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Abstract. We investigate the influence of stress conditions during fracture formation on the geometry and roughness of fracture

surfaces. Rough fracture surfaces have been generated in numerical simulations of triaxial deformation experiments using the

Discrete Element Method and in a small number of laboratory experiments on limestone and sandstone samples. Digital surface

models of the rock samples fractured in the laboratory experiments were produced using high resolution photogrammetry.

The roughness of the surfaces was analyzed in terms of absolute roughness measures such as an estimated joint roughness5

coefficient (JRC) and in terms of its scaling properties. The results show that all analyzed surfaces are self-affine, but with

different Hurst exponents between the numerical models and the real rock samples. Results from numerical simulations using

a wide range of stress conditions to generate the fracture surfaces show a weak decrease of the Hurst exponents with increasing

confining stress and a larger absolute roughness for transversely isotropic stress conditions compared to true triaxial conditions.

Other than that, our results suggest that stress conditions have little influence on the surface roughness of newly formed10

fractures.

1 Introduction

It is well known that surfaces of faults and fractures in rocks are rough at all scales (Brown and Scholz, 1985; Hobbs, 1993;

Power and Durham, 1997; Candela et al., 2012). The roughness of fracture surfaces is important for a range of geological

processes such as the mechanical behavior of faults (Okubo and Dietrich, 1984; Griffith et al., 2010; Candela et al., 2011a, b;15

Angheluta et al., 2011; Ahmadi et al., 2016) or the fluid flow in jointed rock or fault zones (Chen et al., 2000; Watanabe et al.,

2008; Bisdom et al., 2016; Briggs et al., 2017; Jin et al., 2017; Zambrano et al., 2019; Kottwitz et al., 2019). However, the

processes and parameters controlling the details of the fracture geometry are not fully understood yet.

Roughness can be defined as the deviation of a surface from a plane. The degree of roughness of a surface can be described in

a number of different ways, ranging from visual, semi-quantitative approaches such as the "Joint Roughness Coefficient" (JRC)20

(Barton, 1973; Barton and Choubey, 1977) to fully quantitative measures derived directly from the geometrical properties of the

surface such as the root mean square of the first deviation (slope) along a profile Z2 (Myers, 1962) or the "structure function"

SF proposed by Sayles & Thomas Sayles and Thomas (1977). It has been shown that the those measures are closely, but not

perfectly, correlated to each other (Tse and Cruden, 1979; Li and Zhang, 2015). A roughness measure of particular interest due

to its possible use in the parametrization of the fluid flow properties of rock fractures is the "effective surface area S" proposed25
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by Kottwitz et al. (2019), which can be considered as an extension of the "areal roughness index" defined by El-Soudani (1978)

and therefore a 2D-analog of the "roughness profile index" defined there (Rp in Li and Zhang (2015)) . A statistical analysis of

rough surfaces shows that they can often be described as self-affine (Turcotte, 1992; Schmittbuhl et al., 1993, 1995; Bouchaud,

1997; Candela et al., 2009, 2012), i.e. they are statistically invariant under an affine transformation, but not under a global

dilation (Bouchaud, 1997). In that case, the roughness can be described by a scaling parameter such as a fractal dimension or30

a Hurst exponent (Candela et al., 2009) in addition to a geometric roughness measure such as the root mean square deviation

from an average plane at a given scale. While most of the previously mentioned parameters, i.e. JRC, Z2, Rp and SF, are

measured along profiles across the surface, and are therefore intrinsically direction-dependent, the scaling parameters can be

calculated either directionally or direction-independent.

Stress boundary conditions are one of the main factors controlling the shape and structure of faults and fractures in brittle35

rocks (Faulkner et al., 2010). While some experimental studies have investigated the dependence of the roughness of individual

fracture surfaces on the stress conditions under which they were generated (Amitrano and Schmittbuhl, 2002), the use of

numerical models makes it much easier to systematically study this issue for a wide range of stress parameters, including those

which are difficult to access experimentally.

A large number of numerical modelling approaches has been developed to study the evolution and resulting properties of40

rough cracks, from statistical approaches like fiber bundle models over lattice methods including random fuse networks (RFN)

and random spring networks (RSN) to standard continuum based approaches like finite element models (FEM) (Alava et al.,

2006). In this work we use numerical simulations based on the Discrete Element Method (DEM) (Cundall and Strack, 1979;

Donze et al., 1994; Mora and Place, 1994) to systematically study the formation of fracture surfaces under a wide range of

stress conditions and to quantify their geometric properties. The focus of the investigation is on the initial geometry of the45

freshly formed fracture surfaces, i.e. in case of shear fractures, before significant slip takes place. This means that the results

will be mainly applicable to joints and shear fractures with small displacement, both of which are very common structures in

brittle rocks. The DEM approach was chosen due to its particular suitability for the numerical simulation of brittle deformation

processes (Mair and Abe, 2008; Schöpfer et al., 2009; Schöpfer et al., 2011; Yoon et al., 2012) and the option to run true triaxial

deformation experiments where σ1 > σ2 > σ3, which are difficult to perform in the laboratory. In addition, we compare the50

results from the DEM simulations with data obtained from the photogrammetric analysis of fracture surfaces generated in

triaxial compression experiments in the laboratory.

2 Method

2.1 Discrete Element Method

To simulate the process of rock fracture under an externally applied loading we are using the Discrete Element Method (Cundall55

and Strack, 1979; Donze et al., 1994; Mora and Place, 1994). In this approach a brittle-elastic material is modeled as a collection

of spherical particles interacting with their nearest neighbors either by frictional-elastic interactions or by breakable elastic

"bonded" interactions. Based on the force-displacement laws implemented in these interactions the forces and moments acting
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on each particle can be calculated. The resulting translational and rotational accelerations of the particles are then used to

calculate particle movements from Newtons equations. For the breakable bonded interactions a failure criterion is evaluated60

and if the failure threshold has been exceeded, the affected bonded interactions are removed and, if the particles involved are

still in contact, replaced by a frictional-elastic interactions.

A range of different implementations exist for each of the interaction types, differing mainly in the details of the force-

displacement law and, in case of the bonded interactions, the failure criterion. In this work we are using a linear force-

displacement law for the normal component of the frictional-elastic interactions and a Coulomb friction law for the tangential65

component as described by Cundall and Strack (1979). For the bonded interaction we are using the bond model by Wang et al.

(2006) which takes normal, shear, bending and torsional deformation into account. The stiffness and strength of the bonds are

parameterized using the approach of Weatherley (2011) which calculates normal, shear, bending and torsional stiffness from

the elastic parameters of an assumed bond material, specifically from Young’s modulus Eb and Poissons ratio νb, considering

cylindrical bonds with a length and diameter controlled by the radii of the particles they are connecting. A Mohr-Coulomb70

failure criterion is used for the bonds based on the strength parameters of the bond material, i.e. cohesion Cb and friction angle

Φb.

Because the size of the individual models is important in this work to obtain high resolution roughness data from the

simulated fracture surfaces, we are using the parallel DEM software ESyS-Particle (Abe et al., 2004), which enables the

simulation of sufficiently large models.75

2.2 Surface Extraction

The extraction of surface data from the numerical models requires two steps, (1) the identification of the individual fragments

of the sample after fracturing (Fig 1b) and (2) the calculation which groups of the particles contained in each fragment form

an individual fracture surface. The fragments of the broken sample are extracted by constructing an undirected graph from the

structure of the DEM model such that the particles form the nodes of the graph and the remaining unbroken bonds form the80

edges in the graph. The fragments can then be extracted by calculating the connected components of that graph (Abe and Mair,

2005). For each fragment larger than≈ 10% of the original model (Fig. 1c) a ray-casting method is used to determine which of

the particles are forming the surface of the fragment. In this approach, a set of parallel lines or "rays" with their origin outside

the fragment and a specific direction is defined. The first intersection between each line and one of the particles is calculated

using the algorithm proposed by Amanatides and Woo (1987). The positions of the calculated intersection points then form the85

point cloud describing the fragment surface (Figure 2).

To get a complete coverage of the fragment surface (Fig. 1e), i.e. to avoid shadowing effects by "overhanging" parts of

the fragment surface, the calculations are performed for multiple view directions of the rays. The directions from the mass

centers of all neighboring fragments to the mass center of the fragment and directions deviating from those by 30 degrees are

used. To identify individual fracture surfaces two additional post-processing steps are performed. The initial outside surfaces90

of the intact model are removed by identifying each particle which was part of the surface of the model in the initial particle

packing and removing the respective intersection points from the point cloud. In the final step a calculation is performed for
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(a) (b) (c)

(d) (e) (f)

Figure 1. Numerical modeling workflow. (a) DEM specimen used for deformation experiments. Colors show particle size, purple arrows

symbolize confining stress, gray arrows show compression direction. (b) Fragment identification in fractured DEM model. Colors show

fragment size (red - large, blue - small). Red parts (top left & bottom right) show two major fragments, blue / white (i.e. fine grained) material

along diagonal shows shear zone. (c) Two major fragments extracted from fractured DEM model. Colors show fragment size (volume). (d)

Fragment extracted from DEM model. Rough fracture surface visible. (e) Point cloud surface generated from DEM model. Outer surfaces

of the initial DEM specimen visible right and bottom. (f) Filtered point cloud used for analysis. Non-fracture surfaces and outlying points

removed.

each particle contributing an intersection point to the surface point cloud to determine which other fragment is closest to this

particle. This information is then used to split the point cloud into individual chunks, each representing an individual fracture

surface (Fig. 1f). By performing this step for all fragments in the model, corresponding pairs of surfaces belonging to the same95

fracture can be identified.

