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Abstract. With the aim of unveiling evidence of Late Quaternary faulting, a series of ground penetrating radar (GPR) 12 

profiles were acquired across the southern portion of the Fosso della Valle-Campotenese normal fault (VCT) located 13 

at the Campotenese continental basin (Mt. Pollino region), in the southern Apennines active extensional belt (Italy). 14 

A set of forty-nine 300 MHz and 500 MHz GPR profiles, traced nearly perpendicular to this normal fault, were 15 

acquired and carefully processed through a customized workflow. The data interpretation allowed us to reconstruct a 16 

pseudo-3D model depicting the boundary between the Mesozoic bedrock and the sedimentary fill of the basin, which 17 

were in close proximity to the fault. Once reviewing and defining the GPR signature of faulting, we interpret near-18 

surface alluvial and colluvial sediments dislocated by a set of conjugate (W- and E-dipping) discontinuities that 19 

penetrate inside the underlying Triassic dolostones. Close to the contact between the continental deposits and the 20 

bedrock, some buried scarps which offset wedge-shaped deposits are interpreted as coseismic ruptures, subsequently 21 

sealed by later deposits. Although the use of pseudo-3D GPR data implies more complexity linking the geophysical 22 

features among the radar images, we have reconstructed a reliable subsurface fault pattern, discriminating master 23 

faults and a series of secondary splays. We believe our contribution provides an improvement in the characterization 24 

of active faults in the study area which falls within the Pollino seismic gap and is considered potentially prone to 25 

severe surface faulting. Our aim is for our approach and workflow to be of inspiration for further research in the study 26 

site as well as for similar high seismic hazard regions characterized by scarcity of near-surface geophysical data. 27 

 28 

Key-words: ground penetrating radar (GPR); Image processing; Faults; Neotectonics; Palaeoseismology; 29 

Earthquake hazards. 30 

1. Introduction 31 

A “seismic gap” is an area surrounded by regions struck by large earthquakes in historical or recent times. Such 32 

earthquake-free areas are characterized by the presence of seismogenic faults, whose past activity or possible 33 

quiescence is inferred on the basis of morpho-structural and/or paleoseismological data. The “seismic gaps” (McCann 34 

et al., 1979) show an apparent lack of historical seismicity but are candidate regions for the occurrence of large 35 

earthquakes in the near future (Mogi 1979; Plafker and Galloway 1989, Cinti et al., 1997, Galadini and Galli, 2003). 36 

A recent example of a seismic gap “filled” by strong earthquakes is the Mt. Vettore area (central Apennines) during 37 

the 2016-2017 seismic sequence (Chiaraluce et al., 2017; Barchi et al., 2021 and references therein). Following the 38 
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extensive coseismic ruptures mainly generated by the Mw = 6.5 “Norcia” mainshock (Villani et al., 2018; Brozzetti 1 

et al., 2019; Testa et al., 2019), this area is currently an ideal laboratory for many conventional and innovative 2 

geoscience disciplines and applications (e.g. Xu et al., 2017; Porreca et al., 2018; Brozzetti et al., 2020; Cirillo, 2020; 3 

Ferrario et al., 2018; Ercoli et al., 2020; Michele et al., 2020; Porreca et al., 2020; Buttinelli et al., 2021; Ferrarini et 4 

al., 2021; Pucci et al., 2021; Sapia et al., 2021; Villani et al., 2021). In fact, although the area being characterized by 5 

a complex alignment of normal faults, no important earthquakes were reported over the past ~1500 years before this 6 

seismic crisis (Cinti et al., 2019; Galli et al., 2019; Galli, 2020). Former geological and geomorphological studies 7 

suggested the possible occurrence of Quaternary faulting (Calamita et al., 1992; Brozzetti and Lavecchia 1994; Barchi 8 

et al., 2000), which was successively confirmed by paleoseismological (Galadini and Galli, 2003) and GPR surveying 9 

(Ercoli et al., 2013a; 2014). These studies revealed the occurrence of strong paleo-earthquakes and suggested that the 10 

Mt. Vettore master fault was “silent” but prone to cause future seismic events. However, invasive trenching due to 11 

complex logistics, environmental restrictions, high costs and the need for authorizations, cannot be applied 12 

systematically in many locations. Thus, Quaternary faults and associated basins characterized by an unsatisfactory 13 

definition of the seismotectonic framework have to be investigated with geophysical techniques. For all the above 14 

noted reasons, and since the Mt. Vettore case may represent an analogue of similar seismic gaps,  the southernmost 15 

Apennines were studied through a dedicated research programme (Agreement INGV-DPC 2012-2013 and 2014-2015, 16 

Project S1 - Base-knowledge improvement for assessing the seismogenic potential of Italy, Brozzetti et al., 2015; 17 

Pauselli et al., 2015) aiming to improve the knowledge-base of seismogenic structures. In the research, focused also 18 

on the Calabrian region (Southern Italy) during the 2012-2015 period, structural geology, geophysical, and 19 

paleoseismological data were successfully acquired on the Mt. Pollino and Castrovillari fault systems (northern 20 

Calabria), providing evidence of Late Quaternary activity (Ercoli et al., 2013b; Cinti et al., 2015, Ercoli et al., 2015; 21 

Brozzetti et al., 2017b). This area, which is considered one of the most important seismic gaps in southern Italy, 22 

extends from the Mercure basin to the north until Campotenese basin and Castrovillari plain to the south, all 23 

characterized by Late Quaternary continental syn-tectonic sedimentation (Fig. 1a-c).  24 

The paleoseismological trenching and radiocarbon dating document in the region the occurrence of paleo-earthquakes 25 

with 6.5 < Mw < 7.0 and a recurrence time interval of ~ 1200 years (Cinti et al., 1997, 2002, 2015a,b; Michetti et al., 26 

1997, 2000). But this high magnitude interval contrasts with the historical seismicity records, reporting a single 27 

significant Mw 5.2 event occurred in 1693 (Tertulliani and Cucci, 2014). In the last three decade's instrumental 28 

seismicity recorded only two moderate seismic sequences climaxed in the Mw 5.6 Mercure (1998, September 9) and 29 

Mw 5.2 Mormanno (2012, October 25) earthquakes. The latter occurred during a long-lasting sequence spanning the 30 

period 2010-2014, which included more than 6000 seismic events of Mw > 1 and activated at least three individual 31 

seismogenic sources (Passarelli et al., 2015; Brozzetti et al., 2017a, Fig. 1b). The gap between the low energy release, 32 

observed during the instrumented seismic sequences, and the high seismic potential estimated for the Quaternary 33 

faults, raised the question of whether even stronger earthquakes had shaken and could shake the area in the future. A 34 

recent and detailed parameterization of the Fosso della Valle-Campotenese fault (VCT in Fig. 1c) based on geo-35 

structural and geomorphological mapping (Brozzetti et al., 2017a) as well as on seismological evidence (Totaro et al., 36 

2014, 2015; Cirillo et., 2021), assesses a surface length of  15 km and a depth of at least ~10 km: the potential rupture-37 

area is likely estimated to produce Mw > 6.0 earthquakes. As testified by earthquakes of the last century, such 38 

magnitudes, in the Apennines extensional belt generally produce coseismic surface faulting (e.g. Oddone, 1915; 39 

Pantosti and Valensise, 1990; Boncio et al., 2010; Brozzetti et al., 2019). However, Quaternary faulting for the VCT 40 
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structure is currently unclear, but geological and morpho-structural data suggest this fault has played an important role 1 

in determining the geometry and the recent sedimentary evolution of the basin. 2 

The Campotenese basin and its VCT boundary fault is an example that summarizes the aforementioned issues: 1) lack 3 

of availability of paleoseismological data as the basin is entirely located within the Mt. Pollino National Park, thus 4 

requiring prior authorization from authorities; 2) lack of availability of publically accessible geophysical data; 3) no 5 

fresh recent surface displacements within the Holocene deposits have been observed along its trace. For all these 6 

reasons, the VCT represents an ideal case study suitable to test our working method.  7 

