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Abstract. With the aim of unveiling evidence of Late Quaternary faulting, a series of Ground Penetrating Radar (GPR) 12 

profiles were acquired across the Campotenese continental basin (Mt. Pollino region) in the southern Apennines active 13 

extensional belt (Italy). A set of forty-nine 300 MHz and 500 MHz GPR profiles, traced nearly perpendicular to a 14 

buried normal fault, were acquired and carefully processed through a customized workflow. The data interpretation 15 

allowed us to reconstruct a pseudo-3D model depicting the boundary between the Mesozoic bedrock and the 16 

sedimentary fill of the basin, which were in close proximity to the fault. Once reviewing and defining the GPR 17 

signature of faulting, we highlight in our data how near surface alluvial and colluvial sediments appear to be dislocated 18 

by a set of conjugate (west and east-dipping) discontinuities that penetrate inside the underlying Triassic dolostones. 19 

Close to the contact between the continental deposits and the bedrock, some buried scarps which offset wedge-shaped 20 

deposits are interpreted as coseismic ruptures, subsequently sealed by later deposits. Although the use of pseudo-3D 21 

GPR data implies more complexity linking the geophysical features among the radar images, we have reconstructed 22 

a reliable subsurface fault pattern, discriminating master faults and a series of secondary splays. We believe our 23 

contribution provides an improvement in the characterization of active faults in the study area which falls within the 24 

Pollino seismic gap and is considered potentially prone to severe surface faulting. Our aim is for our approach and 25 

workflow to be of inspiration for further studies in the region as well as for similar high seismic hazard areas 26 

characterized by scarcity of near-surface data. 27 

 28 

Key-words: Ground Penetrating Radar (GPR); Image processing; Faults; Neotectonics; Palaeoseismology; 29 

Earthquake hazards. 30 

1. Introduction 31 

A “seismic gap” is a region characterized by active faults that are seismically “silent” during the historical record 32 

(Galadini and Galli 2003), but which are considered, on the basis of paleoseismological and/or morpho-structural data, 33 

able to generate significant earthquakes (McCann et al. 1979; Mogi 1979; Plafker and Galloway 1989). Although the 34 

hypothesis stating that the earthquake potential increases after a long quiet period was rejected by some authors (Kagan 35 

and Jackson 1991), in some cases fault segments located in areas of longstanding gaps have revealed their seismic 36 

potential, by producing earthquakes of moderate or high magnitude. Late Quaternary activity related to normal faults 37 

can be suggested by structural and geomorphological evidence, as happens also in many sectors of the active Italian 38 
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extensional province, but their seismogenic role of such faults is not well understood yet. As shown by the 2016-2017 39 

seismic sequence in central Apennines (Chiaraluce et al. 2017; Galli et al. 2019), the Italian Apennines can be 40 

considered an ideal laboratory for all geoscience disciplines studying seismic gaps. This seismic crisis occurred in an 41 

area displaced by an alignment of west-dipping Quaternary faults, where no important earthquakes had been recorded 42 

over the past 1500 years. Nine-strong and moderate seismic events struck a ~80 km long region, climaxing in the Mw 43 

= 6.5 “Norcia” mainshock (Porreca et al. 2018 and references therein; Ercoli et al. 2020), producing extensive surface 44 

faulting (Pucci et al. 2017; Civico et al. 2018; Villani et al. 2018; Brozzetti et al. 2019, 2020; Testa et al. 2019; Cirillo 45 

2020). Geological and paleoseismological studies across the faults set were preceding this seismic sequence (Calamita 46 

et al. 1992; Brozzetti and Lavecchia 1994; Barchi et al. 2000; Galadini and Galli 2003, Galli et al. 2008). Besides, 47 

some years before this sequence, 2D/3D GPR surveys (Ercoli et al. 2013a; 2014) detected a peculiar geophysical 48 

signature confirming buried past surface faulting in Holocene deposits, that was not very prominent on the present 49 

topography. These studies revealed occurrence of strong paleo-earthquakes and led to consider the Mt. Vettore master 50 

fault “silent”, but prone to cause similar strong events in the future. Thise proves the paleoseismological approach can 51 

be of great help in many tectonically active areas of the Apennines. Its systematic application may provide answers 52 

on both the seismic potential and the recurrence times (Mc Calpin; Galli at al. 2008; 2019; 2020). But on many active 53 

faults, contrary to geophysical surveys, paleoseismological data cannot be carried out systematically due complex 54 

logistics, environmental restrictions, the relatively high costs and, authorization processes. In addition, in many 55 

terrestrial areas, past coseismic ruptures can be poorly visible at surface, as undergoing to natural or/and anthropogenic 56 

topographic “regularization”. Thus, when also other geological, seismological, and geophysical data are scarce, 57 

outdated, or not detailed enough for the definition of a satisfactory seismotectonic framework, Quaternary silent faults 58 

in “seismic gaps” deserve great attention for local seismic hazard evaluation . For the above reasons, Quaternary faults 59 

and associated basins have been and are currently investigated not only Central Italy, but also in the southernmost 60 

Apennines sector (Galli et al. 2008; 2020).  A dedicated research project (Agreement INGV-DPC 2012-2013 and 61 

2014-2015, Project S1 - Base-knowledge improvement for assessing the seismogenic potential of Italy, Brozzetti et 62 

al. 2015; Pauselli et al. 2015) aiming to improve the base-knowledge of seismogenic structures was focused during 63 

the 2012-2015 period also on the Calabrian region (Southern Italy). 64 

In the project, structural geological, geophysical, and paleoseismological studies were successfully acquired across 65 

the Mt. Pollino and Castrovillari fault systems (northern Calabria), supporting evidence of their Late Quaternary 66 

activity (Ercoli et al. 2013b; Cinti et al. 2015, Ercoli et al. 2015; Brozzetti et al., 2017b). This area, which is considered 67 

one of the most important seismic gaps in southern Italy, extends northward to include the Mercure and Campotenese 68 

basins, both characterized by Late Quaternary continental syn-tectonic sedimentation (Fig. 1a-c).  69 

The fresh geomorphic signature of the faults bounding these basins suggests Late Quaternary activity; besides, 70 

paleoseismological trenching and radiocarbon dating document the occurrence of Mw > 6.5 paleo-earthquakes (Cinti 71 

et al. 1997, 2002; Michetti et al. 1997, 2000). But the data contrasts with the poor historical seismicity, reporting a 72 

single significant Mw = 5.6 event occurred in 1693 (Guidoboni et al. 2018) and, ultimately, also with instrumental 73 

seismicity characterized by two moderate seismic sequences respectively climaxed in the Mw 5.6 Mercure (1998, 74 