The 3D point clouds generated using this method are collections of (x,y,z) coordinates. However, for most further analysis

steps a representation of the surface as height field relative to a plane, i.e. as z′(x′,y′) is needed. To obtain such a representation

a "best fit" plane for the point cloud is calculated. The location of such a plane is found by calculating the barycenter b =
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view directions 

rays

surface points
fragment particles

Figure 2. Simplified 2D sketch of the ray-casting method. The gray particles are assumed to belong to the same fragment of the deformed

sample and the black and gray crosses show the fragment surface calculated from the line-particle intersections using multiple view directions.

Black lines and black arrow show primary view direcion, light gray lines and arrows show additional view directions at a 30 degree angle to

the primary direction.

(x0,y0,z0) of the point cloud, i.e.100

(x0,y0,z0) =
1

n

n∑
i=0

(xi,yi,zi) (1)

and its orientation is determined by the two major eigenvectors e1 and e2 of the covariance matrix C of the point cloud.

The third eigenvector of the covariance matrix then determines the normal nfp = e3 of the plane. Using this, the in-plane

coordinates (x′,y′) of each point p = (x,y,z) and its perpendicular distance z′ from the plane can be calculated as

x′ = (p− b) · e1 (2)105

y′ = (p− b) · e2 (3)

z′ = (p− b) · e3 (4)

It should be noted that a surface can only be represented correctly as height field in this way if there are no parts of the surface

which are "overhanging" with respect to the normal of the fitted plane, i.e. if there are no points on the surface with identical

(x′,y′) but different z′. However, this is generally the case for the fracture surfaces generated in the numerical models.110

2.3 Roughness Characterization

A roughness measure commonly used in the study of the mechanical behavior of rock surfaces is the Joint Roughness Coef-

ficient (JRC) defined initially as a parameter relating the shape of a rock joint to its peak shear strength, c.f. Eq. 9 in (Barton,

1973) or Eq. 2 in (Barton and Choubey, 1977). Its relation to the geometry of the joint surfaces was only qualitatively defined

by assigning JRC values to a set of standard profiles (Barton and Choubey, 1977, Fig. 8). To estimate the JRC of an arbitrary115
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profile from measured geometrical data, a wide range of empirical formulas has been developed in the literature (Li and Zhang,

2015, Table 2). To calculate the approximate JRC of the fracture surfaces generated in the numerical models and the laboratory

experiments three of the 47 equations presented there have been chosen. The subscript of the JRC in the equations below shows

the respective number of the equation in (Li and Zhang, 2015, Table 2).

JRC1 = 32.2 + 32.47log(Z2) (5)120

JRC31 = 558.68
√
Rp− 557.13 (6)

JRC34 = 92.97
√
δ− 5.25 (7)

where Rp is the "Roughness profile index", δ =Rp− 1 the "Profile elongation index" and Z2 the "Root mean square of the

first deviation of the profile", all as defined in (Li and Zhang, 2015, Table 1). Rp is therefore calculated as

Rp =

∑N−1
i=1

√
(xi+1−xi)2 + (yi+1− yi)2∑N−1
i=1

√
xi+1−xi

(8)125

and

Z2 =

√√√√ 1

N

N−1∑
i=1

(yi+1− yi)2

xi+1−xi
(9)

where xi is the abscissa of profile point i, yi its height above a mean value and N is the number of sample points. Given that

those parameters are calculated along profiles, the irregular point clouds generated using the method described in section 2.2

first need to be mapped to a regular grid.130

Self-affine rough surfaces are characterized by the fact that they are statistically invariant under an affine transformation

(x,y,z)→ (ax,ay,aHz) (10)

where x,y are the "in plane" coordinates of the surface and z is the "height" of the surface above a given mean plane (Fig. 3a).

The exponent H is the Hurst exponent or "roughness index" (Mandelbrot and Van Ness, 1968; Mandelbrot, 1985; Bouchaud,

1997). A range of different method for the calculation of the Hurst exponent have been described in the literature (Renard et al.,135

2006; Candela et al., 2009), most of them either based on the evaluation of the power spectrum of the surface or correlation

functions between the heights of points on the surface depending on their mutual distance. Because the point clouds describing

the surfaces generated by the approach described in section 2.2 do not form a regular grid, spectral methods would require an

additional interpolation step. Aside from the additional computational effort required, this might also introduce some difficult

to quantify errors in the calculation of the Hurst exponent (Kottwitz, 2017).140

In this work we therefore use the "Height-height Correlation Function" method as described by Candela et al. (2009).

However, in contrast to the description in (Candela et al., 2009) the function is not calculated from 1D-profile data but directly

from the 2D surface. The radially averaged Height-height correlation function is calculated as the root mean square (RMS)
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Figure 3. Height and distance relations of points in the point cloud used to calculate the height-height correlation function. (a) Arrangement

of points above a fitted mean plane: dashed grid showing mean plane, black lines symbolizing orthogonal distance between plane and points

and red / green lines showing relative orientation between points. (b) distance (∆r) and height difference (∆z) between points.

averaged height difference of all point pairs within a given distance range, i.e.

c(∆r) =

√√√√√ 1

n

∆r+w/2∑
∆r−w/2

∆z2 (11)145

where ∆r =
√

∆x2 + ∆y2 is the "in-plane" distance between the points in the pair, ∆z is the height difference between the

points (Fig. 3b), w is the size of the distance bins over which the height differences are averaged and n is the number of particle

pairs in the respective distance bin. For the calculation of the angular dependence of the Height-height correlation function the

direction between the two points of the pair is calculated as φ= arctan( ∆y
∆x ) and the summation of the height differences is

adjusted from 1D distance bins in Eq. (11) to 2D (distance, direction) bins.150

c(∆r,φ) =

√√√√√√√ 1

n

∆r+wr/2
φ+wφ/2∑

∆r−wr/2
φ−wφ/2

∆z2 (12)

where wr is the bin size with respect to the in-plane distance of the points and wφ is the bin size with respect to the direction

from one point of the pair to the other. Due to the large number of points contained in the surface point clouds, which is as

large np ≈ 500,000 in some cases, and the resulting computational cost if all of the n2
p/2 particle pairs would be taken into

account, only a random sample of 10,000 points (i.e. ≈ 5 ∗ 107 point pairs) is used for each surface. Tests have shown that the155

reduction in the number of particle pairs evaluated does not impact the results.

Given that for a self-affine surface, the Height-height correlation function follows a power law, i.e. c(∆r)∝∆rH (Candela

et al., 2009) the Hurst exponent H can be calculated by fitting a linear function to the straight part of the log-log plot of c(∆r)

vs. ∆r. The slope of the linear function is the Hurst exponent. The Hurst exponent H and the fractal dimension D of an object

are related as D = 2−H for a 1D-profile (Mandelbrot, 1985) or, more generally, D = n+ 1−H where n is the dimension of160

the object (Yang and Lo, 1997), i.e. n=1 for a profile and n=2 for a surface.
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(a) (b) (c)

Figure 4. Types of fracture surfaces studied in this work. (a) numerical (DEM) model, (b) limestone fragment generated in triaxial deforma-

tion experiment, (c) sandstone fragment generated in uniaxial deformation experiment.

3 Experiments

A set of numerical simulations was performed to generate fracture surfaces under a wide range of stress conditions (Fig. 4a)

and some natural rock samples were fractured in laboratory experiments (Fig. 4b,c). Both numerically and experimentally

generated surfaces have been analyzed using the methods described in section 2.3.165

3.1 Numerical Models

To generate a set of model fracture surfaces a large number of deformation experiments have been simulated. The set of

simulations consists of unconfined compression (σ1 > 0, σ2 = σ3 = 0), unconfined tension (σ3 < 0, σ1 = σ2 = 0), standard

triaxial compression (σ1 > 0, σ2 = σ3 > 0) and true triaxial compression (σ1 > σ2 > σ3 > 0) experiments. In all compressive

models σ1 is parallel to the y-axis, σ2 is parallel to the x-axis and σ3 is parallel to the z-axis, whereas in the unconfined tensile170

models σ3, i.e. the extension direction, is parallel to the y-axis, σ1 is parallel to the x-axis and σ2 is parallel to the z-axis.