We have conducted an explorative GPR field campaign across a VCT sector, suggested by discontinuous and smooth 8 

geomorphic scarps, as a screening tool for the definition of its possible Quaternary displacement history. The 9 

objectives of the paper are to: i) review and describe geophysical characteristics associated with a peculiar GPR 10 

signature of faulting, and propose a reference methodological workflow; ii) specifically check the efficiency of GPR 11 

prospecting to locate the VCT fault and to depict its subsurface pattern and spatial continuity at shallow depth; iii) 12 

provide new data to eventually relate the occurrence of Mw > 6.0 seismic events; iv) pave the way for other local 13 

geophysical studies and identify interesting sites for future ground-truthing and/or paleoseismological trenching; v) to 14 

have direct application and impact to the planning of future mitigation strategies for the reduction of surface faulting 15 

risk in the nearby urbanized areas. 16 

2. Tectonic setting and seismicity 17 

The Campotenese continental basin is located in the northernmost Calabria region south-west of the Mt. Pollino 18 

calcareous massif (southern Italy, Fig. 1). The bedrock of the basin consists of shallow water dolostones and 19 

limestones, Late Triassic to Middle Miocene in age, belonging to the Verbicaro tectonic unit (Ogniben, 1969; Amodio 20 

Morelli et al., 1976). It is generally referred to the western edge of the “Apenninic Platform”, a thick (> 4 km) 21 

carbonate shelf, that underwent compression during the Middle-Late Miocene times and was translated over an eastern 22 

basinal domain (Lagronegro-Molise basin; Patacca and Scandone, 2007; Vezzani et al., 2010 and references therein). 23 

From the bottom to the top, the bedrock succession includes late Triassic dolostones, Cretaceous limestones, and 24 

Paleocenic-Lower Miocenic calcarenites cross-cut by the pillow lava basalts belonging to Liguride units of the 25 

northern sector of Calabrian arc (Quitzow, 1935, Grandjaquet and Grandjaquet, 1962, Amodio Morelli et al., 1976, 26 

Ghisetti and Vezzani, 1983; Iannace et al., 2004, 2005 and 2007; Liberi et al., 2006; Filice et al., 2015 and Tangari et 27 

al., 2018). 28 

The origin of the Campotenese basin, however, is related to a set of NW-SE striking extensional faults which, during 29 

the Middle-Late Pleistocene, displaced the contractional tectonic pile, favoring the deposition of alluvial and lacustrine 30 

sediments in a subsiding intra-mountain depression (Servizio Geologico d'Italia 1970). This set of conjugate SW- and 31 

NE-dipping normal faults represents the local expression of the Quaternary extensional belt that develops all along 32 

the Italian peninsula, nearly parallel to the axial zone of the Apennines, from northern Tuscany to the Calabrian Arc 33 

(Brozzetti 2011). North of Campotenese, (Lucania and southern Campania) the Apennine extensional belt includes 34 

several continental basins and their boundary faults, as the Irpinia, Vallo di Diano, Tanagro, Melandro-Pergola and 35 

Val d’Agri (Ascione et al., 1992; Maschio et al., 2005; Amicucci et al., 2008; Villani and Pierdominici, 2010; 36 

Brozzetti, 2011; Filice and Seeber, 2019 and Bello et al., 2021). To the south, it continues with the Crati graben that 37 

dissects the northern sector of the Calabrian Arc (Tortorici et al., 1995; Brozzetti et al., 2017b).  38 
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On the regional scale, the Quaternary normal fault array controls the release of major seismicity, as suggested by the 1 

distribution of supra-crustal instrumental earthquakes (INGV, 2020 and ISIDe, 2007) and of the strongest historical 2 

events (Fig. 1a, Tertulliani and Cucci, 2014; Rovida et al., 2020). The recent seismic activity as well as paleo-3 

seismological investigations claim that most of the faults bounding the Quaternary basins are seismogenic and 4 

therefore enable, in some cases, to associate major past earthquakes with specific structures (e.g. Pantosti and 5 

Valensise, 1990; Cello et al., 2003; Spina et al., 2009; Brozzetti et al., 2009; Villani and Pierdominici, 2010). These 6 

same studies highlight that the kinematics of the Quaternary faults and the focal mechanisms of the major earthquakes 7 

are mutually consistent and are mainly compatible with an SW-NE direction of extension (RCMT and TDMT 8 

databases by Pondrelli, 2006 and Scogliamiglio et al., 2006). Other authors have recognized in the surrounding regions 9 

an oblique normal-lateral faults kinematics (e.g. Rossano and Sybaris faults, Galadini et al., 2001 and Cinti et al., 10 

2015b). 11 

The fault investigated in this work has been pointed out in more detail by Brozzetti et al. (2017a) in the frame of a 12 

larger study focussed on the Quaternary and active faults at the Calabrian-Lucanian boundary (Fig. 1a). In the region, 13 

three main sets of normal faults, with prevailing dip-slip kinematics, have been mapped: a western one, consisting of 14 

E- to NNE-dipping faults (red lines in Fig. 1b), and two other main sets of W-to SW-dipping fault segments (dark-15 

blue and blue lines in Fig.1b). The Rotonda-Campotenese Set (ROCS) is a right-stepping en-échelon master fault 16 

developed for a total length of 15 km with an average N160E strike (blue, yellow rimmed lines in Fig.1b). ROCS is 17 

composed by two fault segments: i) the westernmost Fosso della Valle-Campotenese fault (VCT), which extends from 18 

the southern border of the Mercure basin to the SW boundary of the Campotenese basin, and ii) the Rotonda-19 

Sambucoso fault (RSB), which branches-out from the VCT segment in the central part of the ROCS. In the northern 20 

sector, the two segments are averagely spaced ~ 2.5 km at surface and linked at a depth of ~ 9-10 km (Cirillo et al., 21 

2021), cross-cutting the middle-Pleistocene ~ E-W striking Cozzo Vardo-Cozzo Nisco fault (CVN, light-blue line in 22 

Fig. 1b). Along the E-side of the Campotenese basin, the VCT is generally buried by Holocene deposits, but its location 23 

can be inferred based on stratigraphic observations and geomorphic features, such as sharp ridge fronts, linear scarps, 24 

and slope breaks. The VCT controls the distribution and thickness of the clastic fill basin (Middle Pleistocene-25 

Holocene in age, according to Schiattarella et al., 1994) that reaches the maximum thickness (~ 30 m) in the western 26 

sector (VCT hanging wall, see boreholes stratigraphy at http://sgi2.isprambiente.it/mapviewer/).  The spatial 27 

relationships, at surface and depth, between the Quaternary fault segments and the hypocenters of the re-located 2010-28 

2014 seismic events (Totaro et al., 2015; Brozzetti et al., 2017a; Napolitano et al., 2020, 2021; Pastori et al., 2021) 29 

suggest that the VCT is a good candidate as a seismogenic source for the Mw 5.2 (2012, October 25) Mormanno 30 

earthquake, as well as for strong paleo-events.  31 

FIGURE 1 HERE 32 

3. Methodology 33 

Ground penetrating radar (GPR) is a high-resolution geophysical method able to provide detailed images of the 34 

shallow sub-surface. This methodology is based on the recording of EM reflections, with operative frequencies for 35 

geoscience applications generally between 10 MHz and 1000 MHz, depending on the transmitting and receiving 36 

antennae. The GPR reflections rise from dielectric permittivity contrasts between the subsurface targets and the 37 

surrounding media, which in geological and archaeological applications typically correspond to geo-lithological 38 

changes or water content variations (Jol, 2009). In low conductivity materials (“low-loss”), the maximum investigation 39 
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depth is generally comprised within few tens of meters (Davis and Annan, 1989). The latter is however controlled also 1 

by the electrical conductivity, which for high values causes radar signal attenuation (Annan, 2001). The reflections 2 

are recorded as a function of the Two-Way-Travel time (TWT) propagation, and displayed as a 1D GPR trace. Several 3 