September 9) and Mw 5.2 Mormanno (2012, October 25) earthquakes. The latter occurred during a long-lasting 75 

sequence spanning the period 2010-2014, which included more than 6000 seismic events of Mw > 1 and activated at 76 

least three individual seismogenic sources (Passarelli et al., 2015; Brozzetti et al., 2017a; Cirillo et al., 2021; Fig. 1b). 77 

The gap between the low energy release, observed during the instrumented seismic sequences, and the high seismic 78 

potential estimated for the Quaternary faults, raised the question of whether even stronger earthquakes had shaken and 79 
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could shake the area in the future. A recent and detailed parameterization of the Fosso della Valle-Campotenese fault 80 

(VCT), that bounds a homonym basin (Fig. 1c) showing both geological and seismological evidence of current activity 81 

(Totaro et al. 2014, 2015; Brozzetti et al. 2017a, Cirillo et., 2021), assesses a surface length of ~15 km and a depth 82 

of at least 10 km (Brozzetti et al. 2017a; Cirillo et al., 2021): the potential rupture-area is likely estimated to produce 83 

Mw  >  6.0 earthquakes. Such seismic events, in the Apennines extensional belt, are generally considered capable of 84 

producing coseismic surface breaks (Pantosti and Valenzise 1990; Cello et al. 2000; Vittori et al. 2000; Boncio et al. 85 

2010; Villani et al. 2018; Brozzetti et al. 2019). However, evidence of Quaternary faulting for this structure is currently 86 

unclear, but geological and morpho-structural data suggest this fault has played an important role in determining the 87 

geometry and the recent sedimentary evolution of the basin. 88 

The Campotenese basin and its VCT boundary fault is an emblematic example that summarizes the aforementioned 89 

issues: 1) unavailability of paleoseismological data as the basin is entirely located within the Mt. Pollino National 90 

Park, thus requiring prior authorization from competent authorities; 2) unavailability of publically geophysical data; 91 

3) no fresh surface displacements of Holocene deposits, suggesting the occurrence of recent strong earthquakes, have 92 

been observed so far along its trace. 93 

For all these reasons, the VCT represents an ideal case study suitable to test our working method, as it we have 94 

conducted an explorative GPR campaign as a screening tool for the detections of potential unknown Quaternary co-95 

seismic ruptures along its fault zone. It is possible that, during past strong earthquakes, propagation of coseismic 96 

ruptures along the fault could have displaced Holocene deposits at the surface, being subsequently buried by further 97 

and more recent alluvial deposits or erased by the anthropogenic and agricultural activity. The objectives of the project 98 

are to: i) review and describe geophysical characteristics associated with a peculiar GPR signature of faulting, and 99 

propose a methodological GPR workflow for the study site which might be extended to other areas; ii) check the 100 

efficiency of a GPR prospection in the Campotenese study site to locate the trace of the studied fault as well as 101 

verifying its spatial continuity at depth; iii) provide new data to relate to the occurrence of Mw > 6.0 events on the 102 

VCT, as observed for the nearby Castrovillari faults; iv) highlight new elements for more exhaustive characterization 103 

of the VCT with the purpose of better quantifying its seismogenic potential; v) pave the way for other local geophysical 104 

prospections and identify interesting sites for future ground-truthing and/or paleoseismological trenching; vi) to have 105 

direct application and impact to the planning of future mitigation strategies for the reduction of surface faulting risk 106 

in the nearby urbanized areas. 107 

2. Tectonic setting and seismicity 108 

The Campotenese continental basin is located in the northernmost Calabria region south-west of the Mt. Pollino 109 

calcareous massif (southern Italy, Fig. 1). The bedrock of the basin consists of shallow water dolostones and 110 

limestones, Late Triassic to Middle Miocene in age, belonging to the Verbicaro tectonic unit (Ogniben 1969; Amodio 111 

Morelli et al. 1976). It is generally referred to the western edge of the “Apenninic Platform”, a thick (>4 km) carbonate 112 

shelf, that underwent compression during the Middle-Late Miocene times and was translated over an eastern basinal 113 

domain (Lagronegro-Molise basin; Patacca and Scandone 2007; Vezzani et al. 2010 and references therein). From the 114 

bottom to the top, the bedrock succession includes late Triassic dolostones, Cretaceous limestones, and Paleocenic-115 

Lower Miocenic calcarenites cross-cut by the pillow lava basalts belonging to Liguride units of the northern sector of 116 

Calabrian arc (Quitzow 1935, Grandjaquet and Grandjaquet 1962, Amodio Morelli et al. 1976, Ghisetti and Vezzani, 117 

1983; Iannace et al. 2004, 2005 and 2007; Liberi et al. 2006; Filice et al. 2015 and Tangari et al. 2018). 118 
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The origin of the Campotenese basin, however, is related to a set of NW-SE striking extensional faults which, during 119 

the Middle-Late Pleistocene, displaced the contractional tectonic pile, favoring the deposition of alluvial and lacustrine 120 

sediments in a subsiding intra-mountain depression (Servizio Geologico d'Italia 1970). This set of conjugate SW- and 121 

NE-dipping normal faults represents the local expression of the Quaternary extensional belt that develops all along 122 

the Italian peninsula, nearly parallel to the axial zone of the Apennines, from northern Tuscany to the Calabrian Arc 123 

(Brozzetti 2011). North of Campotenese, (Lucania and southern Campania) the Apennine extensional belt includes 124 

several continental basins and their boundary faults, as the Irpinia, Vallo di Diano, Tanagro, Melandro-Pergola and 125 

Val d’Agri (Ascione et al. 1992; Maschio et al. 2005; Amicucci et al. 2008; Villani and Pierdominici 2010; Brozzetti 126 

2011; Filice and Seeber 2019 and Bello et al. 2021). To the south, it continues with the Crati graben that dissects the 127 

northern sector of the Calabrian Arc (Tortorici et al. 1995; Brozzetti et al. 2017b).  128 

On the regional scale, the Quaternary normal fault array controls the release of major seismicity, as suggested by the 129 

distribution of supra-crustal instrumental earthquakes (INGV 2020 and Iside 2007) and of the strongest historical 130 

events (Fig. 1a, Tertulliani and Cucci 2014; Rovida et al. 2020). Several seismological and paleo-seismological 131 

investigations claim that most of the faults bounding the Quaternary basins are seismogenic and therefore enable, in 132 

some cases, to associate major past earthquakes with specific structures (Pantosti and Valenzise 1990; Cello et al. 133 