All models are using box-shaped samples with an aspect ration of 1 : 2 : 1 contained between two servo-controlled plates in

case of the unconfined compression and tension experiments or six servo-controlled plates for the standard triaxial and true

triaxal experiments. While deformation experiments in the laboratory usually use cylindrical samples, we decided in favor of

box-shaped samples because they make it much easier to apply the two different confining stresses in the true triaxial tests.175

In the tension experiments the plates are connected to the boundary particles of the sample by unbreakable bonds which only

induce a force parallel to the normal of the plate but not perpendicular to it. This means the particle are free to move parallel

to the loading plate, avoiding heterogeneous deformation ("necking"). In the compressive experiments both the axial loading
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plates and, in the confined models, the plates along the x- and z-surfaces of the sample, interact with the boundary particles by

frictionless elastic interactions.180

In the unconfined experiments (σ2 = σ3 = 0) a simple loading procedure is used, applying a prescribed displacement rate

to the plates at the y-ends of the model to produce axial shortening or extension. During an initial phase the plate speed is

ramped up smoothly according to a cosine function until the chosen speed is reached and then it is held constant for the main

phase of the experiment. In the confined experiments(σ2 ≥ σ3 > 0) this loading procedure is preceded by a ramp-up of the

stresses applied to the plates at the x- and z-sides of the sample until σxx = σ2 and σzz = σ3. For the smooth ramp-up of185

the applied stresses the same cosine function is used as for the ramp-up of the axial deformation rate in order to minimize

unnecessary vibrations in the model. During this phase a stress is also applied to the loading plates at the y-ends of the

sample such that σ1 = σ2. After a subsequent "rest" phase where the stress on all plates is held constant for given time to

allow the particle movement introduced by the initial loading to dissipate, the same axial shortening as in the unconfined

compression experiments is applied. A range of confining stresses from σ2 = σ3 = 0 to σ2 = σ3 = 15MPa was used for the190

numerical models in this work. In order to avoid the effect of abrasion modifying the roughness of the fracture surfaces after

their initial formation, the state of the model immediately after one or more through-going fractures have formed was used

for the extraction of fracture surfaces described in section 2.2. I.e. there is no, or at least very little, post-failure slip on those

surfaces.

A model size of 55× 110× 55 model units was chosen with a particle sizes ranging from Rmin = 0.2 to Rmax = 1.0,195

resulting in≈ 950,000 particles for those models (Fig. 1a). This model size was found in initial tests to provide a good balance

between model resolution and computational cost. For the construction of the initial particle arrangement for the models the

insertion based packing algorithm by Place and Mora (2001) was used. This algorithm generates dense particle packings having

a power-law particle size distribution with an exponent of approximately −3, i.e. the number of particles with given radius r is

roughly proportional to r−3.200

In all deformation experiments the final loading plate speed was set to ≈ 17cm/s. This is significantly higher than in real

experiments, but using real lab values (µm/s. . .mm/s) would lead to impractically long computing times because the time

step of the calculations is restricted to values of ∆t6 3× 10−8s due to numerical stability constraints. Tests have shown that

the increased velocities do not significantly influence the model results.

The mechanical properties of the DEM material have been calibrated to values similar to those of a typical sedimentary205

rock. The target values, Youngs Modulus E=30GPa and unconfined compressive strength UCS=80MPa, are within the range of

sandstone or medium to high porosity limestone (Zoback, 2007). The failure strength was found to vary by less than 1% among

samples. These parameters do not provide a direct match to the mechanical properties of the rocks used in the laboratory tests

(Section 3.2), but the important ratio between failure strength of the material and the confining stress applied in the laboratory

experiments lies well within the range covered by the numerical models (Fig. 5b). Because the details of the fracture behaviors210

of individual samples in DEM models show a well known dependence on the initial random particle arrangement (Koyama and

Jing, 2007; Abe et al., 2011; Fakhimi and Gharahbagh, 2011), at least 5 simulations with different realization of the particle

packing have been performed for each parameter set in order to quantify this variability.
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Figure 5. Confining stress range covered by the numerical models, combining the experiments in this work and the data from (Ohagen,

2019). (a) Numerical models only, using absolute stress values. (b) Numerical and laboratory experiments, using stress values scaled by the

unconfined compressive strength of the respective material. Hatched segment in top left of the diagrams: parameter space excluded by the

condition σ3 ≤ σ2.

To improve the coverage of the chosen range of stress conditions, data from a related study (Ohagen, 2019) was integrated

into the analysis (Fig 5a). This study was using an identical model setup, except for slightly smaller models with dimensions of215

40×80×40 model units (≈ 360,000 particles) and 50×100×50 model units (≈ 710.000 particles) compared to the roughly

950,000 particles used in most models in this work.

3.2 Laboratory Tests

To compare the roughness of fractures created in the DEM models with the roughness of real fractures we conducted a number

of laboratory uniaxial and triaxial deformation experiments. For our study we used a suite of fine grained, low porosity Upper220

Jurassic carbonate rock samples and additionally one Lower Triassic sandstone sample, both from Franconia, Germany. Sample

size for the experiments were 55x110mm cylinders. The main goal of the experiments was to produce fractures for given stress

conditions which could then be used for roughness analyses.

The sandstone uniaxial compressive strength (UCS) experiment lead to an typical hourglass fracture pattern, splitting the

sample into a small number of larger fragments, which could be used for further analyses (Fig. 4c). Unfortunately, for the UCS225

and most of the triaxial experiments of the carbonate rocks the samples disintegrated into a very large number of very small

fragments leaving no suitable fracture surfaces to analyze. See Fig. S1 in supplement for a typical example. This applied in

particular to the samples loaded with small confining pressures. Only in one experiment with a confining pressure of 30 MPa

post-deformation fragments were large enough for our planned fracture surface analyses (Fig. 4b). From the suitable fragments

we constructed a digital three dimensional surface model using photogrammetric methods. The models were built from more230

than 100 single pictures of the samples from different perspectives using a 12 megapixel SLR camera and a 40mm macro lens.
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The photos were taken from a distance of 5cm to 10cm between front lens and the object, which is close to the minimum focus

distance of the lens used. The models were then clipped to the fracture plane of interest. The remaining surface geometry was

exported as 3D point cloud data with c. 2.2 million data points in total, resulting in a point density of c. 28000 points/cm2 and

an average point distance of 60 micrometers.235

The generated point clouds were then used for roughness analyses of the fracture surfaces following the approach described

in section 2.3. Besides the creation of fracture surfaces the deformation experiments were also used to derive typical geome-

chanical properties of the carbonate and sandstone samples which were used for comparison with the DEM models. For the

carbonate rocks a UCS of ≈ 285MPa was obtained and ≈ 85MPa for the sandstone sample. For the limestone a friction coef-

ficient µ= 0.7 was derived from experiments with confining pressures ranging between 0 to 30 MPa. Young’s modulus was240

measured at E = 48GPa for the limestone and E = 12.5GPa for the sandstone.

4 Results

4.1 Numerical Models

Based on the data produced by a total of 131 numerical simulations the geometrical properties of 388 fracture surfaces have

been analyzed. The fracture orientations were as expected under the stress conditions. The dip angle was typically within 25-35245

degrees of σ1, i.e. 55-65 degrees assuming σ1 to be vertical. The strike direction of the majority of the fractures was within ≈
10 degrees of σ2 in the true triaxial models (σ2 6= σ3) and more or less randomly distributed under transverse isotropic stress

conditions (σ2 = σ3).

In an initial step the joint roughness coefficients for a small set of surfaces were approximated using Eq. (5) - (7). The results

did show that the resulting JRC values were consistently above the range defined by Barton and Choubey (1977), i.e. larger250

than 20, and therefore also outside the range of validity of the approximation equations in Li and Zhang (2015). Similarly,

the geometric parameters Rp (Eq. 8) and Z2 (Eq. 9) from which the estimated JRC values were calculated, were outside the

applicable ranges given there. While the roughness produced by the numerical models is therefore outside the range for which

the fitting equations collected by Li and Zhang (2015) were originally intended, Figure 1a in their work suggests that Eq. (5)

would be the best option to extend the range of approximate JRCs to the surface geometries observed here because it provides255

a particularly good fit at large values (i.e. Z2 ≈ 0.35− 0.4, JRC ≈ 20). Therefore Eq. (5) was used to estimate the average

JRC for each of 261 surfaces based on a total of ≈ 24400 profiles. The remaining 127 of the 388 surfaces studied were found

to be too small in at least one of the dimensions to allow the extraction of sufficiently long profiles. For each surface, profiles

were generated in two orthogonal directions to check for a possible anisotropy of the surface roughness. The results did show

that the mean estimated JRCs for the profiles differs by less than 10% between the two direction, which is generally less than260

the standard deviation between the profiles within one direction. Plotting the estimated JRC for the analyzed surfaces against

the mean confining stress of the models (Fig. 6a) shows that there is no clear trend of JRC vs. confinement, but that models

with transversely isotropic confinement (σ2 = σ3) generally have higher JRC values than models fractured under true triaxial
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conditions, i.e. σ2 6= σ3. The directly calculated geometric roughness measures, i.e. Rp and Z2, show a very similar pattern

(Fig. 6b,c).265
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Figure 6. Geometric roughness measures for surfaces generated at different stress conditions in DEM models. Black: True triaxial com-

pression, bed: Standard triaxial compression (transverse isotropic confinement), blue: unconfined extension. (a) Approximated JRC values

calculated based on Eq. (5), (b) "Root mean square of the first deviation" Z2 (Eq. 9), (c) "Profile elongation index" Rp (Eq. 8). Error bars

show standard deviation.