GPR traces displayed along a transect build-up a radar profile or “radargram”, that is the 2D representation of the GPR 4 

reflections, more commonly identified as the conventional GPR output. A GPR dataset may be provided also as a 3D 5 

volume, which has been common for 25+ years in research applications and recently more widespread due to a wider 6 

diffusion of commercial GPR instruments equipped with arrays of antennae. The GPR is used in many research and 7 

applied fields, such as geological, sedimentological, geomorphic, hydrogeological applications (Bristow and Jol, 8 

2003; Jol, 2009), and also in archaeological and engineering studies (Conyers, 2016; Daniels, 2004; Goodman and 9 

Piro, 2013; Utsi, 2017). In active tectonic context, several 2D/3D GPR studies have already imaged buried tectonic 10 

structures. These studies have shown geophysical images of faulting, supporting and/or extending outcrop, borehole, 11 

trench data, and contributing to base-knowledge of seismogenic structures as well as to the seismic hazard assessment 12 

of several regions around the world. Among the pioneers, we can mention Benson (1995), Smith and Jol (1995), Busby 13 

and Merritt (1999), Cai et al. (1996) and Liner and Liner (1997), and on the successive twenty years, other 2D GPR 14 

studies were achieved across several faults worldwide (Audru et al., 2001; Demanet et al., 2001; Overgaard and 15 

Jakobsen, 2001; Bano et al., 2002; Liberty et al., 2003; Reiss et al., 2003; Slater and Niemi, 2003; Malik et al., 2007; 16 

Wallace et al., 2010; Yalciner et al., 2013; Imposa et al., 2015; Anchuela et al., 2016; Nobes et al., 2016; Matos et al., 17 

2017; Pousse-Beltran et al., 2018; Zajc et al., 2018; Zhang et al., 2019 and Shaikh et al., 2020). In Italy, only a few 18 

GPR studies are currently available across normal faults (e.g. Salvi et al., 2003; Jewell and Bristow, 2006; Pauselli et 19 

al., 2010; Roberts et al., 2010; Ercoli et al., 2013a; 2014; Bubeck et al., 2015; Cinti et al., 2015). Over time, 2D GPR 20 

acquisitions were flanked by an increasing number of pseudo-3D or full-3D GPR studies (Grasmueck et al., 2005). 21 

Grasmueck and Green (1996) traced the future path of three-dimensional GPR applications, providing a dense 3D 22 

GPR volume to image  fractures in a Swiss quarry. The study opened the possibility to three-dimensional GPR imaging 23 

of subsurface geological structures. Successive studies extended the approach to characterize active faults in different 24 

tectonic regimes combining 2D and pseudo-3D GPR surveys (e.g. Gross et al., 2002, 2003, 2004; Green et al., 2003; 25 

Tronicke et al., 2006; McClymont et al., 2008, 2009, 2010; Vanneste et al., 2008; Christie et al., 2009; Carpentier et 26 

al., 2012a,b; Malik et al., 2012; Brandes et al., 2018). A review of the near-surface GPR faulting studies suggests 27 

some reflection characteristics as possible indicators for the detection of subsurface fractures and faults (e.g. Smith 28 

and Jol, 1995; Liner and Liner, 1997; Reiss et al., 2003; Gross et al., 2004; McClymont et al., 2008, 2010 and Bubeck 29 

et al., 2015). Among these, sharp lateral reflectivity variations, interruptions of the reflections, and the presence of 30 

hyperbolic diffractions are considered convincing evidence, as shown also by numerical simulations (Ercoli et al., 31 

2013a; Bricheva et al., 2021). In addition, we have accounted for additional GPR indicators identified for Quaternary 32 

faulting in similar environments (Ercoli et al., 2013a,b; 2014; 2015), which are linked to the geometry of stratigraphic 33 

deposits across fault zones: i) reflections abrupt truncating and offsetting along sub-vertical discontinuities (especially 34 

in the case of a normal fault); ii) reflection packages thickening as they approach the fault strands; iii) abrupt lateral 35 

dip variation of the reflections; iv) peculiar reflection package geometries, with contorted reflection patterns 36 

resembling “colluvial wedges”, which McCalpin (2009) defines as deposit due to “subsidence and sedimentation of 37 

the hangingwall and erosion of the morphological scarp in the footwall”; v) localized strong GPR signal attenuation 38 

due to the presence of conductive media within the main fault zone. 39 

Based on the research and criteria reviewed above, we carried out a near-surface interpretation of faulting based on 40 

the co-existence of most of these features along several adjacents analyzed GPR profiles. These conditions strengthen 41 
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the interpretation of each profile and aids to highlight the spatial continuity of the interpreted structures over linear 1 

distances of at least many tens, or hundreds, of meters. 2 

3.1 GPR and GNSS survey 3 

Three different geophysical field campaigns carried-out during the 2014-2015 years, a dataset of 49 GPR profiles was 4 

acquired in the southern sector of the ROCS across the VCT fault segment (Fig. 1b-c), covering a buffer zone of ~ 5 

400 m and ~ 200 m respectively along and across the fault strike (area of ~ 8 Ha), for a total linear length of GPR 6 

profile about 4100 m collected using a Common Offset (CO) configuration (Fig. 2). 7 

FIGURE 2 HERE 8 

We used a Zond 12e GPR system equipped with 300 and 500 MHz antennae. The lower frequency antennae was 9 

ultimately preferred and considered the best trade-off between maximum resolution and achievable signal penetration 10 

(in our case ~ 4 m) concerning the surveyed materials and wanted subsurface structures. The GPR was equipped with 11 

an odometer wheel to measure the radar profiles’ length and with a Topcon GR-5 Global Navigation Satellite System 12 

(GNSS) receiver to achieve accurate positioning of GPR traces and profile. Considering the scarce presence of 13 

obstacles across the survey site and the good satellite coverage, we opted for a Network Real-Time Kinematic 14 

positioning (NRTK, connected to the NETGEO network), measuring coordinates and elevations with centimetre 15 

accuracy, and stored directly within the SEG-Y GPR files.  16 

Three datasets were acquired after preliminary fieldwork and collection of geological structural data at the surface and 17 

which allowed us to infer the possible location of the fault trace. The average NE-SW direction of the GPR lines was 18 

initially planned with the primary purpose of intersecting the VCT fault perpendicularly to its SW-NE strike, as 19 

reported by literature and visible by surface evidence. This solution theoretically allows a more reliable interpretation 20 

of the investigated structure by reducing the effect of the apparent dip-direction and dip-angle of both stratifications 21 

and faults. 22 

The acquisitions carried out in 2014, first resulted in twelve SW-NE GPR profiles collected in the southern sector of 23 

the basin (CMT light-blue lines in Fig. 2a), which was a flat land characterized by Quaternary alluvium. The second 24 

acquisition encompassed four additional radar profiles collected in the same area, and another nine radar profiles 25 

progressively moving to north, which were collected with slightly different and converging orientations in the central 26 

sector (CMT green lines Fig. 2a). This solution was pursued for two main reasons: 1) to avoid directly surveying the 27 

outcropping dolostones (only partially crossed with two northernmost profiles) characterizing two hills h1 and h2 28 

(dashed white polygons in Fig. 2), and thus focussing only on the sedimentary cover which is our target for possible 29 