2003; Galli et al. 2006; Spina et al. 2008; Brozzetti et al. 2009; Villani and Pierdominici 2010; Brozzetti et al. 2017a). 134 

These same studies highlight that the kinematics of the Quaternary faults and the focal mechanisms of the major 135 

earthquakes are mutually consistent and are compatible with an SW-NE direction of extension (RCMT and TDMT 136 

databases by Pondrelli, 2002 and Scogliamiglio et al. 2006). 137 

The area investigated in this work and the structures bounding the Campotenese basin have been pointed out recently 138 

in more detail by Brozzetti et al. (2017a), in the frame of a larger study of the Quaternary and active fault pattern on 139 

the Calabria-Lucania border (Fig. 1b,c). In the region, three main sets of normal faults have been mapped: a western 140 

one, consisting of east- to NNE-dipping faults (red lines in Fig. 1b), and two other main sets of W-to SW-dipping fault 141 

segments (blue lines in Fig.1b). The Campotenese Fault (VCT) is the westernmost splay of a SW-dipping fault referred 142 

to as Rotonda - Campotenese fault, which develops in a N160E average strike-direction and includes several right-143 

stepping en-echelon segments (Fig. 1b). The VCT extends from the southern border of the Mercure basin to the SW 144 

boundary of the Campotenese basin (average strike ~N155E) for ~15 km. Across its northern segment, an associated 145 

throw of ~120 m has been assessed based on the displaced stratigraphic boundaries mapped within the bedrock 146 

(passage between Triassic dolostones and Jurassic limestones). In this same sector, prevailing dip-slip kinematics has 147 

been documented by Brozzetti et al. (2017a). Along the east side of the Campotenese basin, the VCT is generally 148 

buried by Holocene deposits, but its localization can be inferred based on stratigraphic observations and geomorphic 149 

features, such as sharp ridge fronts, linear scarps, and slope breaks. The VCT controls the distribution and thickness 150 

of the clastic fill basin (Middle Pleistocene-Holocene in age, according to Schiattarella et al. 1994) that reaches the 151 

maximum thickness (> 30 m) in the western sector (VCT hanging wall, see boreholes stratigraphy at 152 

http://sgi2.isprambiente.it/mapviewer/) whereas is very thin (generally < 2-3 m) in the eastern one.  The spatial 153 

relationships, at surface and depth, between the Quaternary fault segments, and the hypocenters of the re-located 154 

events of the 2010-2014 seismic activity (Totaro et al. 2015; Brozzetti et al. 2017a; Napolitano et al. 2020, 2021; 155 

Pastori et al. 2021) suggest that the VCT is a good candidate as a seismogenic source for the Mw 5.2 (2012, October 156 

25) Mormanno mainshock. In addition, the analysis of the historical seismicity highlights that the epicenter of the Mw 157 

5.5, 1708 earthquake (Rovida et al. 2020) is located within the VCT hanging wall block, close to its northern 158 

termination, leading to hypothesize the possibility of a common seismogenic source with the Mormanno 2012 event. 159 
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Ultimately, based on the available data (e.g. Brozzetti et al. 2017a), the VCT must be considered an active and 160 

seismogenic fault, whose size (length of surface trace and depth of detachment) provides an estimate of seismogenic 161 

potential much greater than that released over the last few centuries, thus capable of giving surface faulting in the 162 

future. Following this line of reasoning, it is hypothesized that some strong paleo-earthquakes, unknown to date, may 163 

have caused, along the VCT trace, coseismic surface breaks that are currently no longer visible as they have been 164 

leveled by erosion and anthropogenic activity. The search for evidence of such possible paleo-ruptures is therefore a 165 

fundamental first step to define the actual seismogenic potential of the VCT and perhaps, to try filling in the Pollino 166 

seismic gap. 167 

FIGURE 1 HERE 168 

3. Methodology 169 

Ground Penetrating Radar (GPR) is a high-resolution geophysical method able to provide detailed images of the 170 

shallow sub-surface. This methodology is based on the recording of Em echoes, with operative frequencies for 171 

geoscience applications generally between 10 MHz and 1000 MHz, depending on the transmitting and receiving 172 

antennae. The GPR reflections rise from dielectric permittivity contrasts between the subsurface targets and the 173 

surrounding media, which in geological and archaeological applications typically correspond to geo-lithological 174 

changes or water content variations (Jol 2009). In “low-loss” materials (Davis and Annan 1989), the investigation 175 

depth range is generally within the first ten meters or less. The latter is however controlled also by the electrical 176 

conductivity, which for high values causes radar signal attenuation (Annan 2001). The reflections are recorded as a 177 

function of the Two-Way-Travel time (TWT) propagation, and displayed as a 1D GPR trace. Several GPR traces 178 

displayed along a transect build-up a radar profile or “radargram”, that is the 2D representation of the GPR reflections, 179 

more commonly identified as the conventional GPR output. A GPR dataset may be provided also as a 3D volume, 180 

which has been common for 25+ years in research applications and recently more widespread due to a wider diffusion 181 

of commercial GPR instruments equipped with arrays of antennae. The GPR is used in many research and applied 182 

fields, such as geological, sedimentological, hydrogeological applications (Bristow and Jol. 2003; Jol 2009), and also 183 

in archaeological and engineering studies (Conyers 2006, 2016; Daniels 2004; Goodman and Piro 2013; Utsi 2017). 184 

Several 2D/3D GPR studies have already imaged buried tectonic structures. These studies have shown geophysical 185 

images of faulting, supporting and/or extending outcrop, borehole, trench data, and contributing to base-knowledge 186 

of seismogenic structures as well as to the seismic hazard assessment of several regions around the world. Among the 187 

pioneers, we can mention Benson (1995), Smith and Jol (1995), Busby and Merritt (1999), Cai et al. (1996) and Liner 188 

and Liner (1997), and on the successive twenty years, other 2D GPR studies were achieved across several faults 189 

(Audru et al. 2001; Demanet et al. 2001; Overgaard and Jakobsen, 2001; Bano et al. 2002; Liberty et al. 2003; Reiss 190 

et al. 2003; Slater and Niemi, 2003; Malik et al. 2007; Wallace et al. 2010; Yalciner et al. 2013; Imposa et al. 2015; 191 

Anchuela et al. 2016; Nobes et al. 2016; Matos et al. 2017; Pousse-Beltran et al. 2018; Zajc et al. 2018; Zhang et al. 192 

2019 and Shaikh et al. 2020). A few GPR surveys have been acquired across Italian normal faults (Salvi et al. 2003; 193 