The perpendicular distance or "height" of the points of the fracture surfaces above a fitted fit plane is calculated according

to Eq. (4). Analysis shows that the heights are normally distributed (Fig. 7) as expected for fracture surfaces (Ponson et al.,

2007), allowing a "RMS roughness" hrms = 1
n

√∑
n(z′2) to be calculated.
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Figure 7. Distribution of heights of a simulated fracture surface above a "best fit" plane. Data taken from model with σ2=5MPa and σ3=0MPa.

(a) Map view of the surface colored by height above the "best fit" plane. (b) Probability density of heights and fitted normal distribution.
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Figure 8. Average RMS roughness values for surfaces generated at different stress conditions. Black: True triaxial compression, Red: Stan-

dard triaxial compression (transverse isotropic confinement), Blue: unconfined extension. Error bars show standard deviation.

Plotting the RMS roughness hrms of all models against the mean confining stress (Fig. 8) shows that there is no clear

dependence between the two parameters, except for a difference between transverse isotropic (σ2 = σ3) and true triaxial (σ2 6=270

σ3) stress conditions. In case of the transverse isotropic confinement the observed RMS roughness hrms = 2.35± 0.78 model

units is higher than in case of true triaxial conditions where hrms = 1.63± 0.48 model units. It can also be observed that

the RMS roughness of the models subjected to unconfined extension (blue marker in Fig. 8) is smaller at hrms = 1.51± 0.44

model units than that of the models subjected to unconfined compression with hrms = 2.76±0.88 model units. This difference,

however, is possibly at least in part an artifact of the different size of the fracture surfaces between the two model groups. In275

the tensile case, the fractures tend to be roughly normal to the extension direction, i.e. the long axis of the model and their

size is therefore restricted to the small cross section of the model. In contrast, the fracture surfaces in the compressive case

tend to be oriented such that their normal is at an angle of ≈ 55 . . .60 degrees to the compression direction and can therefore

grow as large as a plane diagonally across the model, i.e. more than twice the size compared to the tensile case. Plotting the

height-height correlation function (Eq. 11) of the surfaces in a log-log plot (Fig. 9) shows a clear linear section which, for most280

surfaces analyzed, ranges from ∆rmin ≈ 1.5− 2 model units, i.e. somewhat more than the maximum particle size, to about

half of the smaller dimension of the surface, which in most cases means ∆rmax ≈ 20− 30 model units. This linear section in

the log-log plot, representing a power-law dependence c(∆r)∝∆rh shows that the surface is indeed self affine, at least for

the range of scales covered by the linear section.

In order to verify that the observed self-affine structure of the fracture surfaces generated in the numerical model is indeed a285

result of the fracture process, and not an artefact caused by the intrinsic roughness of surfaces in the particle model, a number

of "quasi-planar" surfaces was generated in the particle model and their roughness was analysed. For this purpose one of the

blocks of packed particles used in the DEM simulations of the triaxial tests (Fig. 1a) was cut with an arbitrarily oriented plane,

i.e. the particles on one side of the plane were removed. The remaining fragment of the block then underwent the same surface
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Figure 9. Log-log plot of the height-height correlation function of the two surfaces of a single fracture. Red and black symbols show the

RMS height differences calculated for each distance bin for the two surfaces. The straight lines are fitted to the linear section of the data in

log-log space, showing a power-law dependence.

extraction and roughness analysis procedures as the fracture surfaces produced in the deformation experiments. The result (Fig.290

10) shows that the height-height correlation function of the cut surface is essentially flat from the particle scale up to the model

size. Performing this analysis on multiple cut surfaces did show that this is independent of the orientation of the cut plane and

the details of the particle packing. Only the absolute value of the roughness of the cut surfaces depends somewhat on the size

range of the particles. Calculating the joint roughness coefficients for the cut surfaces according to Eq. (5) did, as expected,

produce non-zero values of the JRC. However, the JRC-values for the cut surfaces are in the range of 11.5-12, which is much295

smaller than the values observed in the fracture surfaces generated in the numerical models (JRC ≈ 23− 32, Fig. 6a). It can

therefore be assumed that, while there is some contribution of the intrinsic particle scale roughness to the total roughness of

the fracture surface, the self-affine structure of the fracture surfaces as well as the major part of their total roughness is due to

the fracture process and not the particle structure of the model as such.

Performing the calculations for all 388 fracture surfaces extracted from the numerical models produced Hurst exponents300

ranging from 0.2 to 0.6. To investigate possible dependencies on the stress conditions under which the fractures were created,

the average Hurst exponents over all surfaces generated in each set of simulations with identical boundary conditions have

been calculated. The mean value of H for the sets varies between 0.3 and 0.45, with the variation between top and bottom

quartile within each set typically in the range of 0.05 . . .0.1. Due to the relatively small number of data points within each set

of models, i.e. between 8 and 28 surfaces, and the observed asymmetry of the error distribution in some instances, quartiles305

have been calculated and plotted (Fig. 11 and Fig. 12) instead of standard deviations. Plotting the calculated Hurst exponents

against the mean confining stress (σ2 +σ3)/2 (Fig. 11) shows a weak trend towards lower Hurst exponents with increasing

confinement. No dependence of the Hurst exponent on the ratio between the confining stresses σ3/σ2 could be observed (Fig.

12).
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Figure 10. Log-log plot of the height-height correlation function of a fracture surface generated in a numerical deformation experiment (red

diamonds) and a "quasi-planar" surface generated by cutting the particle packing used in the experiment with a plane (black circles).

Figure 11. Average and variability of Hurst exponents for surfaces generated with different average confining stress (σ2 +σ3)/2. Black:

triaxial compression models, this work, Blue: unconfined extension models, this work, Red and pink: triaxial compression models, data from

Ohagen (2019). Error bars show top and bottom quartile.
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Figure 12. Average and variability of Hurst exponents for surfaces generated with different ratio of confining stresses σ2 and σ3. Black: this

work, Red: data from Ohagen (2019). Error bars show top and bottom quartile.

4.2 Laboratory Tests310

To characterize the roughness of the fracture surfaces produced in the laboratory deformation tests, we examined the pho-

togrammetrically produced point clouds of the single sample fragments. For each of the limestone and sandstone samples one

fracture surface was chosen. The maximum sampling area for the roughness investigation was 14cm2 for the sandstone and

≈25cm2 for the limestone sample. The analyses of the heights distances of the single points of the point clouds above their

fitted mean planes revealed a normal distribution of the heights. Thus, a calculation of the RMS roughness is justified (Fig.315

13). The height-height correlation functions of these surfaces have a well-defined linear section in a log-log plot proving a

self-affine geometry in a distance range between ≈0.1cm and ≈1cm, both for the limestone and sandstone sample (Fig. S2

and S3 in the supplement). With distances larger ≈1cm a flattening of RMS curve can be observed, marking the upper end of

the power-law relationship between the point distance and the RMS height difference. From the linear slope segments of the

correlation functions similar Hurst exponents could be deduced with H=0.66 for the sandstone and H=0.69 for the limestone320

when analysing the maximum sampling area on the respective fracture.

To check whether the size of the investigation area on the fracture surfaces has an effect on calculated Hurst exponents

we analyzed the height-height correlation functions and Hurst exponents for a suite of different area sizes (Fig. 14). For the

limestone sample the mean H-value results in H=0.73 with a standard deviation of 0.08. The sandstone sample shows a clearly

lower mean H-value of H=0.6 and a standard deviation of 0.05. A stronger scatter of Hurst exponents can be observed for the325

smallest analyzed sample area size of≈ 1cm2, ranging between H=0.43 and 0.64 for the sandstone surface and between H=0.67

and 0.85 with two outliers of H ≈ 0.5 for the limestone surfaces. For these outliers a closer investigation of the corresponding

RMS/Distance curves shows that two different linear sections could be derived, one with a higher Hurst exponent for smaller

distances and one lower Hurst exponent for larger distances.
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Figure 13. Distribution of heights for fracture surfaces generated in laboratory deformation experiments. Top: limestone sample deformed

at σ2 = σ3=30MPa, bottom: sandstone sample deformed in unconfined compression test. (a) Map view of the limestone surface colored by

height above the "best fit" plane. (b) Probability density of heights and fitted normal distribution for limestone surface (c) Map view of the

sandstone surface colored by height above the "best fit" plane. (d) Probability density of heights and fitted normal distribution for sandstone

surface.

Figure 14. Calculated Hurst exponent for different sizes of the measurement area in the natural rock samples. Circles: individual measure-

ments, dashed lines: average of all measurements per sample.
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Figure 15. Estimated JRC values calculated based on Eq. (5) for fracture surfaces of the sandstone and limestone specimen. Black: Lime-

stone, red: Sandstone. Open symbols: profiles taken parallel to shortening direction, filled symbols: profiles perpendicular to shortening

direction. Small horizontal offset between data points in each group added for better visibility of individual error bars.

