters is presented in Fig. C7.
The dendrogram structure and spatial clustering for the DM
(Fig. 21b) depicts a central region represented by a branch
containing clusters n24, n15, n6, and n16. The eastern and 25
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Figure 20. Variation in fracture orientations and topological summary for Region 2 corresponding to (a) fingerprint distance, (b) D-measure,
and (c) portrait divergence.

western peripheries organize as clusters n1, n5a , n5b, n25,
n3, and n17 under a second branch. Underneath this branch,
clusters n1, n5a , and n5b correspond to extremities of the Re-
gion 3, which are not fully sampled. The dendrogram struc-
ture for the PD (Fig. 21d) is similar with clusters n7, n23,5

n25 organizing under the branch representing the central re-
gion and clusters n1, n5, n21, n4, n16, n3, and n12 forming
the eastern and western peripheral regions. Clusters n1 and
n5 pertain to extremities of Region 3, which are not fully

sampled. Figures C8 and C9 depict zoomed-in sections of 10

the subgraphs relating to each of the top clusters that confirm
the detected intra-regional variation for DM and PD, respec-
tively.

6 Discussion

Within the structural geology literature, the quantitative frac- 15

ture persistence measures of Dershowitz and Herda (1992),
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Figure 21. Hierarchical clustering results for Region 3 depicting the top 10 clusters using (a) fingerprint distance, (b) D-measure distance,
(c) NetLSD distance, (d) portrait divergence distance, (e) spatial P20, and (f) spatial P21.

the topological approach of Sanderson and Nixon (2015),
and qualitative descriptions are most commonly resorted to
for comparing 2-D fracture networks. The lack of quanti-
tative measures for spatial network data is partially due to
the lack of extensive 2-D fracture trace data. Using the fully5

mapped, UAV-derived dataset of an extensive fracture net-
work, it is possible to systematically investigate 2-D fracture
network organization variations.

In this contribution, we treat 2-D fracture networks as
planar graph structures and apply graph similarity measures10

to quantitatively compare subsampling within large fracture
networks and discover clusters of similarity. The statistical
technique of HC was used along with graph distance metrics

to extract spatial clusters. Subgraphs within a spatial cluster
are more similar to each other than other clusters. A hierar- 15

chy of patterns is derived based on similarity scores, which
can be examined at deeper levels.

One can argue that variation exists at multiple length
scales, and more granular inquiry would lead to different
clusters. While our choices of grid spacing and subsampling 20

of graphs were to keep computational requirements in mind,
it is possible to do more dense subsampling than what we
have already achieved to further highlight spatial variations
within a given network. The clusters that we have depicted
are particular to the spacing and sampling diameters that we 25
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Figure 22. Variation in fracture orientations and topological summary for Region 3 corresponding to (a) fingerprint distance, (b) D-measure,
and (c) portrait divergence.

have chosen. In this section, we discuss some additional per-
spectives and issues related to our methodology and results.

– Linking spatial variation patterns to fracturing
drivers. The results indicate that spatial variation in
fracture networks is not always evident from the ubiq-5

uitously used fracture persistence measures, such as P20
and P21. The proposed method highlights variations in
network structure which can then help draw inferences

into possible drivers for the spatial differences. In the
case of Regions 2 and 3, the proximity to the fault in- 10

fluences network development. Such a model has been
proposed by Peacock and Sanderson (1995); Gillespie
et al. (2011) and Wyller (2019), where the oldest frac-
tures are long and radial, emanating from local asperi-
ties within the fault. These older fractures then influence 15

the development of younger fractures. This is observed
in Region 2, where clusters form roughly parallel to the
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E–NE-striking fault with the direction of variation to
the NW. Region 3 is positioned between two such as-
perity epicentres. There are long, radial fractures on the
eastern and western extremities with a transition region
in between. The direction of cluster variation trends E–5

W. Fracture pattern variation in Region 1 is not affected
by faulting. Since Regions 1 and 2 pertain to a single
layer, the NE regions of Region 1 show visual similar-
ities between the westernmost extremities of Region 2.
The intra-regional variations in Region 1 could be due10

to layer thickness variation, although we do not have
sufficient thickness data to confirm this.
The analysis of spatial variation can assist in decipher-
ing fracture timing. Given the temporal nature of net-
work formation, it is desirable to delineate network evo-15

lution into relative episodes of fracturing. In previous
analyses specific to the Lilstock dataset used in this con-
tribution, Passchier et al. (2021) identified jointing sets
with timing history based on fracture length, strike, and
topological relationships. Although the temporal history20

is identified from joints that were picked manually but
not wholly by Passchier et al. (2021), there is still a
discernable spatial variation where some jointing sets
are localized while others occur throughout the outcrop.
Identifying spatial clustering in complete networks pro-25

vides a basis by which joint sets can then be arranged in
a hierarchy of temporal development.