Jewell and Bristow, 2006; Pauselli et al. 2010; Roberts et al. 2010; Ercoli et al. 2013a; Bubeck et al. 2015; Cinti et al. 194 

2015). Over time, such 2D GPR studies were flanked by an increasing number of pseudo-3D or full-3D GPR studies 195 

(Grasmueck et al. 2005). Grasmueck and Green (1996) traced the future path of three-dimensional GPR applications, 196 

providing a dense 3D GPR volume to image  fractures in a Swiss quarry. The study opened the possibility to three-197 

dimensional GPR imaging of subsurface geological structures. Successive studies extended the approach to 198 
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characterize active faults in different tectonic regimes combining 2D and pseudo-3D GPR surveys (Gross et al. 2000, 199 

2002, 2003, 2004; Green et al. 2003; Horstmeyer et al. 2005; Tronicke et al. 2006; McClymont et al. 2008, 2009, 200 

2010; Vanneste et al. 2008; Christie et al. 2009; Carpentier et al. 2012a,b; Malik et al. 2012; Brandes et al. 2018). A 201 

review of the near-surface GPR faulting studies suggests some reflection characteristics as possible indicators for the 202 

detection of subsurface fractures and faults (e.g. Smith and Jol 1995; Liner and Liner 1997; Reiss et al. 2003; Gross 203 

et al. 2004; McClymont et al. 2008, 2010 and Bubeck et al. 2015). Among these, sharp lateral reflectivity variations, 204 

interruptions of the reflections, and the presence of hyperbolic diffractions are considered convincing evidence, as 205 

shown also by numerical simulations (Ercoli et al. 2013a; Bricheva et al. 2021). In addition, we have accounted for 206 

additional GPR indicators identified for Quaternary faulting in similar environments (Ercoli et al. 2013a,b; 2014; 207 

2015), which are linked to the geometry of stratigraphic deposits across fault zones: i) reflections abrupt truncating 208 

and offsetting along sub-vertical discontinuities (especially in the case of a normal fault); ii) reflection packages 209 

thickening as they approach the fault strands; iii) abrupt lateral dip variation of the reflections; iv) peculiar reflection 210 

package geometries, with contorted reflection patterns resembling “colluvial wedges”, which McCalpin (2009) 211 

defines as deposit due to “subsidence and sedimentation of the hangingwall and erosion of the morphological scarp 212 

in the footwall”; v) localized strong GPR signal attenuation due to the presence of conductive media within the main 213 

fault zone (possibly associated with colluvial wedges). 214 

Based on the research and criteria reviewed above, we carried out our interpretation of near-surface faulting based on 215 

the co-existence of most of these features along several adjacents analyzed GPR profiles. These conditions strengthen 216 

the interpretation of each profile and aids to highlight the spatial continuity of the interpreted structures over linear 217 

distances of at least many tens, or hundreds, of meters. 218 

3.1 GPR and GNSS survey 219 

The GPR profiles were acquired across the VCT fault (Fig. 1c), during three different geophysical campaigns in the 220 

years 2014-2015 (Fig. 2). The entire dataset encompasses 49 radar profiles (linear length of about 4100 m) collected 221 

with a Common Offset (CO) configuration. 222 

FIGURE 2 HERE 223 

We used a Zond 12e GPR system equipped with 300 and 500 MHz antennae. The lower frequency antennae was 224 

ultimately preferred and considered the best trade-off between maximum resolution and achievable signal penetration 225 

(in our case ~ 4 m) concerning the surveyed materials and wanted subsurface structures. The GPR was equipped with 226 

an odometer wheel to measure the radar profiles’ length and with a Topcon GR-5 Global Navigation Satellite System 227 

(GNSS) receiver to achieve accurate positioning of GPR traces and profile. Considering the scarce presence of 228 

obstacles across the survey site and the good satellite coverage, we opted for a Network Real-Time Kinematic 229 

positioning (NRTK, connected to the NETGEO network), measuring coordinates and elevations with centimetre 230 

accuracy, and stored directly within the SEG-Y GPR files.  231 

Three datasets were acquired after preliminary fieldwork and collection of geological structural data at the surface and 232 

which allowed us to infer the possible location of the fault trace. The average NE-SW direction of the GPR lines was 233 

initially planned with the primary purpose of intersecting the VCT fault perpendicularly to its SW-NE strike, as 234 

reported by literature and visible by surface evidence. This solution theoretically allows a more reliable interpretation 235 
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of the investigated structure by reducing the effect of the apparent dip-direction and dip-angle of both stratifications 236 

and faults. 237 

The first acquisition carried out in 2014, resulted in twelve SW-NE GPR profiles collected in the southern sector 238 

(CMT light-blue lines in Fig. 2a), which was a flat land characterized by Quaternary alluvium. The second acquisition 239 

encompassed four additional radar profiles collected in the same area, and another nine radar profiles progressively 240 

moving to north, which were collected with slightly different and converging orientations in the central sector (CMT 241 

green lines Fig. 2a). This solution was pursued for two main reasons: 1) to avoid directly surveying the outcropping 242 

dolostones (only partially crossed with two northernmost profiles) characterizing two hills h1 and h2 (dashed white 243 

polygons in Fig. 2), thus focussing only on the sedimentary cover which is our target for possible Quaternary faulting; 244 

2) to optimize, using subsurface data, the future acquisition schemes by figuring out the effective “apparent dip” of 245 

the geologic structures, to consider in the interpretation of 2D GPR images (similar to the interpretation of reflection 246 

seismic profiles). 247 

In order to intercept several possible buried faults and fault-related structures as well as to fully image the local 248 

structural setting, the successive 2015 acquisition crossed part of the Triassic dolostones ridge with longer GPR 249 

profiles. Preliminary results shown by GPR profiles collected during the second 2014 campaign (close to h1 and h2) 250 

revealed a considerable difference in GPR reflectivity between the unconsolidated deposits and layered and fractured 251 

Mesozoic lithotypes (Gafarov et al. 2018). Therefore, two new datasets of 24 GPR parallel radar profiles (CMT dark-252 

blue sets of lines in Fig. 2a, north “n” and south “s”) were extended in NNE-SSW and NE-SW directions, 253 

respectively, crossing h1 for several tens of meters (max profile length ~220 m) throughout the basin. The GPR profiles 254 

were recorded using a trace distance of 0.05 m and a profile inter-distance of 10 m for dataset “n” and 25 m for dataset 255 

“s”, respectively. A detailed summary of the acquisition parameters used in the field during the GPR surveys is 256 

reported in Table I. For these two new grids, the profile spacing and positioning are more regular and accurate, thanks 257 

to a preparatory transects planning using a Geographic Information System Information System  (GIS) project. Thus, 258 

we later staked out their initial and final positions during the fieldwork through the differential Global Navigation 259 