For both sample surfaces the joint roughness coefficient (JRC) was estimated using the same methods as for the numerical330

models. The results show that the estimated JRC is dependent on the sampling resolution, i.e. the number of sampling points

on the profile, specifically that the calculated value of the JRC is increasing with smaller sampling intervals (Fig. 15). This

is a known effect, which is caused by the dependence of the underlying geometric parameters Rp and Z2, from which the

estimated JRC is calculated, on the sampling interval used (Yu and Vayssade, 1991). It is also to be expected based on the fact

that the analyzed surfaces are self-affine. In that case the dependence of Rp on the sampling interval is directly described by335

the "compass dimension" (Mandelbrot, 1985) of the profile. For the fracture surfaces in the numerical models (Section 4.1) a

similar analysis of the resolution dependence of the JRC was not done because of the lower intrinsic resolution of the point

clouds which limits profiles to less than 100 sample points in most cases.

The empirical equations used for the calculation of JRC from measured geometric parameters are usually derived based on

sampling resolutions between 100 and 400 points per profile (Tse and Cruden, 1979; Yu and Vayssade, 1991; Li and Zhang,340

2015). Specifically, the equation used in this work to estimate JRC from Z2 (Eq. 5) was derived by Tse & Cruden (Tse and

Cruden, 1979) using a sample interval of 1.27mm at a profile length of 25cm, i.e. slightly less than 200 points. The surfaces

analyzed here have dimensions of about 7cm × 5cm for the sandstone and approximately 10cm × 4.5cm for the limestone.

Therefore a sampling interval of between 0.25mm and 0.5mm will produce a similar number of sample points along the profiles.

Therefore the best estimates for the average JRC of the fracture surfaces produced in the laboratory experiments are for the345

sandstone JRC ≈ 9− 11 in the direction parallel to shortening direction in the deformation experiment and JRC ≈ 11− 13

perpendicular to it (Fig. 15). For the limestone the estimates are JRC ≈ 6.5−7.5 in the parallel direction and JRC ≈ 16−17

in the perpendicular direction. In both cases the JRC shows a clear anisotropy between the two directions. However, this

anisotropy is much larger in the limestone compared to the sandstone sample.
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particle size range Hurst exponent JRC JRC anisotropy

0.2-1.0 0.414±0.5 26.1±1.8 2.0%

0.15-1.0 0.415±0.85 25.4±2.4 3.2%

0.1-1.0 0.398±0.96 24.2±2.3 0.4%
Table 1. Roughness properties for surfaces generated in numerical simulations of triaxial compression tests at σ2 = 6MPa, σ3 = 0 using

different particle size ranges for the DEM material.

5 Discussion350

The results of the analysis of the simulation data (Section 4.1) shows that the roughness of the fracture surfaces generated

in the numerical models is high compared to natural rock fractures usually considered in the geomechanical literature. In the

numerical models the surfaces show estimated JRC values larger than 23 and in some case exceeding 30 whereas the JRC for

natural surfaces was originally only defined for a range up to 20 (Barton, 1973; Barton and Choubey, 1977). In contrast, the

natural rock samples analyzed in this work (Section 4.2) show JRC values between 6 and 17 which is well within the range355

defined by Barton (1973).

However, as described in section 4.1 the JRC values for the numerical model contain a small contribution due to the intrinsic

particle scale roughness of the model. If we consider that the total roughness of the surface is the sum of the roughness due to the

particle structure of the surfaces and the roughness due to the actual fracture process, and if we assume that those contributions

are not spatially correlated with each other, it would be possible to correct the calculated JRC-values by removing the effect360

of the particle scale roughness. The parameter Z2 on which the calculation of the JRC is based (Eq. 5) is calculated from the

RMS of the first derivative of profiles along the surface (Eq. 9). Based on the assumption that the particle-scale roughness and

the fracture-generated roughness are not spatially correlated, this means that the total Z2 is the RMS of the Z2-values of the

two parts, and therefore the value Z2f of the facture-generated roughness can be estimated as Z2f =
√
Z2

2 −Z2
2p where Z2p

is the contribution of the particle-scale roughness. Using the data described in section 4.1, values of Z2p ≈ 0.23− 0.24 are365

obtained. This would result in a correction of the mean JRC-values for the different groups of surfaces shown in Fig. 6a from

≈ 23.7 to ≈ 22.1 for the smallest and from ≈ 32.2 to ≈ 31.8 for the largest values of the JRC. This shows that the potential

corrections are not significant and, in most cases, well inside the scatter of the calculated JRC values. In addition, we did run 2

small sets of simulations using a wider range of particle sizes than the "standard" models described in section 3.1, i.e. a larger

ratio between maximum and minimum particle radius (Rmax :Rmin = 1.0 : 0.15 and Rmax :Rmin = 1.0 : 0.1), to see if the370

particle size range had any effect on the surface properties. These sets consisted of 5 simulations each, all performed under

true triaxial conditions using σ2 = 6MPa and σ3 = 0. The results did not show a statistically significant difference in Hurst

exponent or JRC compared to the equivalent simulations performed using the particle radius range Rmax :Rmin = 1.0 : 0.2

(Tab. 1).

In numerical models there is a slightly higher anisotropy in the models with transversely isotropic confinement (σ2 = σ3)375

of up to 8% difference in JRC between the directions whereas in the models with σ2 6= σ3 the difference is less than 3%
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in all cases. In the rock samples, which are also deformed under conditions where σ2 = σ3, the anisotropy is much higher,

i.e. the ratio between the JRC in the two directions is ≈ 1 : 1.2 in the sandstone and ≈ 1 : 2.3 in the limestone. However,

due to small number of fracture surfaces available for analysis from the laboratory experiments it is not clear if this strong

anisotropy, and the large difference between the limestone and the sandstone sample, is a general property of fracture surfaces380

generated under comparable conditions or just an artifact of the specific samples studied. In general the strong anisotropy

which was observed in the laboratory experiments, in particular in the limestone, was not replicated in the numerical models.

The reason for the stronger directional anisotropy in the natural rock samples is not clear yet. A key difference between the

micro-scale mechanics of laboratory and numerical experiments is that the natural rocks can undergo grain size reduction

during the fracture process whereas this mechanism is not implemented in the numerical models used in this paper. This might385

explain why the numerical models, at least in our experiments, do not produce the striations observed in the natural rock

samples. A possibility to test this hypothesis in future work would be to extend the numerical models to use breakable particle

clusters to represent rock grains instead of single particles. This approach has been shown to yield insights into the micro-

mechanics of grain size reduction processes, for example in fault gouge (Abe and Mair, 2005; Mair and Abe, 2008, 2011) and

in compression experiments (Thornton et al., 2004). However, it also significantly increases the required computational effort390

for the simulations. A computationally less expensive option to include grain size reduction into the numerical models might be

to adapt the empirical particle replacement approach developed by Cleary (2001) to the specific requirements of the simulation

of rock fracture under triaxial loading. However, as Weerasekara et al. (2013) point out, this approach is strongly dependent on

the availability of good calibration data for the grain fracture under the specific stress and strain rate conditions of the process

modelled. Further insights could also be provided by additional laboratory experiments, for example to test if the difference in395

anisotropy between numerical and laboratory experiments also exists under true triaxial conditions (σ2 6= σ3).

Smoothing due to abrasion while sliding is, in general, an important mechanism for the modification of rough surfaces.

In particular, slip along the surface can result in a significant reduction of the Hurst exponent for profiles parallel to the slip

direction down to values below 0.5 (Candela et al., 2012, Table 1b). However, those large reductions appear to apply mainly to

faults with large amounts of slip, i.e. several meters up to kilometers. In contrast, data from laboratory experiments published400

in the literature (Amitrano and Schmittbuhl, 2002; Davidesko et al., 2014; Badt et al., 2016) suggest that this process is

unlikely to have a sufficiently large effect at the small shear offsets in both numerical models and experimental samples studied

here to explain the observed differences. To investigate if the roughness evolution of the fracture surfaces with increasing

deformation of the sample plays a role in our numerical model we did perform a small number of simulations which did not

stop immediately after the formation of the fractures, but instead continued deformation to a total axial strain of up to 12%. This405

is significantly larger than the strain occurring in the laboratory experiments, where total axial shortening did not exceed about

2%. In particular, the amount of shortening occurring after the peak axial stress was reached, i.e. after failure, was generally

less than 1%. The obtained Hurst exponents did show no significant trend with increasing strain of the model and offset of the

shear fracture (Fig. S4 in the supplement). While the average of the Hurst exponents from the 6 surfaces investigated could be

considered as showing a slight increasing trend for axial strains up to 8% (Fig. S5 in the supplement), the increase of 0.03410

is about an order of magnitude too small to explain the observed differences between numerical and experimental surfaces.
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However, it would be compatible with the effect observed by Amitrano and Schmittbuhl (2002). For one of the models we

did also calculate the JRC of the surfaces at various stages of the simulation. The data shows that there is also no significant

change of the JRC for the shear offset considered in this model, which would be equivalent to≈ 1cm in the laboratory samples,

and under the conditions of this model, i.e. true triaxial stress with σ2 = 7.5MPa, σ3 = 3MPa (Fig. S6 in the supplement).415

This seems to confirm again that under the small shear offsets relevant for our experiments, there is very little evolution of the

surface roughness, at least as far as it concerns the roughness parameters calculated here (Hurst exponent, JRC). In particular,

the data would suggest that any effects due to the small, but the non-zero, shear offset in the laboratory experiments are much

too small to explain the observed differences between numerical simulations and laboratory experiments.