Quaternary faulting; 2) to optimize, through a preliminary GPR data interpretation, the future acquisition schemes by 30 

figuring out the dip direction of the buried geologic structures of interest. In fact, similarly to the interpretation of 31 

reflection seismic profiles, the “apparent dip” of reflections in bidimentional radar profiles should be considered to 32 

achieve a reliable 3D conceptual model.  33 

In order to intercept several possible buried faults and fault-related structures as well as to fully image the local 34 

structural setting, the successive 2015 acquisition crossed part of the Triassic dolostones ridge with longer GPR 35 

profiles. The GPR profiles collected during the second 2014 campaign (close to h1 and h2) already revealed a 36 

considerable difference in GPR reflectivity between the unconsolidated deposits and layered and fractured Mesozoic 37 

lithotypes (Gafarov et al., 2018). Therefore, two new datasets of 24 parallel GPR radar profiles (CMT dark-blue sets 38 
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of lines in Fig. 2a, north “n” and south “s”) were extended in NNE-SSW and NE-SW directions, respectively, 1 

crossing h1 for several tens of meters (max profile length ~220 m) throughout the basin. The GPR profiles were 2 

recorded using a trace step of 0.05 m and a profile inter-distance of 25 m for dataset “n” and 10 m for dataset “s”, 3 

respectively. A detailed summary of the acquisition parameters used for the GPR surveys is reported in Table I. For 4 

these two datasets, the profile spacing and positioning are more regular and accurate, thanks to a preparatory transects 5 

planning using a GIS project. Thus, we later staked out their initial and final positions during the fieldwork through 6 

the differential Global Navigation Satellite System (GNSS). The results of the accurate GPR traces positioning 7 

achieved during the GNSS campaigns were also later used for GPR data processing, visualization, and interpretation. 8 

TABLE 1 HERE 9 

3.2 GPR data processing and results: 10 

The processing sequence was customized after testing several workflows and parameters. We aimed to remove random 11 

and coherent (e.g. ringing) noise and enhance the data quality to better visualize the geometry of the buried reflections 12 

and their discontinuity in signal amplitude and phase. The first step was an accurate Quality Control (QC) of the 13 

profile coordinates and topographic profiles. Although the generally favorable environmental conditions (e.g. good 14 

satellite coverage, no forested areas etc..) of the site for a GNSS survey, some measurements were occasionally 15 

suffered a degradation of positional accuracy (e.g. temporary scarce satellite coverage or poor communication via 16 

Network Transport of RTCM via Internet Protocol - Ntrip). For some traces therefore the coordinates and elevation 17 

field records that were outliers (Fig. 3a) were corrected using various strategies (e.g. replacement, interpolation, or 18 

smoothing, Fig. 3b).  19 

FIGURE 3 HERE 20 

We have also compared our measurements with topographic transects extracted from a 10 m and a 5 m resolution 21 

Digital Terrain Models (DTM) by Tarquini et al. (2012) and by Regione Calabria. Later on, we finally used a 1 m 22 

resolution DTM (Geoportale Nazionale, Lidar data provided by Italian Ministero dell’Ambiente e della Tutela del 23 

Territorio e del Mare - MATTM) to double-check if, despite the different scales of observation, the topographic 24 

profiles were comparable. Although the metre resolution of the DTM is unable to represent centimetre topographic 25 

variations, the comparison confirmed an excellent match of the topographic profiles at a meter scale, so that the DTM 26 

data were integrated to correct the GNSS measured topography when the accuracy of GNSS recordings were 27 

excessively degraded. With the topographic profiles corrected, the raw GPR data (Fig. 3c, illustrating the profile 28 

cmt5s) were initially processed with the Prism software (Radar System, Inc., http://www.radsys.lv/en/index/) using a 29 

basic processing sequence, to analyze the main characteristics of data and optimize a customized processing flow. The 30 

processing sequence was later improved through ReflexW software (https://www.sandmeier-geo.de/reflexw.html, see 31 

Table II for details on the processing algorithms and parameters). The workflow included a time-zero correction, 32 

dewow, amplitude recovery, velocity analysis, background removal, bandpass filtering, F-K filtering, 2D time 33 

migration, topographic correction, and time-to-depth conversion. The amplitude recovery was operated through a 34 

“gain function” including a linear and an exponential coefficient (g(t) = (1+a*t)*e(b*t)) to enhance the amplitude 35 

(reflectivity) contrasts as well as preserving the horizontal and vertical amplitude variations already visible in the raw 36 

data (Fig. 3a). This amplitude recovery function was used across all the profiles with slight customization depending 37 
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on the datasets (details in table II). The entire processing flow was applied to all the available radar profiles, again 1 

with occasional filtering adaptations aiming to remove local pervasive signal ringing (e.g. due to low antennae-ground 2 

coupling). Particular care was dedicated to the migration process, whose algorithm was decided after extensive tests 3 

on several radar profiles to select the best migration strategy.  4 

TABLE 2 HERE 5 

In fact, a very different reflectivity and maximum depth of penetration are visible in the data: it is more than 150 ns 6 

in the central sector, reducing to 70-80 ns in the rest of the radar profiles (Fig. 3c): this fact suggests sharp lateral 7 

variations of subsurface media (Figs. 3d) and possibly of the velocity field. Thus, we have first tested a 1D time 8 

migration algorithm (Kirchhoff) performing a Migration Velocity Scan (MVS) analysis (Forte and Pipan 2017) and 9 

inspecting the success of diffraction hyperbola collapse after migration. We have varied constant values of EM 10 

velocity, from a minimum of 0.06 up to 0.12 m/ns, with steps of 0.01 m/ns, to evaluate considerable variation in 11 

dielectric properties of surveyed media. The MVS is characterized by a higher velocity for the central sector of the 12 

GPR profiles which displays high reflectivity: Fig. 4 illustrates an example of the migration results obtained on the 13 

profile cmt1n_a, by using three constant values of average velocity. The profile in Fig. 4a shows the unmigrated 14 

version characterized by numerous hyperbolic and half hyperbolic diffractions originated by single scatter points and 15 

wavy reflections (white arrows). In Fig. 4b we display the first test using v = 0.07 m/ns, showing overall good results, 16 

with slightly under-migration at a few points mainly located within the shallower sediments (light-blue arrows). The 17 

hyperbolic diffractions are also nicely collapsed using higher velocity (v = 0.09 m/ns) as shown in Fig. 4c (dark-blue 18 

arrows), even if some imaging problems affect deeper reflections. The last migration scan test (v =0.11 m/ns) displays 19 

a good result only in few profile sectors (dark-blue arrows), particularly localized within the sectors with high 20 

reflectivity, displaying an improved lateral reflection continuity. The rest of the radar profiles show generally poor 21 

imaging, particularly in the area characterized by strong attenuation, where the wavy reflection is over-migrated (red 22 

arrows indicating migration smiles, Fig. 4d). 23 

FIGURE 4 HERE 24 

The workflow therefore, suggests a challenging imaging task due to velocity variation happening not only in depth as 25 

well as laterally across the different media. This sharp change of reflectivity and velocity at a distance of about 13-14 26 

m (Fig. 4d) represents a complex problem for the efficiency of 1D migration algorithms standardly used for GPR 27 

imaging. Such considerations has lead testing a 2D migration algorithm, by creating and using a 2D velocity model 28 

obtained for each radar profile through a hyperbolic diffraction fitting tool (Fig. 5a). Single velocity points have been 29 

fitted for each area displaying hyperbolic diffractions, while in the remaining parts of the radar profiles we have 30 

arbitrarily included presumed velocity adaptation only to obtain a regular grid of points to spatially interpolate the 2D 31 

models. The 2D migrated radar profiles, in comparison to the 1D approach, resulted in improved imaging of GPR 32 

profiles, displaying a more accurate collapse of the hyperbolic diffractions into point sources and an improved 33 

relocation of dipping reflections, with a refinement of their geometry and an increase of their continuity. A good-34 

quality imaging result is visible on the central sectors of radar profiles displaying strong reflectivity and reflections 35 

with improved continuity, but also many phase breaks and displacements. Despite steep topographic gradients, sharp 36 

lateral velocity variation and the reflection heterogeneity might cause imaging issues that need to be treated using 37 

more specific workflows (Lehmann and Green, 2000; Heincke et al., 2006; Goodman et al., 2007;  Dujardin and Bano, 38 
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2013). We believe we have reached a good compromise for our purposes. In our case, a considerable improvement, 1 

can be seen along the hill-slope and flatter areas (profile cmt1n_a, Fig. 5b) which are of greatest interest for the study 2 

aimed at detecting possible earthquake ruptures within the Quaternary deposits. The improved imaging of reflection 3 

geometries is therefore fundamental for the interpretation and detection of geophysical signatures of faults. 4 