Satellite System (GNSS). The results of the accurate GPR traces positioning achieved during the GNSS campaigns 260 

were later used also for GPR data processing, visualization, and interpretation. 261 

TABLE 1 HERE 262 

3.2 GPR data processing and results: 263 

The processing sequence was customized after testing several flows and parameters. We aimed to remove random and 264 

coherent (e.g. ringing) noise and enhance the data quality to better visualize the geometry of the buried reflections and 265 

their discontinuity in signal amplitude and phase. The first step was an accurate Quality Control (QC) of the profile 266 

coordinates and topographic profiles. Although the favorable environmental conditions of the site for a GNSS survey, 267 

some measurements were occasionally suffered a degradation of positional accuracy (e.g. temporary scarce satellite 268 

coverage or poor communication via Network Transport of RTCM via Internet Protocol - Ntrip). For some traces 269 

therefore the coordinates and elevation field records that were outliers were corrected using various strategies (e.g. 270 

replacement, interpolation, or smoothing, Figs. 3a,b).  271 

FIGURE 3 HERE 272 
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We have also compared our measurements with topographic transects extracted from a 10 m and a 5 m resolution 273 

Digital Terrain Models (DTM) by Tarquini et al. (2012) and by Regione Calabria. Later on, we finally used a 1 m 274 

resolution DTM (Geoportale Nazionale, Lidar data provided by Italian Ministero dell’Ambiente e della Tutela del 275 

Territorio e del Mare - MATTM) to double-check if, despite the different scales of observation, the topographic 276 

profiles were comparable. Although the metre resolution of the DTM is unable to represent centimetre topographic 277 

variations, the comparison confirmed an excellent match of the topographic profiles at a meter scale, so that the DTM 278 

data were integrated to correct the GNSS measured topography when the accuracy of GNSS recordings were 279 

excessively degraded. With the topographic profiles corrected, the raw GPR data (Fig. 3c, illustrating the profile 280 

cmt5s) were initially processed with the Prism software (Radar System, Inc., http://www.radsys.lv/en/index/) using a 281 

basic processing sequence, to analyze the main characteristics of data and optimize a customized processing flow. The 282 

processing sequence was later improved through ReflexW software (https://www.sandmeier-geo.de/reflexw.html, see 283 

Table II for details on the processing algorithms and parameters). The workflow included a time-zero correction, 284 

dewow, amplitude recovery, velocity analysis, background removal, bandpass filtering, F-K filtering, 2D time 285 

migration, topographic correction, and time-to-depth conversion. The amplitude recovery was operated through a 286 

“gain function” including by a linear and an exponential coefficient (g(t)=(1+a*t)*e(b*t)) to enhance the amplitude 287 

(reflectivity) contrasts as well as preserving the horizontal and vertical amplitude variations already visible in the raw 288 

data (Fig. 3a). This amplitude recovery function was used across all the profiles with slight customization depending 289 

on the datasets (details in table II). The entire processing flow was applied to all the available radar profiles, again 290 

with occasional filtering adaptations aiming to remove local pervasive signal ringing (e.g. due to low antennae-ground 291 

coupling). Particular care was dedicated to the migration process, whose algorithm was decided after extensive tests 292 

on several radar profiles to select the best migration strategy.  293 

TABLE 2 HERE 294 

In fact, a very different reflectivity and maximum depth of penetration are visible in the data: it is more than 150 ns 295 

in the central sector, reducing to 70-80 ns in the rest of the radar profiles (Fig. 3c): this fact suggests sharp lateral 296 

variations of subsurface media (Figs. 3d) and possibly of the velocity field. Thus, we have first tested a 1D time 297 

migration algorithm (Kirchhoff) performing a Migration Velocity Scan (MVS) analysis (Forte and Pipan 2017) and 298 

inspecting the success of diffraction hyperbola collapse after migration. We have varied constant values of Em 299 

velocity, from a minimum of 0.06 up to 0.12 m/ns, with steps of 0.01 m/ns, to evaluate considerable variation in 300 

dielectric properties of surveyed media. The MVS highlighted a higher velocity for the central sector of the GPR 301 

profiles which displays high reflectivity: Fig. 4 illustrates an extract of the migration results obtained on the profile 302 

cmt1n_a, by using three constant values of average velocity. The profile in Fig. 4a shows the unmigrated version 303 

characterized by numerous hyperbolic and half hyperbolic diffractions originated by single scatter points and wavy 304 

reflections (white arrows). In Fig. 4b we display the first test using v = 0.07 m/ns, showing overall good results, with 305 

slightly under-migration at a few points mainly located within the shallower sediments (light-blue arrows). The 306 

hyperbolic diffractions are also nicely collapsed using higher velocity (v = 0.09 m/ns) as shown in Fig. 4c (dark-blue 307 

arrows), even if some imaging problems are rising on deeper reflections. The last migration scan test (v =0.11 m/ns) 308 

displays a good result only in few profile sectors (dark-blue arrows), particularly localized within the sectors with high 309 

reflectivity, displaying an improved lateral reflection continuity. The rest of the radar profile shows general poor 310 
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imaging, particularly in the area characterized by strong attenuation, where the wavy reflection is clearly over-311 

migrated (red arrows indicating migration smiles, Fig. 4d). 312 

FIGURE 4 HERE 313 

The workflow, therefore, suggests a challenging imaging task, due to velocity variation happening not only in depth 314 

as well as laterally across the different media. This sharp change of reflectivity and velocity at a distance of about 13-315 

14 m (Fig. 4d) represents a complex problem for the efficiency of 1D migration algorithms standardly used for GPR 316 

imaging. Such considerations have driven to test a 2D migration algorithm, by creating and using a 2D velocity model 317 

obtained for each radar profile through a hyperbolic diffraction fitting tool (Fig. 5a). Single velocity points have been 318 

fitted for each area clearly displaying hyperbolic diffractions, while in the remaining parts of the radar profiles we 319 

have arbitrarily included presumed velocity adaptation only to obtain a regular grid of points to spatially interpolate 320 

the 2D models. The 2D migrated radar profiles, in comparison to the 1D approach, resulted in improved imaging of 321 