Based on the results from the numerical models there appears to be a trend towards higher roughness for fracture surfaces420

generated under transversely isotropic stress conditions, i.e. standard triaxial compression (σ1 > σ2 = σ3) compared to those

generated under true triaxial conditions (σ2 6= σ3). This trend was shown for both geometrical roughness measures used in

the analysis of the data from the numerical experiments, i.e. the joint roughness coefficient JRC (Fig. 6) and also the RMS

roughness (Fig. 8). A possible, but at this stage purely speculative, idea to explain this observation might be that, if we assume

that the through-going fractures, which we analyze, form by coalescence from smaller, precursory, fractures, those precursory425

fractures have their strike angles constrained to a narrow range if σ2 6= σ3, but that there is no such constraint if σ2 = σ3. If

this is the case, then the coalescence of those precursory fractures might lead to smoother large-scale surfaces if they all have

similar orientations compared to when they have random strike directions. Unfortunately the numerical models used in this

work do not have the resolution necessary to test this hypothesis.

Additionally, a difference in the roughness between the surfaces on tensile and compressive (i.e. shear-) fractures generated430

under unconfined conditions has been observed, with the tensile fractures showing a smaller roughness. This effect appears to

be more pronounced if the roughness is measured in terms of the JRC compared to the RMS roughness. Should these effects be

confirmed by further work, and in particular by comparison with more experimental data, it could be used to provide additional

input data to, for example, permeability estimations of fracture networks or geomechanical fault stability calculations.

The analysis of the roughness scaling properties of the surfaces in terms of the height-height correlation function shows that435

the fracture surfaces generated in the numerical models are self affine with Hurst exponents around 0.3 - 0.45. This value is

in disagreement with the majority of field and experimental studies (Bouchaud et al., 1990; Schmittbuhl et al., 1993, 1995;

Bouchaud, 1997) which find a "universal" Hurst exponent H ≈ 0.8. However, low Hurst exponents in the range H ≈ 0.4−0.5

have previously also been found in other numerical models of the generation of rough fractures such as 3D random fuse

networks (Alava et al., 2006).440

The Hurst exponents of the surfaces generated in the numerical models can be corrected for the influence of the particle

scale roughness in a similar way to the procedure described above for the correction of the joint roughness coefficients. It

would require correcting the RMS roughness values in the height-height correlation function for each individual distance bin

and obtaining a power-law fit based on the corrected data points (Fig. 16). However, while these corrections do lead to slightly

higher calculated Hurst exponents, the increase is at most about 0.05 and therefore the effect is far too small to explain the445

discrepancy.
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Figure 16. Comparison of the height-height correlation functions of a numerical fracture surface based on raw data (crosses) and corrected

for the influence of the particle-scale roughness (circles). Lines are power law fits used to calculate the Hurst exponents for raw (continuous

line, H ≈ 0.49) and corrected data (dashed lineH ≈ 0.53).

The data obtained from the fracture surfaces generated in triaxial tests on the limestone sample (H ≈ 0.75) are compatible

with this "universal exponent". In contrast, the sandstone sample shows a lower Hurst exponent (H ≈ 0.6) than the limestone

sample, but not as low as the numerical models. There is experimental data for sandstone in the literature showing Hurst

exponents even lower than our sandstone sample and in fact close to the results from the numerical models, i.e.H = 0.47±0.04,450

(Boffa et al., 1998) and similar data from a synthetic, sandstone-like material made from sintered glass beads (H = 0.40±0.04,

Ponson et al. (2006)). Both those studies investigated tensile (mode-1) fractures. Boffa et al. (1998) used a direct tension setup

with a pre-notched sample to initiate the fracture at a defined location whereas Ponson et al. (2006) used a modified Brazilian

test where a compressive load is applied to two opposite points on the circumference of the cylindrical sample to generate a

tensile stress in the stress in the central part of the disk (Jaeger et al., 2007; Fjaer et al., 2008). However, our numerical models455

do not show a dependence of the Hurst exponent on the fracture mode (Fig. 11).

Nigon et al. did observe a transition from a Hurst exponent of 0.74 to a lower value of 0.5 below a length scale of about

0.1mm in natural joint surfaces in sandstone (Nigon et al., 2017, Figure 9). However, this transition scale from a "jointing

induced roughness" to a "grain induced roughness" is at a scale comparable to the mean grain size in their material. The

equivalent length scale in our numerical models would be the mean particle diameter, i.e. below 1 model unit, which is well460

below the length range used to fit the scaling law (Fig. 9). This difference in scales shows that the Hurst-exponents in our

numerical models are completely calculated above the “transition scale” of Nigon et al. (2017) and therefore should belong to

the regime described as “jointing induced roughness" by them. This means that the low values of the Hurst-exponents in the

numerical can not be explained by the "grain induced roughness" regime of Nigon et al. (2017).

When comparing the data from the numerical models to the relation between fractal dimension D and JRC proposed by465

Ficker (2017), i.e. JRC≈ 50(D− 1), the surfaces show on average a slightly smaller JRC than would be expected based on
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Figure 17. Relation between joint roughness coefficient and Hurst exponent of surfaces from numerical models (squares) and the Limestone

sample (cross). Data points show averages for groups of surfaces generated under the same stress conditions. Error bars on the limestone

data shows anisotropy of the JRC. The dashed line shows the relation proposed by Ficker (2017), Eq. 22.

their fractal dimensionD calculated from the Hurst exponent asD = 2−H (Fig. 17). Interestingly, the data from the sandstone

sample plots even further below the relation by Ficker (2017). The data from the limestone sample is difficult to compare due

to the large anisotropy of the JRC and is therefore not plotted in Fig. 17.

It has been suggested by Ponson et al. (2007) that the observed Hurst exponent is an indicator for the failure mode, H ≈ 0.8470

for "damage fracture", i.e coalescence from micro-cracks and H ≈ 0.4 for "brittle fracture", i.e. continuous propagation of the

crack. However, we have not been able to confirm this for our numerical experiments. Looking at the relative timing of bonds

breaking suggests that the fracture surfaces in the DEM models grow by coalescence of micro-cracks despite having a Hurst

exponent closer to 0.4. For examples of the general evolution of the micro-crack distribution see Figures S7 and S8 in the

supplement.475

The dependence of the variability of the measured Hurst exponent on the size of the analyzed surface on both limestone and

sandstone samples suggests the large scatter observed in the Hurst exponents from the numerical models could be a resolution

issue. The sandstone sample has a maximum grain size of about 200µm. This results in a ratio between the length and width of

the analyzed fracture surface and the maximum grain size of between 250:1 and 350:1, whereas this ratio is only in the range

between 30:1 and 60:1 in the numerical models. The limestone sample is even more fine-grained than the sandstone sample.480

Amitrano and Schmittbuhl (2002) find a weak decrease of the roughness exponent with increasing confinement if no further

shear displacement is imposed on the surfaces after fracture. This is similar to the trend observed in our numerical simulation

data (Fig. 11), although at different absolute values of the Hurst exponent, which are in the range between 0.3 to 0.45 in our

data and between 0.7 to 0.77 in (Amitrano and Schmittbuhl, 2002). Also, this stress dependence can not be directly compared

because of differences in the mechanical properties between the simulated material in our case and the real granite. Amitrano485

and Schmittbuhl (2002) do not explicitly give the unconfined compressive strength (UCS) of the granite. Extrapolating from
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their Figure 3 suggests a value of around 300MPa, although a calculation from their internal cohesion (37MPa) and friction

angle (55± 2 degrees) gives a value closer to 240MPa. Combined with the confining stress used in their work of σ3 ≈ 20−
80MPa this suggests that the ratio between UCS and the confining stress is in a similar range as in the numerical models used

here where UCS=80MPa and σ3 = 0− 15MPa.490

6 Conclusions

Synthetic fracture surfaces have been generated in numerical simulations of rock deformation experiments using the Discrete

Element Method (DEM). Results of a statistical analysis demonstrate that the generated surfaces are self-affine. Further analysis

has shown no dependency of roughness measures such as RMS roughness and the Joint Roughness Coefficient (JRC) on the

confining stress. One exception is the observation that samples fractured under true anisotropic conditions (σ1 > σ2 > σ3)495

show lower JRC and lower RMS roughness than samples fractured under transversal isotropic confinement (σ1 > σ2 = σ3),

at least for numerical models. For natural rock samples this effect has not been tested yet. Photogrammetric analysis of shear

fracture surfaces on two rock samples has shown that the choice of sampling area can influence the roughness data obtained.