– On the choice of a graph distance metric. We have
restricted our investigation scope to four state-of-the-art
graph similarity distances from the recent graph the-30

ory literature. Many more graph distances applicable
to spatial graphs exist (Hartle et al., 2020; Tantardini
et al., 2019); furthermore, the best means remain an
open problem in network science research. Some novel
distance measures are not graph based but derive from35

persistent homology (such as Feng, 2020). In this ap-
proach that considers the shape of data, persistence dia-
grams are generated from spatial graphs, and bottleneck
distances are combined with hierarchical clustering to
discover clusters. The results from Feng (2020) com-40

pared favourably to that of Louf and Barthelemy (2014)
when applied to patterns of cities.
As may be observed from our results, the metrics high-
light certain aspects of the fracture network while not
considering others. For instance, the fingerprint distance45

only considers block area and shape factor distribu-
tions of the blocks and neglects orientations. The other
three distances use graph properties directly, and hence
orientation information (or the lack of it) is a conse-
quence of how the spatial graph is defined. We used50

weighted graphs that incorporate Euclidean distance be-
tween nodes as edge weights for the similarity compu-
tations. However, each edge also has a striking attribute
to completely describe its position in 2-D space (in the

case of 3-D, it needs a dip). Ideally, the edge weight 55

should then be a vector, w = [l,θ ] incorporating both
lengths, “l” and orientation, “θ”, but the distance met-
rics we use do not allow the use of non-scalar weights.

– Do REVs exist for fracture networks? In the con-
text of fractured reservoir modelling, identification of 60

a REV aids continuum-based simulation approaches.
However, the complexities of fluid flow and trans-
port through fractured porous media require an ex-
plicit representation of fractures. Given the difficul-
ties associated with obtaining realistic network geome- 65

tries, stochastic-process-based methods derived from
sparse fracture data are commonplace. However, these
methods are often unable to represent inherent non-
stationarity in spatial variation (Thovert et al., 2017),
and work by Andresen et al. (2013) finds that discrete 70

fracture networks (DFNs) from nature exhibit disassor-
tativity, which is not a property of generated networks.
Other techniques based on multipoint statistics (Bruna
et al., 2019b) attempt image-based approaches to mod-
elling non-stationary networks. Estrada and Sheerin 75

(2017) present a different approach in which DFNs are
directly generated as spatial graphs (referred to as “ran-
dom rectangular graphs”). Such a method can incorpo-
rate insights from outcrop-derived naturally fractured
reservoirs (NFRs). 80

Regardless of the extrapolation method used, station-
arity decisions have to be made based on hard data,
and this is where our approach is helpful. We can
use outcrop-derived networks to define and delineate
stationarity’s spatial boundaries and assign a particu- 85

lar type of network with due cognition of the inher-
ent graph structure. Much literature exists on linking
fracture patterns to high-deformation drivers such as
folding, faulting, and diapirism, with the goal being to
identify and correlate appropriate outcrop analogues to 90

particular subsurface conditions. As our clustering re-
sults indicate, at the dimensional scales of sampling we
have used, Tobler’s first law of geography applies to
fracture networks. Therefore, a representative network
based on network similarity can be derived. The method 95

can be applied to analogues for which data already ex-
ist. Further work is required to differentiate fluid-flow
and transport responses of the identified cluster type.

– Other clustering methods. We have used a combina-
tion of HC and graph distance metrics to delineate re- 100

gions within a spatial graph and arrange them in a hi-
erarchy of similarities. Within the graph theory litera-
ture, there are other non-HC methods based on graph
properties such as modularity (Newman and Girvan,
2004; Blondel et al., 2008; Traag et al., 2019) or by 105

graph spectral partitioning (Fiedler, 1973; Spielman and
Teng, 2007). Recent developments using graph neural
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networks and graph machine learning include modifi-
cations on the concept of modularity (Tsitsulin et al.,
2020) and spectral methods (Bianchi et al., 2020) to-
wards the goal of partitioning graphs into clusters.

7 Conclusions5

This contribution presents a method to automatically identify
spatial clusters and quantify intra-network spatial variation
within 2-D fracture networks. We test the technique on 2-D
trace data from a prominent limestone outcrop within the Lil-
stock pavements, located off the southern coast of the Bris-10

tol Channel, UK. The fracture network data that span three
separate regions and cover over 14 200 m2 are converted to
the form of planar graph structures, spatially sampled into
subgraphs, and then compared using four different graph-
distance measures. The pair-wise similarities in the form of15

distance matrices are used to arrange region-wise subgraphs
into a hierarchical relationship structure, also referred to as
a dendrogram, using the statistical technique of hierarchi-
cal clustering. Positional order information from the dendro-
gram is used to render maps depicting the spatial variation20

within the fracture networks. The delineations of these intra-
network subpatterns provide a way to identify representative
elemental volumes that preserve fracture networks’ topolog-
ical and geometric properties. The presence of these subre-
gions can also serve as a guide for making decisions on sta-25

tionarity with respect to geostatistical modelling. The main
findings of the study are summarized as follows:

– Representing fracture networks as graphs enables com-
bining hierarchical clustering and graph-distance met-
rics to reveal interesting intra-network spatial similarity30

patterns not otherwise discernable from existing global
or local fracture network descriptors.