GPR profiles, displaying a more accurate collapse of the hyperbolic diffractions into point sources and an improved 322 

relocation of dipping reflections, with a refinement of their geometry and an increase of their continuity. A good-323 

quality imaging result is visible on the central sectors of radar profiles displaying strong reflectivity and reflections 324 

with improved continuity, but also many phase breaks and displacements. Despite steep topographic gradients, sharp 325 

lateral velocity variation and the reflection heterogeneity might cause imaging issues to be treated using more specific 326 

workflows (Lehmann and Green, 2000; Heincke et al. 2006; Goodman et al. 2007;  Dujardin and Bano 2013), we 327 

believe we have reached a good compromise for our purposes. In our case, a considerable improvement, can be seen 328 

along the hill-slope and flatter areas (profile cmt1n_a, Fig. 5b) which are of greatest interest for the study aimed at 329 

detecting possible earthquake ruptures within the Quaternary deposits. The improved imaging of reflection geometries 330 

is therefore fundamental for the interpretation and detection of geophysical signatures of faults. 331 

FIGURE 5 HERE 332 

A successive import of the processed SEG-Y was done into the seismic interpretation software OpendTect Pro v.6.4 333 

(Academic license courtesy of dGB Earth Science, https://www.dgbes.com), which was used first for global quality 334 

control of processing operations (correctness of topographic correction and datum plane, coordinates accuracy and 335 

matching, profiles orientation and intersection) and for three-dimensional (3D) visualization of all the profiles (Fig. 336 

6a). 337 

The three-dimensional GPR project was subsequently integrated with geological and structural maps, DTM, and 338 

literature schemes (using a common Coordinate Reference System: WGS84 UTM Zone 33N, EPSG: 32633) in the 339 

Move suite software v. 2019.1 (Academic license courtesy of Petroleum Experts, https://www.petex.com/) for the 340 

GPR interpretation and model building. All the east and west-dipping fault surfaces were created interpolating the 341 

fault-sticks picked on displaced reflections and correlated across adjacent radar profiles. In particular, we used the 342 

"surface geometry" tool to extract the properties of each single mesh building up the surfaces, and obtaining the "dip" 343 

and "dip azimuth" data. Subsequently, such values have been automatically saved in an attribute table, which can then 344 

be queried to reconstruct the “synthetic” stereonets. 345 

4. GPR data description and interpretation  346 
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The 3D MOVE project allowed us to extract 2D and 3D visualizations of the radar profiles acquired across the VCT 347 

fault trace and allows us to better figure out the relationships between the main reflections identified on the different 348 

GPR data (Fig. 6a). The workflow aimed to reconstruct and model the three-dimensional surfaces including horizons 349 

and high-angle discontinuities.  350 

FIGURE 6 HERE 351 

A common feature on all the radar profiles is the strong reflectivity visible within their central sectors (profile cmt3n, 352 

Fig. 6b), which are characterized by a more irregular and steeper slope, particularly within the northern portion of the 353 

surveyed area. These sectors with deep penetration areas are caused by the Triassic dolostones, which outcrop in the 354 

central and northern portions of the study area (Figs. 1c and 2a). In the southern side of h1, thin microbialitic laminae 355 

allows one to measure the attitude of the bedding, which shows a NNW dip (~ 30-35°). In the same area, we measured 356 

two sets of major and minor joints, both with a dip angle of ~ 40-45 degrees and a SW and SE dip, respectively. 357 

Looking at the quality of the radar reflections and at the remarkable depth (~ 6 m, Fig. 6b) reached by the GPR signal, 358 

this rock type represents an excellent dielectric medium (corresponding to higher frequency content zone in the 2D 359 

spectrum of Fig. 6c). However, its reflection pattern is not spatially homogenous, being often characterized by oblique 360 

and sub-parallel reflections interpretable as dolostone beds, displaying moderate (25-30°) west and east “apparent” 361 

dip on the respective sides of the surveyed dolostone hills. In addition, these reflections are frequently cut and slightly 362 

displaced by apparent high-angle (60-65°) phase discontinuities, also highlighted by a dense hyperbolic diffractions 363 

pattern (radar profile cmt2n, Fig. 7a), interpreted as sets of joints or minor faults fracturing and displacing the 364 

dolostone layers (Fig. 7b). Apart from its internal heterogeneities, the GPR signature of the Triassic dolostones can be 365 

considered as a well-defined depositional facies (fc1) (Sangree and Widmier 1979; Huggenberger 1993; Beres et al. 366 

1999; Jol and Bristow 2003). This radar signature was recorded not only in correspondence of the outcropping 367 

carbonates but also in the transition slope areas, where just a thin soil layer or a scarce sedimentary cover was present 368 

onsite (Figs. 7b,c). A different GPR facies (fc2) is characterized by laterally-continuous and sub-parallel prominent 369 

reflections in the very shallow depth, just beneath the direct arrivals (< 1 m), which stratigraphically seals the 370 

underlying reflections; more discontinuous, wavy and contorted reflections of moderate to low reflectivity are visible 371 

in the 1-3 m depth-range (variable across the analyzed profiles) onlapping onto a generally prominent and wavy 372 

reflection (Figs. 7a,b). Below this reflection pattern (~ 2-3 m), the signal strongly attenuates. Summarizing , the 373 

shallower reflections packages show continuous beds dipping parallel to the slope, but under these, the slightly deeper 374 

reflections are less continuous, displaying variable dip and locally a contorted pattern, with numerous diffraction 375 

hyperbolas (in unmigrated data, Fig. 7a) as well as important lateral amplitude variations (Fig. 7b). 376 

FIGURE 7 HERE 377 

We have classified the overall radar signature of these reflection packages as facies fc2, corresponding to the 378 

alluvial/colluvial deposits (Fig. 7b,c,d) outcropping on the flatten sectors, which represent the GPR profile sectors 379 

we’ve carefully inspected to find for geophysical evidence of Quaternary faulting. A key-layer for this research is in 380 

our opinion the described wavy reflection, recognized in several radar profiles. This prominent reflection shows 381 

frequently a stepped geometry, with frequent breaks of its continuity and lateral depth variations; moderate to strong 382 

signal attenuation generally underlies this reflection. The related interpretation is not straightforward in the absence 383 

of direct data (e.g. boreholes and/or paleoseismological trenches) or at least without additional geophysical data. A 384 
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strong reflection suggests significant variation of a dielectric constant between the two media so that most of the 385 

incident energy is reflected back to the receiver at the surface, which is potentially explained by several geological 386 

models, such as: i) a high dielectric contrast may be a result of a sharp soil moisture variation (Ercoli et al. 2018); ii) 387 

a sharp erosional, stratigraphic or tectonic boundary within heterogeneous deposits (Ercoli et al. 2015), or iii) a contact 388 

between two considerably different lithologies, such as unconsolidated deposits laying above a bedrock substrate (e.g., 389 