Results show, for example a variation of ±0.1 in the Hurst exponent between small sampling areas on the same surface of a

rock sample.500

Comparing the numerical results with laboratory experiments and additional data obtained from the literature suggests that

the trends observed in the numerical parameter study are valid, but it also shows some discrepancies in the absolute values of

some of the roughness parameters. In particular, the fracture surfaces generated in the DEM simulations show a higher Joint

Roughness Coefficient compared to natural rock samples and a lower Hurst exponent. The comparison also shows a stronger

directional anisotropy of the roughness in the real rock samples compared to the numerical simulations. The reason for this505

result is not clear so far and should be subject to further investigation. One possible cause might be the occurrence of grain size

reduction in real rocks, which is not implemented in the current numerical models.

Author contributions. SA performed the numerical simulations, the data analysis on the numerical models and wrote the initial draft of the

manuscript, HD performed the analysis of the laboratory samples and edited the manuscript.

Competing interests. The authors declare that they have no competing interests.510

Acknowledgements. The work was carried out within the project "PERMEA", funded by the German Federal Ministry of Education and

Research under the funding id FKZ 03G0865B. The the triaxial deformation tests were carried out at Technische Universität Darmstadt.

24



References

Abe, S. and Mair, K.: Grain fracture in 3D numerical simulations of granular shear, Geophys. Res. Lett., 32, L05 305,

https://doi.org/10.1029/2004GL022123, 2005.515

Abe, S., Place, D., and Mora, P.: A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake

Dynamics, Pure. Appl. Geophys., 161, 2265–2277, https://doi.org/10.1007/s00023-004-2562-x, 2004.

Abe, S., van Gent, H., and Urai, J. L.: DEM simulation of normal faults in cohesive materials, Tectonopysics, 512, 12–21,

https://doi.org/10.1016/j.tecto.2011.09.008, 2011.

Ahmadi, M., Taleghani, A. D., and Sayers, C.: The effects of roughness and offset on fracture compliance ratio, Geophys. J. Int., 205,520

454–463, https://doi.org/10.1093/gji/ggw034, 2016.

Alava, M. J., Nukala, P. K. V. V., and Zapperi, S.: Statistical models of fracture, Advances in Physics, 55, 349–476,

https://doi.org/10.1080/00018730300741518, 2006.

Amanatides, J. and Woo, A.: A Fast Voxel Traversal Algorithm for Ray Tracing, Proceedings of EuroGraphics, 87, 1987.

Amitrano, D. and Schmittbuhl, J.: Fracture roughness and gouge distribution of a granite shear band, J. Geophys. Res., 107, 2375,525

https://doi.org/10.1029/2002JB001761, 2002.

Angheluta, L., Candela, T., Mathiesen, J., and Renard, F.: Effect of Surface Morphology on the Dissipation During Shear and Slip Along

a Rock–Rock Interface that Contains a Visco-elastic Core, Pure Appl. Geophys., 168, 2335–2344, https://doi.org/10.1007/s00024-011-

0272-8, 2011.

Badt, N., Hatzor, Y. H., Toussaint, R., and Sagy, A.: Geometrical evolution of interlocked rough slip surfaces: The role of normal stress,530

Earth Planet. Sci. Lett., 443, 153–156, https://doi.org/10.1016/j.epsl.2016.03.026, 2016.

Barton, N.: Review of a new shear-strength Criterion for Rock Joints, Engineering Geology, 7, 287–332, 1973.

Barton, N. and Choubey, V.: The Shear Strength of Rock Joints in Theory and Practice, Rock Mechanics, 10, 1–54, 1977.

Bisdom, K., Bertotti, G., and Nick, H. M.: A geometrically based method for predicting stress-induced fracture aperture and flow in discrete

fracture networks, AAPG Bulletin, https://doi.org/10.1306/02111615127, 2016.535

Boffa, J., Allain, C., and Hulin, J.: Experimental analysis of fracture rugosity in granular and compact rocks, Eur. Phys. J. AP, 2, 281–289,

https://doi.org/10.1051/epjap:1998194, 1998.

Bouchaud, E.: Scaling properties of cracks, Journal of Physics : Condensed Matter, 9, 4319–4344, https://doi.org/10.1088/0953-

8984/9/21/002, 1997.

Bouchaud, E., Lapasset, G., and Planes, J.: Fractal Dimension of Fractured Surfaces: a Universal Value, Europysics Letters, 13, 73–79, 1990.540

Briggs, S., Karney, B. W., and Sleep, B. E.: Numerical modeling of the effects of roughness on flow and eddy formation in fractures, Int J.

Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2016.08.004, 2017.

Brown, S. R. and Scholz, C. H.: Broad bandwidth study of the topography of natural rock surfaces., J. Geophys. Res., 90, 12,575–12,582,

https://doi.org/10.1029/jb090ib14p12575, 1985.

Candela, T., Renard, F., Bouchon, M., Brouste, A., Marsan, D., Schmittbuhl, J., and Voisin, C.: Characterization of Fault Roughness at545

Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements, Pure Appl. Geophys., 166, 1817–1851,

https://doi.org/10.1007/s00024-009-0521-2, 2009.

Candela, T., Renard, F., Bouchon, M., Schmittbuhl, J., and Brodsky, E. E.: Stress Drop during Earthquakes: Effect of Fault Roughness

Scaling, Bull. Seis. Soc. Amer., 101, 2369–2387, https://doi.org/10.1785/0120100298, 2011a.

25

https://doi.org/10.1029/2004GL022123
https://doi.org/10.1007/s00023-004-2562-x
https://doi.org/10.1016/j.tecto.2011.09.008
https://doi.org/10.1093/gji/ggw034
https://doi.org/10.1080/00018730300741518
https://doi.org/10.1029/2002JB001761
https://doi.org/10.1007/s00024-011-0272-8
https://doi.org/10.1007/s00024-011-0272-8
https://doi.org/10.1007/s00024-011-0272-8
https://doi.org/10.1016/j.epsl.2016.03.026
https://doi.org/10.1306/02111615127
https://doi.org/10.1051/epjap:1998194
https://doi.org/10.1088/0953-8984/9/21/002
https://doi.org/10.1088/0953-8984/9/21/002
https://doi.org/10.1088/0953-8984/9/21/002
https://doi.org/10.1016/j.jrmge.2016.08.004
https://doi.org/10.1029/jb090ib14p12575
https://doi.org/10.1007/s00024-009-0521-2
https://doi.org/10.1785/0120100298


Candela, T., Renard, F., Schmittbuhl, J., Bouchon, M., and Brodsky, E. E.: Fault slip distribution and fault roughness, Geophys. J. Int.,550

https://doi.org/10.1111/j.1365-246X.2011.05189.x, 2011b.

Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., and Brodsky, E. E.: Roughness of fault surfaces over nine decades of length

scales, J. Geophys. Res., 117, B08 409, https://doi.org/10.1029/2011JB009041, 2012.

Chen, Z., Narayan, S., Yang, Z., and Rahman, S.: An experimental investigation of hydraulic behaviour of fractures and joints in granitic

rock, Int. J. Rock Mech. Min. Sci., 37, 1061–1071, 2000.555

Cleary, P.: Recent Advances in DEM Modelling of Tumbling Mills, Minerals Engineering, 14, 1295–1319, 2001.

Cundall, P. A. and Strack, O.: A discrete numerical model for granular assemblies, Géotechnique, 29, 47–65, 1979.

Davidesko, G., Sagy, A., and Hatzor, Y. H.: Evolution of slip surface roughness through shear, Geophys. Res. Lett., 41, 1492–1498,

https://doi.org/10.1002/2013GL058913, 2014.

Donze, F., , Mora, P., and Magnier, S.-A.: Numerical simulation of faults and shear zones, Geophys. J. Int., 116, 46–52, 1994.560

El-Soudani, S. M.: Profilometric analysis of fracture surfaces, Metallography, 11, 247–336, https://doi.org/10.1016/0026-0800(78)90045-9,

1978.

Fakhimi, A. and Gharahbagh, E. A.: Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of

rock, Int. J. Rock Mech. Min. Sci., 48, 77–85, https://doi.org/10.1016/j.ijrmms.2010.08.007, 2011.

Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., and Withjack, M.: A review of recent developments concerning565

the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., pp. 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009,

2010.

Ficker, T.: Fractal properties of joint roughness coefficients, Int. J. Rock Mech. Min. Sci., 94, 27–31,

https://doi.org/10.1016/j.ijrmms.2017.02.014, 2017.

Fjaer, E., Holt, R., Horsrud, P., Raaen, A., and Risnes, R.: Petroleum related rock mechanics, Elsevier, 2nd edn., 2008.570

Griffith, W. A., Nielsen, S., Toro, G. D., and Smith, S. A. F.: Rough faults, distributed weakening, and off-fault deformation, J. Geophys.

Res., 115, B08 409, https://doi.org/10.1029/2009JB006925, 2010.

Hobbs, B.: The significance of structural geology in rock mechanics, Comprehensive rock engineering. Vol. 1, pp. 25–62, 1993.

Jaeger, J., Cook, N., and Zimmerman, R.: Fundamentals of rock mechanics, Blackwell, 4th edn., 2007.

Jin, Y., Dong, J., Zhang, X., Li, X., and Wu, Y.: Scale and size effects on fluid flow through self-affine rough fractures, Int. J. Heat Mass575

Transfer, 105, 443–451, https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.010, 2017.