– Organization of fracture network subgraphs based on
pair-wise similarities into a hierarchical tree enables
identification of spatial clustering at different dendro-35

gram heights with newer and more granular cluster
boundaries emerging at successively deeper levels of
enquiry.

– Spatial autocorrelation is more apparent with the finger-
print, D-measure, and the portrait divergence distances40

than the NetLSD, which yields speckled patterns with
little or no spatial autocorrelation.

– Spatial variation maps deriving from hierarchical clus-
tering using the D-measure and portrait divergence
identify similar spatial clusters and cluster bound-45

aries. However, with the fingerprint distance, the cluster
boundaries are different.

– Fracture segment orientations show gradual variation in
segment strikes across the identified clusters despite ori-

entation not being explicitly considered and only Eu- 50

clidean distance being used to weight spatial graph
edges.
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Appendix A: Heatmaps and dendrograms

Figure A1. Combined symmetric heatmap of distance matrix and dendrograms, dendrograms, and sum-of-squares elbow plots for Region 1
(a) fingerprint distance, (b) D-measure, (c) NetLSD, and (d) portrait divergence.
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Figure A2. Combined symmetric heatmap of distance matrix and dendrograms, dendrograms, and sum-of-squares elbow plots for Region 2
(a) fingerprint distance, (b) D-measure, (c) NetLSD, and (d) portrait divergence.
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Figure A3. Combined symmetric heatmap of distance matrix and dendrograms, dendrograms, and sum-of-squares elbow plots for Region 3
(a) fingerprint distance, (b) D-measure, (c) NetLSD, and (d) portrait divergence.
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Appendix B: Spatial variation for different levels of
dendrogram cuts

Figure B1. Variation in cluster boundaries for “k” clusters in Region 1 using fingerprint distance.
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Figure B2. Variation in cluster boundaries for “k” clusters in Region 1 using D-measure.
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Figure B3. Variation in cluster boundaries for “k” clusters in Region 1 using NetLSD.
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Figure B4. Variation in cluster boundaries for “k” clusters in Region 1 using portrait divergence.
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Figure B5. Variation in cluster boundaries for “k” clusters in Region 2 using fingerprint distance.
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Figure B6. Variation in cluster boundaries for “k” clusters in Region 2 using D-measure.
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Figure B7. Variation in cluster boundaries for “k” clusters in Region 2 using NetLSD.
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Figure B8. Variation in cluster boundaries for “k” clusters in Region 2 using portrait divergence.
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Figure B9. Variation in cluster boundaries for “k” clusters in Region 3 using fingerprint distance.
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Figure B10. Variation in cluster boundaries for “k” clusters in Region 3 using D-measure.
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Figure B11. Variation in cluster boundaries for “k” clusters in Region 3 using NetLSD.
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Figure B12. Variation in cluster boundaries for “k” clusters in Region 3 using portrait divergence.
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Appendix C: Detailed spatial heterogeneity maps

Figure C1. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by fingerprint distance in
Region 1. Coordinates of circular sample centres are below each subgraph example.
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Figure C2. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by D-measure in Region 1.
Coordinates of circular sample centres are below each subgraph example.
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Figure C3. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by portrait divergence in
Region 1. Coordinates of circular sample centres are below each subgraph example.
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Figure C4. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by fingerprint distance in
Region 2. Coordinates of circular sample centres are below each subgraph example.
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Figure C5. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by D-measure in Region 2.
Coordinates of circular sample centres are below each subgraph example.
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Figure C6. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by portrait divergence in
Region 2. Coordinates of circular sample centres are below each subgraph example.
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Figure C7. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by fingerprint distance in
Region 3. Coordinates of circular sample centres are below each subgraph example.
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Figure C8. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by D-measure in Region 3.
Coordinates of circular sample centres are below each subgraph example.
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Figure C9. Circular subgraph samples depicting variation in fracturing style as identified in the 10 largest clusters by portrait divergence in
Region 3. Coordinates of circular sample centres are below each subgraph example.
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Code and data availability. A MATLAB implementation to com-
pute graph fingerprints and fingerprint distance is available
on the GitHub repository https://github.com/rahulprabhakaran/
Fracture_Fingerprint/tree/v.1.0.0 (last access: 19 April 2021; see
https://doi.org/10.5281/zenodo.4699961, Prabhakaran, 2021). The5

implementation of the D-measure in the form of an R script
is available as supplementary code with Schieber et al. (2017).
The NetLSD Python package used to compute the LSD dis-
tance as described in Tsitsulin et al. (2018) is available at https:
//pypi.org/project/NetLSD/ (last access: 30 January 2021). The10

code implementation for portrait divergence developed by Bagrow
and Bollt (2019) can be obtained from https://github.com/bagrow/
network-portrait-divergence/ (last access: 30 January 2021).

The circularly sampled fracture subgraphs are derived from the
open fracture network dataset published by Prabhakaran (2021).15

The circularly sampled subgraphs are available for download as a
data supplement to this paper (Prabhakaran et al., 2021a).
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graphs, sample subgraphs, and compute fingerprints and fingerprint
distances; did the HC analysis; and wrote the manuscript with in-20
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