FIGURE 5 HERE 5 

A successive import of the processed SEG-Y data was done into the seismic interpretation software OpendTect Pro 6 

v.6.4 (Academic license courtesy of dGB Earth Science, https://www.dgbes.com), which was used first for global 7 

quality control of processing operations (correctness of topographic correction and datum plane, coordinates accuracy 8 

and matching, profiles orientation and intersection) and for three-dimensional (3D) visualization of all the profiles 9 

(Fig. 6a). The three-dimensional GPR project was subsequently integrated with geological and structural maps, DTM, 10 

and literature schemes (using a common Coordinate Reference System: WGS84 UTM Zone 33N, EPSG: 32633) in 11 

the Move suite software v. 2019.1 (Academic license courtesy of Petroleum Experts, https://www.petex.com/) for 12 

GPR interpretation and model building. All the E and W-dipping fault surfaces were created interpolating the fault-13 

sticks picked on displaced reflections and correlated across adjacent radar profiles. In particular, we used the "surface 14 

geometry" tool to extract the properties of each single mesh building up the surfaces, and obtaining the "dip" and "dip 15 

azimuth" data. Subsequently, such values have been automatically saved in an attribute table,  which can then be 16 

queried to reconstruct the “synthetic” stereonets. 17 

 18 

4. GPR data description and interpretation  19 

The 3D MOVE project allowed us to extract 2D and 3D data visualizations to better figure out the relationships 20 

between the main reflections identified on the different GPR profiles (Fig. 6a). The workflow aimed to reconstruct 21 

and model the three-dimensional surfaces including both horizons and high-angle discontinuities.  22 

FIGURE 6 HERE 23 

A common feature on all the radar profiles is the strong reflectivity visible within their central sectors (e.g., profile 24 

cmt3n in Fig. 6b), which are characterized by an irregular and steep slope, particularly within the northern portion of 25 

the surveyed area. These sectors show deep GPR signal penetration due to the Triassic dolostones, which outcrop in 26 

the central and northern portions of the study area (Figs. 1c and 2a). The quality of the radar reflections and the 27 

remarkable depth reached (~ 6 m, Fig. 6b) suggest this rock type is an excellent dielectric medium (corresponding to 28 

higher frequency content zone in the 2D spectrum of Fig. 6c). However, its reflection pattern is not spatially 29 

homogenous, being characterized by oblique and sub-parallel reflections. The latter are interpretable as dolostone beds 30 

of moderate (25-30°) W and E “apparent” dip on the respective sides of the surveyed dolostone hills. In addition, these 31 

reflections are frequently cut and slightly displaced by apparent high-angle (60-65°) phase discontinuities, highlighted 32 

by a dense hyperbolic diffractions pattern (radar profile cmt2n, Fig. 7a), suggesting intense fracturing and little faults 33 

displacing the dolostone (Fig. 7b). This radar signature was recorded not only in correspondence of the outcropping 34 

carbonate but also in the transition slope areas covered just by a thin soil layer (Figs. 7b,c). In the southern side of h1, 35 

an outcrop with thin microbialitic laminae allows one to measure the attitude of the bedding (NNW dip, ~ 30-35° dip 36 
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angle) as well as two sets of major and minor joints (SW and SE dip and dip angle of ~ 40-45°, respectively) fitting 1 

with GPR reflections. 2 

Apart from its internal heterogeneities, the GPR signature of the Triassic dolostones can be considered as a well-3 

defined depositional facies (fc1) (Sangree and Widmier, 1979; Huggenberger, 1993; Beres et al., 1999; Jol and 4 

Bristow, 2003). A different radar signature fc2 is defined for the profile sectors on the sides of fc1. This second facies 5 

is characterized by prominent laterally-continuous and sub-parallel reflections in the very shallow depth range (< 1 m, 6 

just beneath the direct arrivals), stratigraphically sealing underlying reflections 1-3 m deep: the latter are more 7 

discontinuous, wavy, and contorted, with moderate to low reflectivity and encompassing sparse diffraction hyperbolas 8 

(in unmigrated data, Fig. 7a). This reflection pattern  onlaps onto a generally prominent wavy reflection (Figs. 7a,b), 9 

which typically marks the transition to strong signal attenuation deeper in the section. 10 

FIGURE 7 HERE 11 

The reflection package belonging to fc2 corresponds to the alluvial/colluvial deposits (Fig. 7b-d), outcropping on the 12 

sectors with flat topography, which represent the GPR profile sectors we’ve carefully inspected to find for geophysical 13 

evidence of Quaternary faulting. A key-layer for this research is the described prominent, wavy reflection, as it can 14 

be recognized in many radar profiles. The related interpretation is not straightforward in the absence of direct data 15 

(e.g. boreholes and/or paleoseismological trenches) or at least without additional geophysical data. A strong GPR 16 

reflection suggests significant variation of the dielectric constant between the two media so that most of the incident 17 

energy is reflected back to the receiver at the surface. This wave behaviour is potentially explained by several 18 

geological models, such as: i) a high dielectric contrast may be a result of a sharp soil moisture variation (Ercoli et al., 19 

2018); ii) a sharp erosional, stratigraphic or tectonic boundary within heterogeneous deposits (Ercoli et al., 2015), or 20 

iii) a contact between two considerably different lithologies, such as unconsolidated deposits laying above a bedrock 21 

substrate reflecting back all (or almost all) the incident signal (e.g., Frigeri and Ercoli, 2020). In addition, the possible 22 

role of conductive deposits (e.g. high clay content) should not be discounted to explain the occurrence of strong 23 

attenuation. Several considerations are at the basis of the GPR data interpretation: 24 

1) the available well logs show the Pleistocene-Holocene alluvium and colluvium layered above the carbonate bedrock 25 

~20-30 m depth (Brozzetti et al., 2017a), a greater depth than the strong GPR reflection. However, it should be 26 

observed that the area drilled is located ~2.5 km away on the north-westernmost sector, over the depocenter of the 27 

Campotenese basin, whereas the studied GPR site is placed just on its eastern border, in proximity to emerged 28 

dolostone hills; 2) only terraced Middle-Pleistocene silts and sands (Schiattarella et al., 1994) and slight coatings of 29 

Late Pleistocene colluvium (generally < 2 m thick) are documented to outcrop in the eastern sector of the basin 30 

(footwall of VCT fault) (see Fig. 7 in Brozzetti et al., 2017a); 3) the subsurface geometries highlighted by the 31 

prominent GPR reflection and underlying reflection pattern suggest a relatively thin layer of sedimentary deposits 32 

resting on a fractured substratum. Its top surface is progressively deepening towards the W, thus providing increased 33 

space for settling sediments and thus a gradual thickening of deposits is observed from E to W.  34 