Kottwitz, M. O., Popov, A. A., Baumann, T. S., and Kaus, B. J. P.: The hydraulic efficiency of single fractures: Correcting the cubic law

parameterization for self-affine surface rounghness and fracture closure, Solid Earth, https://doi.org/10.5194/se-2019-190, 2019.

Kottwitz, O.: Scale Invariant Roughness Quantification and Anisotropy Exposure of Rock Discontinuities, Master’s thesis, Johannes-

Gutenberg-Universität Mainz, 2017.580

Koyama, T. and Jing, L.: Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—A particle

mechanics approach, Engineering Analysis with Boundary Elements, 31, 458–472, https://doi.org/10.1016/j.enganabound.2006.11.009,

2007.

Li, Y. and Zhang, Y.: Quantitative estimation of joint roughness coefficient using statistical parameters, Int. J. Rock Mech. Min. Sci., 77,

27–35, https://doi.org/10.1016/j.ijrmms.2015.03.016, 2015.585

Mair, K. and Abe, S.: 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization, Earth

Planet. Sci. Lett., 274, 72–81, 2008.

26

https://doi.org/10.1111/j.1365-246X.2011.05189.x
https://doi.org/10.1029/2011JB009041
https://doi.org/10.1002/2013GL058913
https://doi.org/10.1016/0026-0800(78)90045-9
https://doi.org/10.1016/j.ijrmms.2010.08.007
https://doi.org/10.1016/j.jsg.2010.06.009
https://doi.org/10.1016/j.ijrmms.2017.02.014
https://doi.org/10.1029/2009JB006925
https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.010
https://doi.org/10.5194/se-2019-190
https://doi.org/10.1016/j.enganabound.2006.11.009
https://doi.org/10.1016/j.ijrmms.2015.03.016


Mair, K. and Abe, S.: Breaking Up: Comminution Mechanisms in Sheared Simulated Fault Gouge, Pure. Appl. Geophys., 168, 2277–2288,

https://doi.org/10.1007/s00024-011-0266-6, 2011.

Mandelbrot, B. B.: Self-Affine Fractals and Fractal Dimension, Physica Scripta, 32, 257–260, https://doi.org/10.1088/0021-8949/32/4/001,590

1985.

Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, 10, 422–437,

https://doi.org/10.1137/1010093, 1968.

Mora, P. and Place, D.: Simulation of the Frictional Stick-slip Instability, Pure Appl. Geophys., 143, 61–87, 1994.

Myers, N. O.: Charackterization of Surface Roughness, Wear, 5, 182–189, 1962.595

Nigon, B., Englert, A., Pascal, C., and Saintot, A.: Multiscale Characterisation of Joint Surface Roughness, J. Geophys. Res., 122, 9714–9728,

https://doi.org/10.1002/2017JB014322, 2017.

Ohagen, M.: Untersuchungen zur Rauheit von Klüften in DEM-Modellen, BSc-Thesis, Johannes-Gutenberg-Universität Mainz, 2019.

Okubo, P. G. and Dietrich, J. H.: Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res.,

89, 5817–5827, 1984.600

Place, D. and Mora, P.: A random lattice solid model for simulation of fault zone dynamics and fracture process, in: Bifurcation and Locali-

sation Theory for Soils and Rocks 99, edited by Mühlhaus H-B., D. A. and Pasternak, E., AA Balkema Rotterdam/Brookfield, 2001.

Ponson, L., Auradou, H., Vié, P., and Hulin, J.-P.: Low Self-Affine Exponents of Fractured Glass Ceramics Surfaces, Phys. Rev. Lett., 97,

125 501, https://doi.org/10.1103/PhysRevLett.97.125501, 2006.

Ponson, L., Auradou, H., Pessel, M., Lazarus, V., and Hulin, J. P.: Failure mechanisms and surface roughness statistics of fractured605

Fontainebleau sandstone, Physical Review E, 76, 03 618, https://doi.org/10.1103/PhysRevE.76.036108, 2007.

Power, W. L. and Durham, W. B.: Topography of Natural and Artificial Fractures in Granitic Rocks: Implications for Studies of Rock Friction

and Fluid Migration, Int. J. Rock Mech. Min. Sci., 34, 979–989, 1997.

Renard, F., Voisin, C., Marsan, D., and Schmittbuhl, J.: High resolution 3D laser scanner measurements of a strike-slip fault quantify its

morphological anisotropy at all scales, Geophys. Res. Lett., 33, L04 305, https://doi.org/10.1029/2005GL025038, 2006.610

Sayles, R. S. and Thomas, T. R.: The Spatial Representation of Surface Roughness by Means of the Structure Function: A practical Alternative

to Correlation, Wear, 42, 263–276, 1977.

Schmittbuhl, J., Gentier, S., and Roux, S.: Field measurements of the roughness of fault surfaces, Geophys. Res. Lett., 20, 639–641,

https://doi.org/10.1029/93gl00170, 1993.

Schmittbuhl, J., Schmitt, F., and Scholz, C.: Scaling invariance of crack surfaces., J. Geophys. Res., 100, 5953–5973,615

https://doi.org/10.1029/94jb02885, 1995.

Schöpfer, M. P. J., Abe, S., Childs, C., and Walsh, J. J.: The impact of porosity and crack density on the elasticity, strength and friction of

cohesive granular materials: Insights from DEM modelling, Int. J. Rock Mech. Min. Sci., 46, 250–261, 2009.

Schöpfer, M. P. J., Arslan, A., Walsh, J. J., and Childs, C.: Reconciliation of contrasting theories for fracture spacing in layered rocks, J.

Struct. Geol., 33, https://doi.org/10.1016/j.jsg.2011.01.008, 2011.620

Thornton, C., Ciomocos, M., and Adams, M.: Numerical simulations diametrical compression tests on agglomerates, Powder Technology,

140, 258–267, https://doi.org/10.1016/j.powtec.2004.01.022, 2004.

Tse, R. and Cruden, D. M.: Estimating Joint Roughness Coefficients, Int. J. Rock. Mech. Min. Sci. Abstr., 16, 303–307, 1979.

Turcotte, D. L.: Fractals, chaos, self-organized citicality and tectonics, TerraNova, 4, 4–12, 1992.

27

https://doi.org/10.1007/s00024-011-0266-6
https://doi.org/10.1088/0021-8949/32/4/001
https://doi.org/10.1137/1010093
https://doi.org/10.1002/2017JB014322
https://doi.org/10.1103/PhysRevLett.97.125501
https://doi.org/10.1103/PhysRevE.76.036108
https://doi.org/10.1029/2005GL025038
https://doi.org/10.1029/93gl00170
https://doi.org/10.1029/94jb02885
https://doi.org/10.1016/j.jsg.2011.01.008
https://doi.org/10.1016/j.powtec.2004.01.022


Wang, Y., Abe, S., Latham, S., and Mora, P.: Implementation of particle-scale rotation in the 3-D lattice solid model, Pure Appl. Geophys.,625

163, 1769–1785, 2006.

Watanabe, N., Hirano, N., and Tsuchiya, N.: Determination of aperture structure and fluid flow in a rock fracture by high-resolution

numerical modeling on the basis of a flow-through experiment under confining pressure, Water Resources Research, 44, W06 412,

https://doi.org/10.1029/2006WR005411, 2008.

Weatherley, D.: Investigations on the role of microstructure in brittle failure using discrete element simulations, Geophysical Research630

Abstracts, 13, EGU2011–9476, 2011.

Weerasekara, N., Powell, M., Cleary, P., Tavares, L., Evertsson, M., Morrison, R., Quist, J., and Carvalho, R.: The contribution of DEM to

the science of comminution, Powder Technology, 248, 3–24, https://doi.org/10.1016/j.powtec.2013.05.032, 2013.

Yang, Z. and Lo, S.: An Index for Describing the Anisotropy of Joint Surfaces, Int. J. Rock Mech. Min. Sci., 1997.

Yoon, J. S., Zang, A., and Stephansson, O.: Simulating fracture and friction of Aue granite under confined asymmetric compressive test using635

clumped particle model, Int. J. Rock Mech. Min. Sci., 49, 68–83, https://doi.org/10.1016/j.ijrmms.2011.11.004, 2012.

Yu, X. and Vayssade, B.: Joint Profiles and their Roughness Parameters, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 28, 333–336, 1991.

Zambrano, M., Pitts, A. D., Salama, A., Volatili, T., Giorgioni, M., and Tondi, E.: Analysis of Fracture Roughness Control on Per-

meability Using SfM and Fluid Flow Simulations: Implications for Carbonate Reservoir Characterization, Geofluids, p. ID 4132386,

https://doi.org/10.1155/2019/4132386, 2019.640

Zoback, M. D.: Reservoir Geomechanics, Cambridge University Press, 2007.

28

https://doi.org/10.1029/2006WR005411
https://doi.org/10.1016/j.powtec.2013.05.032
https://doi.org/10.1016/j.ijrmms.2011.11.004
https://doi.org/10.1155/2019/4132386