Frigeri and Ercoli 2020) reflecting back all (or almost all) the incident signal. In addition, the possible role of 390 

conductive sediments within layered deposits (e.g. high clay content) should not be discounted, and it might explain 391 

localized strong signal attenuation. 392 

To support the GPR data interpretation, some suggestions for consideration are: 1) stratigraphy of two water-wells 393 

located only ~2.5 km away on the north-westernmost sector of the Campotenese basin (Brozzetti et al. 2017a); 2) 394 

geomorphological and geological data achieved through aerial-photo interpretation and field study on the surrounding 395 

landscape (Brozzetti et al. 2017a); 3) the geometrical characteristics shown by this reflection and of the underlying 396 

reflection pattern visible in the processed data.  397 

The available well logs show the Pleistocene-Holocene alluvium and colluvium layered above the carbonate bedrock 398 

~20-30 m depth (Brozzetti et al. 2017a), a greater depth than the strong GPR reflection. However, it should be observed 399 

that the drilled area is located over the depocenter of the basin whereas the studied GPR site is placed just on its eastern 400 

border, in proximity to emerged calcareous hills. In addition, it should be mentioned that only terraced Middle-401 

Pleistocene silts and sands (Schiattarella et al. 1994) and slight coatings of Late Pleistocene colluvium (generally < 2 402 

m thick)  are documented to outcrop in the eastern sector of the basin (footwall of VCT fault) (see Fig. 7 in Brozzetti 403 

et al. 2017a). 404 

The subsurface geometries highlighted by the GPR profiles suggest a relatively thin layer of sedimentary deposits 405 

resting on a fractured substratum, whose top surface is progressively deepening towards the west, thus providing 406 

increased space for settling sediments. For this reason, a gradual deposits thickening is observed from east to west. 407 

Therefore, we interpret the prominent and wavy GPR reflection as a buried top layer of carbonate (e.g. as observed 408 

by Bubeck et al. 2015), in our case the Upper Triassic dolostones formation lying beneath shallow and poorly 409 

consolidated Quaternary deposits. Thus, in this surveyed sector of the basin, we interpret the dolostone top to be 410 

located not ~20-30 m deep as in the noth-westernmost area, but at a shallower depth (1-3 m) below the topographic 411 

surface and across both two sides of the surveyed hills. After picking this strong reflection in all the radar profiles, we 412 

have therefore reconstructed the top of bedrock surface (Fig. 8a). 413 

We can now focus on the structural interpretation by analyzing the geophysical characteristics of this strong reflection. 414 

As illustrated by a recent structural map of the basin in Fig. 8a (modified after Brozzetti et al. 2017a), the area is 415 

dissected by a set of en-echelon fault splays connected to the VTC master fault. The strong reflection interpreted as 416 

the dolostone top shows a clear “stepped” geometry (Figs. 5b-6b-7b-8b), highlighting abrupt lateral variations in depth 417 

and in its thickness (sediment growth and onlaps). We also notice other geophysical features, which can be observed 418 

in the stratigraphy of overlying deposits fc1: some reflections are semi-continuous to discontinous (sharp variation in 419 

signal amplitude and phase), displaying lateral dip variation. 420 

FIGURE 8 HERE 421 

In some sectors these broken reflection packages present truncantions (Smith and Jol 1995), vertical offset, and 422 

hyperbolic diffraction events. Contorted reflections across the main discontinuities frequently show localized strong 423 
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attenuation of GPR signal (interpretation summarized in caption of Fig. 8b), which might be linked to their high dip-424 

angle, causing a minor amount of energy being reflected back to the antenna, but more likely, due to the presence of 425 

conductive fine soils across faulted zones (e.g. circles 1 and 2 in Fig. 8b). These conditions can be linked to different 426 

depositional facies across fault zones (McClymont et al. 2010) e.g. including colluvial wedges (Reiss et al. 2013; 427 

Bubeck et al. 2015). Such peculiar GPR signature is therefore compatible with possible co-seismic displacement due 428 

to Late Quaternary surface faulting events (Fig. 8b). Using such stratigraphic evidence and geophysical markers of 429 

faulting, we have therefore interpreted and classified synthetic (west-dipping, blue) and antithetic (east-dipping, red) 430 

normal faulting events within the Quaternary sediments (Fig. 8b). The interpreted faults present a dip angle between 431 

65-75° and a vertical offset ranging from a few tens of centimeters up to ~1 meter, and were picked using solid lines 432 

(fault sticks). During the interpretation process, when the presence of geophysical markers of faulting were uncertain, 433 

a dashed fault segment has been initially added and only later analyzed a second time by looking at their possible 434 

connection with nearby lines. In addition to the fault sticks within the Quaternary sectors, we placed main fault sticks 435 

across the sharp boundary between the Triassic dolostone and the Quaternary sediments. The contact is generally 436 

characterized by fractured zones including hyperbolic diffractions (in unmigrated data), contorted reflections 437 

geometry of variable dip angle, abrupt truncations marked by sharp lateral variation of the reflectivity due to localized 438 

attenuation (Figs. 3 to 9).  439 

By interpolation of the fault sticks placed in adjacent profiles, we have created the fault surfaces that show a good 440 

degree of continuity, from north to south (Fig. 9).  441 

Our geophysical interpretation allowed reconstructing the fault-network and the geometry of the associated 442 

synsedimentary deposits, at a higher resolution (Fig. 9). The 3D map views of Fig. 9 show a structural scheme of the 443 

main fault lineaments displaying a NW-SE strike. Our interpretation highlights an en-echelon system of main SW and 444 

NE-dipping faults on both sides of the hills where the Triassic dolostones crop out, as well as several secondary 445 

structures within the Quaternary sediments. 446 

5. Discussion  447 

5.1 Inferences from subsurface 3D model 448 

The high-angle GPR discontinuities identified in the study, dissecting not only Quaternary alluvial-colluvial deposits 449 

but also deeper reflections referred to deeper stratigraphic layers, show a considerable continuity in the NW-SE 450 

direction (Fig. 9). These structures can be interpreted as the surface expression of an articulated set of extensional 451 

meso-faults associated with the VCT. 452 

The reconstructed faults are arranged in a horst-graben structure in which the higher displacements are associated to 453 

the west-dipping faults (Fig. 9). Among these faults, the master structure in the southern sector of the basin (Fig. 9a) 454 

bound toward west a structural high where the Triassic dolostones crop out. The structural high, which corresponds 455 

to a topographic high elongated in the NNW-SSE direction, is also bordered towards the east by a minor east-dipping 456 

normal fault (Fig. 9b). Thus,  it appears as an uplifted horst showing an axis of elongation sub-parallel to the average 457 

strike of the Campotenese basin. The horst is mostly buried within the basin but locally emerges from the Quaternary 458 

sediments, as in the central portion of the investigated area (h1 and h2 in Fig. 2a). 459 