In light of the above considerations, we interpret the prominent, wavy GPR reflection as a buried top layer of carbonate 35 

(e.g. as observed e.g. by Bubeck et al., 2015), in our case represented by the Triassic dolostone formation. The latter 36 

is lying at a shallower depth (1-3 m) beneath shallow and poorly consolidated Quaternary deposits, across both sides 37 

of the surveyed hills. Thus, after picking such a prominent reflection event on all the radar profiles, the top of bedrock 38 

surface was reconstructed as shown in Fig. 8a (coloured surface). In this figure, we display also an overlay of a recent 39 
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structural map of the basin (modified after Brozzetti et al., 2017a) reporting the area dissected by a set of en-echelon 1 

fault splays to the West associated to the VTC segment. Thus, analyzing the geophysical characteristics of the 2 

prominent, wavy reflection in terms of a structural interpretation, the main peculiar characteristic is the clear “stepped” 3 

geometry of some sectors (Figs. 5b, 6b, 7b, 8b), namely breaks of its continuity associated to lateral sharp variations 4 

of depth (linked to sediment growth and onlaps). We also notice other geophysical features, which can be observed in 5 

the stratigraphy of overlying deposits (fc2): some reflections are semi-continuous to discontinous (sharp variation in 6 

signal amplitude and phase) and display evident lateral variation of the dip angle. 7 

FIGURE 8 HERE 8 

These broken reflection packages present truncantions (e.g. Smith and Jol, 1995), displacements, and hyperbolic 9 

diffraction events (insets of Fig. 8b1,b2). Such peculiar GPR signature is therefore compatible with coseismic 10 

displacement due to Late Quaternary surface faulting events (Fig. 8b). Contorted reflections across the main 11 

discontinuities frequently show localized strong attenuation of GPR signal (Fig. 8b). The attenuation might be linked 12 

to their high dip-angle, causing a minor amount of energy being reflected back to the antenna, but, more likely, due to 13 

the presence of conductive fine soils nearby faulted zones (e.g. circle 1 in Fig. 8b). These conditions can be linked to 14 

different depositional facies across fault zones (McClymont et al., 2010) e.g. including colluvial wedges (Reiss et al., 15 

2013; Bubeck et al., 2015) or deposits deriving from degradation of fault scarps (detailed interpretation within the 16 

caption of Fig. 8b). Using all such stratigraphic evidence and geophysical markers of faulting, we have therefore 17 

interpreted and classified synthetic (W-dipping, blue) and antithetic (E-dipping, red) normal faulting events (Fig. 8b). 18 

During the interpretation process, the faults were picked using solid lines (fault sticks); when the presence of 19 

geophysical markers of faulting were uncertain, a dashed fault segment was initially added and revised a second time 20 

their possible connection among nearby GPR profiles.  21 

The interpreted faults present a dip angle between 65-75° and variable amount of displacement (D), estimated by 22 

correlating the position of the top of the carbonate substratum in the footwall and hanging wall blocks (e.g. scheme 23 

summarized in the inset of Fig. 8b3). Considering the GPR profile of Fig. 8 as representative for the studied VCT 24 

sector, D is not exceeding ~1 m for the W-dipping splays within the Quaternary sediments (~ 0.5 m for the E-dipping 25 

splay). A displacement D of ~1.5 m was derived across the sharp boundary between the Triassic dolostone and the 26 

Quaternary deposits (easternmost fault on Fig. 8b), being interpreted as the main fault. This clear contact is 27 

characterized in all profiles by hyperbolic diffractions (in unmigrated data), variable dip angle, abrupt truncations, 28 

sharp lateral variation of the reflectivity suggesting a wide fault zone (Figs. 3 to 9), controlling the above mentioned 29 

Quaternary splays. By interpolating all the fault sticks placed in adjacent profiles, we have created the fault surfaces, 30 

that show a good degree of continuity from north to south (Fig. 9). For the studied sector of the VCT, we have 31 

reconstructed the tridimensional fault-network and the geometry of the associated synsedimentary deposits at a metric 32 

scale of observation (Fig. 9). 33 
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5. Discussion  1 

5.1 Inferences from subsurface 3D model 2 

The perspective view of Fig. 9a shows a 3D structural scheme of the main tectonic lineaments at the basin scale 3 

displaying a NW-SE faults strike (modified after Brozzetti et al., 2017a) in relation to the GPR investigated area (white 4 

rectangle). Our GPR interpretation enriches many of the details such a former structural scheme across the southern 5 

VCT segment. We highlight an en-echelon system of two main SW and NE-dipping faults as well an articulated set 6 

of extensional meso-faults within the Quaternary sediments. The high-angle GPR discontinuities identified in the 7 

study (e.g., Fig. 9b) show a considerable continuity in the NW-SE direction (accurate 3D structural recontruction in 8 

Fig. 9c), dissecting not only Quaternary alluvial-colluvial deposits (except for the very shallow fc2 layers), but also 9 

deeper stratigraphic layers. 10 

The reconstructed faults mark a horst-graben structure, mostly buried within the Campotenese basin, which locally 11 

emerges from the Quaternary deposits. In the investigated area it corresponds to a NNW-SSE elongated topographic 12 

high (h1 and h2 in Fig. 2a) made by the Triassic dolostone. This horst is bordered toward the W and towards the E by 13 

SW- and NE- dipping normal faults, respectively (Figs. 9b, c). In Fig. 9c, the fault-set d1, together with its antithetic 14 

set d2, shows the maximum displacement and the most evident deformation of the adjacent sub-surface deposits. The 15 

variations of thickness of such Quaternary deposits are consistent with the horst and graben configuration. Thinning 16 

is observed in correspondence with the raised buried blocks, whereas thickening, wedge-shaped as well as chaotic 17 

geometries correspond to the lowered blocks. The main fault of set d1 can be considered a conjugate fault of the VCT 18 

(Fig. 8b), separated by a right step-over of about 0.5 km from the segment that borders the eastern basin (Figs. 2c, 8a). 19 

Thus, also the fault-set d3 and d4 located on the eastern part of h1 and h2, can be hierarchically classified as a network 20 

of minor splays embedded in the southern junction zone between the two VCT segments (Fig. 9c). 21 

The three-dimensional model (Fig. 9a,c) highlights that these faults, despite having a typical Apenninic NW-SE trend, 22 

are characterized by a complex polymodal pattern of strikes, with alternating N-S to NW-SE direction. Therefore, 23 

such a polymodal character which was observed along all the extensional structures of the area (Brozzetti et al., 2017a) 24 

is also confirmed at the GPR scale along this VCT sector. A dedicated statistical analysis of the reconstructed fault 25 

planes is reported in the stereo plots of Fig. 9d (d1-d3= W-dipping faults; d2-d4= E-dipping faults). 26 

FIGURE 9 HERE 27 

5.2 Seismic hazard implications 28 

The combination of geological and seismological data may suggest outcropping Quaternary faults being capable of 29 

releasing earthquakes, but the determination of the maximum expected magnitude along these faults might not always 30 

be well constrained. An estimate can be made using well-known scale-relationships (Wells and Coppersmith, 1994; 31 

Wesnousky et al., 2008, Leonard,, 2010, Stirling et al., 2013) with knowledge of the geometric parameters (e.g. fault 32 

length, area and depth), which are often difficult to assess. These scale relations can also be applied also to Quaternary 33 

scarps originated by cumulative coseismic faulting produced by medium-strong earthquakes (generally M > 6). 34 

Nevertheless, only through paleoseismological analysis is it possible to distinguishing the amount of slip due to each 35 

event. But in cases like the VCT, GPR provided key parameters where no direct information on the nature of the 36 

surveyed deposits and no accurate dating is available, at the present day the GPR data assume a key-value. Our GPR 37 
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interpretation by itself doesn’t currently allow one to extract any date for a single event, neither identify a succession 1 

of past events as well as establish recurrence times (Galli, 2020). However, it confirms the segmentation of the VCT 2 

and the presence of buried splays, which appear to have exerted a strong control on the deposition of Late Quaternary 3 

sediments. The location of Quaternary ruptures at a shallow depth in a flat land of an intra-mountain basin presently 4 

undergoing alluvial and colluvial sedimentation, suggests their occurrence might be attributed to the Holocene. Thus, 5 

pointing out normal faulting of Holocene deposits would be, in itself, a very important and novel result for the 6 

Campotenese area. A Middle-Late Pleistocene age of activity was suggested for the Mercure and Campotenese 7 

boundary faults by Schiattarella et al. (1994) and Brozzetti et al. (2017a), with Holocene activity indirectly inferred 8 

on the base of morpho-structural observations. More recently, an earthquake-structure association with the recent 9 

2010-2014 Pollino seismic sequence has been reconstructed through cross-sections and relocated seismicity in Cirillo 10 

et al., (2021). 11 

Our data are promising because the GPR facies interpretation highlights the possible presence of small-scale grabens 12 

or half-graben (maximum estimated fault zone width of ~ 160-170 m, inset c1 of Fig.9c) and the likely fault-related 13 

deposits (e.g. as observed by Reiss et al., 2013 and Bubeck et al., 2015) at shallow depth. This inference would testify 14 

to not only the persistence of extensional deformations up to the Late Quaternary but would even imply the occurrence 15 

of episodes of surface faulting. In other words, the Campotenese basin may have been affected in the relatively recent 16 

past by medium-strong earthquakes, larger than the 2010-2014 mainshocks. It should be in fact considered that 17 

historical events with 6 < Mw < 7 sourrounded the area, being documented a further ~ 50 km north (1857 - Mw 7.1) 18 

and ~ 60 km south (1184 - Mw 6.7, Fig. 1a) (Rovida et al., 2020). Some paleoseismological earthquakes with inferred 19 

magnitude 6.5 < Mw < 7 are attributed to the Castrovillari fault, located ~ 20 km SE and also falling within the Pollino 20 

seismic gap (Cinti et al., 1997; Michetti et al., 1997; Cinti et al., 2002, 2015). 21 

The estimates of the VCT fault-length provide an overall value of 15 km (Brozzetti et al., 2017a) which is compatible, 22 

in the case of a complete rupture, with the maximum expected magnitudes of Mw = 6.45 (Wells and Coppersmith, 23 

1994) and Mw = 6.8 (Wesnousky et al., 2008 and Leonard, 2010), therefore well capable to produce surface breaks. 24 

Being the source of the most recent earthquakes (2012 - Mw 5.2; 1894 - Mw 5.1; 1708 - Mw 5.8 and perhaps 1693 - 25 

Mw 5.2) affecting the study area estimated at ~ 8 km depth (Totaro et al., 2015; Brozzetti et al., 2017a; Napolitano et 26 

al., 2020 and 2021, Sketsiou et al., 2021), the level of seismic energy released by such historical seismic events would 27 

likely be not enough to generate the VCT ruptures at surface. Therefore, it sounds reasonable that the hypothesis of 28 

past earthquakes occurrence, nucleated from the VCT, with a magnitude sufficiently high to cause the buried coseismic 29 

ruptures, highlighted by our GPR interpretation, which were then subsequently erased at surface by footwall erosion 30 

and sedimentation at the hanging wall. In addition, because historical catalogs do not show events with Mw > 6 (Rovida 31 

et al., 2020), a very energetic earthquake could have likely occurred before the period covered by the available 32 

seismological catalogs, proving new perspectives on the actual seismic hazard of the area. 33 

 34 

6. Conclusions  35 

 36 

Our novel GPR data and dedicated workflow allowed us to obtain a detailed 3D model of the southern sector of the 37 

Fosso della Valle - Campotenese fault (VCT) in the continental Campotenese basin, a seismic gap in the Mt. Pollino 38 

region (Southern Italy). The processing, analysis, assemblage, and interpretation of the 49 GPR profiles was pursued 39 

using expertise, techniques, and tools borrowed from seismic reflection industry applications. The non-destructive 40 

GPR survey did not require special authorizations and was relatively fast and low cost. The pseudo-3D configuration 41 
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was an efficient compromise between spatial coverage and duration of the data acquisition (four days of fieldwork). 1 

On the other hand, the data processing was non-trivial, requiring about six months overall to set up an optimized 2 

workflow, due to challenging data characteristics, such as the steep and rugged topography and the sharp lateral 3 

variations of dielectrical properties of media (Triassic Dolostones vs Quaternary deposits).  4 

Our structural reconstruction derived by GPR data interpretation shows several sets of sub-vertical discontinuities 5 

within the near-surface (~ 1-4 m depth), which we interpreted as a pattern of extensional surface faulting. Such faults 6 

are bounding small local “graben or semi-graben-like” structures, which cut an hypothesized Holocene age clastic 7 

cover and underlying Triassic dolostones. We have also identified some chaotic and laterally discontinuous GPR-8 

stratigraphic facies, interpreted as near-fault post-earthquake deposits (i.e. colluvial wedges ?). These shallow 9 

structures suggest the possibility that surface faulting due to past strong earthquakes (6 < Mw < 7) occurred in relatively 10 

recent times in the study area. Its traces at surface were possibly later levelled by the concurrent natural processes of 11 

erosion, aggradation and, anthropogenic activities. As our results confirms the presence of seismic potential and thus 12 

the possible occurrence of a large earthquake in the future, we wish the primary effect of our study to be one of raising 13 

the level of attention regarding the seismic hazard in the Campotenese area, as well as prompting further research. 14 

Upon ground truthing, our work may represent a preparatory study for further geophysical surveys (3D GPR and other 15 

methods), as well as direct analysis including trenching, drilling, sampling campaigns and dating (e.g., luminescence, 16 

radiocarbon, etc). Although a further multidisciplinary approach would be necessary to achieve a quantitative (i.e. slip 17 

rates and recurrence times) assessment of the seismogenic potential of the study area, we firmly promote, particularly 18 

where near-surface data is lacking, a widespread use of the presented GPR workflow on other seismic gaps worldwide.  19 
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Table 1 1 

GPR survey information and parameters 

Antenna frequency (MHz) 300 (preferred) 500 

Number of acquired profiles 45 4 

Total profile length (m) 3789.5/4153 363.5/4153  

Profile distance (m) 10 and 25 (in g1 and g2)  not regular  

Traces distance (m) 0.05 0.02 

Number of samples 1024 512 

Time window (ns) 300-200* 200-100* 

 2 

Table 2 3 

Processing Flow 
Parameters 

(300 MHz) 

Parameters 

(500 MHz) 

Trace editing, coordinates editing 

and corrections 
- - 

Time-zero correction - - 

Dewow (ns) 10 5 

Amplitude recovery function: 

g(t)=(1+a*t)*e(b*t) 

linear: 0.5 (2014) & 1.2 

(2015) exponent: 0.15 

(2014) & 0.6 (2015) 

linear: 0.5 (2014) & 1.2 (2015) 

exponent: 0.15 (2014) & 0.6 (2015) 

Velocity analysis 
Diffraction hyperbola 

fittying 
Diffraction yperbola fitting 

Background removal (ns) 
Applied from 5 ns to end 

(computed on all the traces) 

Applied from 5 ns to end  

(computed on all the traces) 

Bandpass  filter (MHz) 32/96/650/700  64/112/750/800 

F-K filter customized customized 

Time migration (2D Kirchhoff) 2D velocity models 2D velocity models 

Topographic correction GNSS/GIS Elevations GNSS/GIS Elevations 

Time-depth conversion 

(Quaternary deposits) 
v = 0,7 m/ns v = 0,7 m/ns  

 4 

  5 
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Figures and Tables captions: 1 

Figure 1 - Location maps of the study site (DTM sources: TINITALY by Tarquini et al., 2012 and by Regione 2 

Calabria - www.regione.calabria.it, under license IODL 2.0. - https://www.dati.gov.it/iodl/2.0/): a) the image 3 

illustrates the southern Italian peninsula with the regional faults pattern and the historical strong earthquakes 4 

(Rovida et al. 2020); b) map showing the studied region with local faults (modified after Brozzetti et al. 2017a), 5 

and epicenters (stars) and focal mechanisms of the mainshocks of the 2012-2014 seismic sequence (Scognamiglio 6 

et al., 2006); c) location of the GPR survey area within the Campotenese Quaternary basin crossing the Fosso 7 

della Valle - Campotenese (VCT) fault. 8 

Figure 2 - GPR acquisition campaigns: a) GPR profiles collected at the study site Campotenese (“cmt”, where 9 

“n” and “s” stay for North and South, “h1” and “h2” indicate the two Dolostone hills outcropping in the basin) 10 

during the three field visits (aerial image source: Regione Calabria - www.regione.calabria.it, under license 11 

IODL 2.0. - https://www.dati.gov.it/iodl/2.0/); b) acquisition phase using the 300 and 500 MHz antennae (in the 12 

insert) and GNSS receivers used for accurate data positioning; c) GNSS base station set up during the 13 

fieldwork. 14 

Figure 3: Topographic correction of GPR profiles: a) example of accuracy degradation of GNSS data, 15 

displaying an outlier both in map view and in topographic profile, on which the positioning error is 16 

considerable; b) GNSS coordinates and topographic profile after the correction; c) raw GPR section displaying 17 

high reflectivity in the central sector; d) example of full processed profile with topography displaying various 18 

reflection patterns encompassing dipping reflections and diffractions. Vertical exaggeration is 4. 19 

Figure 4: Migration tests performed during the GPR data processing: a) unmigrated 2D GPR profile, 300 MHz 20 

antennae, displaying hyperbolic diffractions (white arrows); b) migrated profile using a constant velocity v = 21 

0.07 m/ns, light-blue arrows indicate good diffractions collapse; c) migration output obtained with a constant 22 

velocity v = 0.09 m/ns, with dark-blue arrows suggesting good migration results (migration artefacts are shown 23 

by red arrows); d) migration results using a constant velocity v = 0.11 m/ns, with dark-blue arrows highlighting 24 

good hyperbolas collapse, particularly within the high reflective unit; red arrows highlight clear migration 25 

smiles. 26 

Figure 5: Example of 2D time-migration of radar profiles: a) example of hyperbolic diffractions fitting used for 27 

2D velocity model building; a constant velocity value (0.07 m/ns) was assumed in deeper no-diffraction areas 28 

for interpolation purposes; b) 2D time-migration results, highlighting the good performance of the process, 29 

which collapsed the hyperbolic diffractions (white arrows) and restored reliable reflection geometry. 30 

Figure 6: GPR data visualization: a) fence diagram showing the three-dimensional location of some 31 

representative GPR profiles in the northern sector of the study site; b) bidimensional GPR profile (cmt3n, see 32 

figure 2a  for location) displaying the central high reflective sector and dipping reflections across the hill; c) 33 

spatial variation of a 2D amplitude-frequency spectrum linked to variable physical properties of media along 34 

the profile cmt3n. Vertical exaggeration is 4. 35 

Figure 7: Correlation between GPR profiles and outcropping geology at the study site: a) unmigrated 300 MHz 36 

profile (cmt2n, see fig. 2b for location) displaying numerous hyperbolic diffractions; b) migrated profile 37 

displaying the apparent dip associated to fractured dolostone formation (facies fc1) and Quaternary deposits 38 

in the attenuated sectors (GPR facies fc2); c) Quaternary deposits of the basin (on the background) surrounding 39 

the Triassic Dolostone formation outcropping on the hill h1 . The yellow arrows indicate the bedding, such as 40 

the stereo-net (left-side inset); the right-side inset report a detail of the laminae visible on site and nearby; d) 41 

an example of Quaternary colluvial and alluvial deposits outcropping nearby the survey site. Vertical 42 

exaggeration is 2.5. 43 

Figure 8: GPR data interpretation: a) three-dimensional image of the surveyed area (see fig. 1c for location), 44 

displaying the Dolostone outcrops (grey colour). Blue dashed lines are the VCT and RSB faults (fig. 1b), whilst 45 

the light blue is CVN fault. In yellow lines the GPR profiles; the coloured surface is the interpreted Dolostone 46 

top reflection (DTM source: Regione Calabria - www.regione.calabria.it, under license IODL 2.0. - 47 

https://www.dati.gov.it/iodl/2.0/); b) migrated radar profile with the main interpreted normal faults (blue and 48 

red are W- and E- dipping structures, respectively) as well as related sedimentary structures within the 49 

Quaternary deposits (unmigrated data in b1 and b2); the inset b3 is a schemathic representation illustrating 50 

the methodology used for extraction of the GPR fault displacement (D: displacement; T: throw; H: heave). 51 

GPR facies fc2 shows semi-continuous and sub-horizontal reflections (Quaternary deposits) onlapping fc1 52 

(Triassic Dolostones, black line is the “top”). In circle 1: reflections package thickening and truncation with 53 

localized attenuation are likely interpretable as “colluvial-wedge-like” (cw?) features, or deposits from 54 
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degradation of earthquake fault free-face nearby of the hanging-wall (D ~ 0.6 m). In circle 2: fc2 show more 1 

discontinuous, from subparallel to wavy reflections package downlapping the lower top Dolostone; the 2 

asymmetric, truncated reflections thickening is bounded by two conjugate normal fault strands (east dip D ~ 3 

0.5 m, west-dip D = 0.4 m) displacing both fc1 and fc2. In circle 3: contorted reflections package with limited 4 

continuity, displaying thickening, truncation and distributed attenuation, suggesting colluvial wedge deposits 5 

close to the main fault zone (D ~ 1.5 m, inset b3). Vertical exaggeration is 2. 6 

Figure 9: Results of the three-dimensional analysis and interpretation performed on the entire GPR dataset:  7 

a) 3D structural model of the Campotenese basin updated after Brozzetti et al., 2017a (DTM sources: 8 

TINITALY by Tarquini et al., 2012 and by Regione Calabria - www.regione.calabria.it, under license IODL 9 

2.0. - https://www.dati.gov.it/iodl/2.0/); b) GPR section view (cmt1n-b) with interpretation including synthetic 10 

and antithetic fault splays (blue= W-to SW-dip; red=E-to NE-dip, respectively); c) detailed structural scratch 11 

of faults obtained by the analysis and correlation of interpreted fault slapys across the entire GPR dataset; the 12 

inset c1 is a conventional structural map oriented to the North and reporting the same fault sets to highlight 13 

the maximum width derived for the fault zone d) synthetic stereo-net plots of the fault planes in c), reporting 14 

the mean Dip Azimuth / Dip angle extracted for the identified four main sets of discontinuities, with a Dip 15 

Azimuth ranging between N 235-245° and N 062-072° for the W-dipping and E-dipping normal faults, 16 

respectively. Vertical exaggeration is 2. 17 

Table 1: Main information and GPR parameters used during the data collection (* the time window was 18 

adapted depending on the surveyed area). 19 

Table 2: Customized flow and details of the parameters used during the processing of the GPR dataset. 20 
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