The fault-set d1 in Fig. 9c shows the maximum displacements and the most evident deformations of the adjacent sub-460 

surface deposits. It can be considered a splay of the VCT (Fig. 8b), separated by a right step-over of about 0.5 km 461 

from the main segment that borders the eastern basin (Figs. 2c, 8a). 462 
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The three-dimensional model (Fig. 9a,c) highlights that these faults, despite having an average NW-SE direction, are 463 

characterized by a complex polymodal pattern of strikes, with NS sections alternating to NW-SE sections. The 464 

character, which is observed at various scales, both along the entire VCT and along all the extensional structures of 465 

the area (Brozzetti et al. 2017a), is also confirmed by the statistical analysis of the reconstructed fault planes reported 466 

in the stereo plots of Fig. 9d (d1-d3= west-dipping faults; d2-d4= east-dipping faults). 467 

FIGURE 9 HERE 468 

The variations of thickness of the Quaternary deposits, detectable on the radar profiles, are consistent with the horst 469 

and graben configuration. Thinning is observed in correspondence with the raised buried blocks whereas thickening 470 

and wedge-shaped and locally chaotic geometries occur in correspondence with the lowered blocks. These latter 471 

features are only associated with west-dipping faults, thus enhancing the role of this fault set (Fig. 8b), and the syn-472 

tectonic nature of the Late Quaternary sedimentation. 473 

5.2 Seismic hazard implications 474 

In many cases, seismological data show that the outcropping Quaternary faults are capable of releasing earthquakes, 475 

but the maximum expected magnitude is not well constrained. An estimate of can be made using well-known scale-476 

relationships (Wells and Coppersmith 1994; Wesnousky et al. 2008, Leonard 2010, Stirling et al. 2013) with 477 

knowledge of the geometric parameters (e.g. fault length, area and depth), which are often difficult to assess.  478 

These scale relations can be applied also on scarps originated by cumulated coseismic surface faulting events of 479 

medium-strong earthquakes (generally M > 6), possibly distinguishing the amount of slip due to each event through 480 

paleoseismological analysis. But in the case of VCT, no direct information is available on the nature of the surveyed 481 

deposits, and their accurate dating has not been carried out at the present day. The interpretation of our GPR data 482 

confirms the segmentation of the VCT and point out the presence of a buried splay, which appears to have exerted a 483 

strong control on the deposition of Late Quaternary sediments, just below the present topographic surface. Moreover, 484 

we have highlighted that the sediments, in turn, are affected by faulting. Their location at a very low depth (1 - 4 m) 485 

in a flat land of an intra-mountain basin which is presently undergoing alluvial and colluvial sedimentation, suggests 486 

their attribution to the Holocene. Thus, pointing out normal faulting of Holocene deposits would be, in itself, a very 487 

important result for the Campotenese area, as no previous study has provided this kind of evidence yet. In fact, a 488 

Middle-Late Pleistocene age of activity was suggested for the Mercure and Campotenese boundary faults by 489 

Schiattarella et al. (1994) and Brozzetti et al. (2017a), based on morpho-structural observations, whereas their 490 

Holocene activity had been only inferred according to the possible associations of the faults with the recent 2010-2014 491 

Pollino seismic sequence (Brozzetti et al. 2017a). 492 

Our data seem even more promising because the GPR facies interpretation highlights the possible presence of small-493 

scale grabens or half-graben and fault-related coseismic-wedges (e.g. as observed by Reiss et al. 2013 and Bubeck et 494 

al. 2015), at shallow depth (just below the present agricultural soil). This inference would testify to not only the 495 

persistence of extensional deformations up to the very Late Quaternary but would even imply the occurrence of 496 

episodes of surface faulting, proving new perspectives on the actual seismic hazard of the area. In other words, the 497 

Campotenese basin may have been affected in the relatively recent past by medium-strong earthquakes, nucleated 498 

from the VCT, capable of producing surface coseismic scarps, which were subsequently erased by footwall erosion 499 

and sedimentation at the hanging wall. 500 
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The hypothesis of past earthquakes, with a magnitude sufficiently high to cause surface ruptures in this area, sounds 501 

reasonable if we consider that historical events with 6 < Mw < 7 are documented a little further (~50 km) north and 502 

south (Fig. 1a) (Guidoboni et al. 2018).  503 

Some paleoseismological earthquakes with inferred magnitude up to Mw = 7 are attributed to the Castrovillari fault, 504 

located at about 20 km to SE and also falling within the Pollino seismic gap (Cinti et al. 1997; Michetti et al. 1997; 505 

Cinti et al. 2002, 2015; and Ercoli et al. 2015). 506 

The estimates of the VCT fault-length (Brozzetti et al. 2017a) provide an overall value of 15 km which is compatible 507 

with the maximum expected magnitudes capable to produce surface breaks. From using earthquake scaling 508 

relationships based on coseismic rupture-length, as the main computation parameter, the obtained magnitudes are in 509 

the range of 6.45 (Wells and Coppersmith 1994) to 6.8 (Wesnousky et al. 2008; Leonard 2010) in the case of a 510 

complete rupture of the VCT fault. The result suggests that the most recent earthquakes that have affected the study 511 

area (2012 - Mw 5.2; 1894 - Mw 5.1; 1708 - Mw 5.8 and perhaps 1693 - Mw 5.6) have a source at ~ 8 km depth (Totaro 512 

et al. 2015; Brozzetti et al. 2017a; Napolitano et al. 2020 and 2021, Sketsiou et al., 2021). Thus, the seismic energy 513 

released is likely too low for an active fault set as well as not enough to be causative of the buried VCT ruptures 514 

detected. Because historical catalogs do not show events with Mw > 6 (Guidoboni et al. 2018), probably a very 515 

energetic earthquake could have occurred before the period covered by the available seismological catalogs. In this 516 

context, the area needs more investigations to verify if an event with M>6 can repeat in the near future, as suggested 517 

by the recurrence times of strong earthquakes generated by the typical Apennine extensional faults, specifically ~ 4 518 

ky for this region (Galli 2020). Our study, points out the need of extending our detailed reconstruction of the buried 519 

segments of the VCT, both along- and across-strike, and not only in the surveyed sector, but also on segments 520 

bounding the northern edge up to the Mercure basin. In addition, our results may also be useful and preparatory for 521 

orienting and locating further campains, integrating other geophysical tools, and possibly paleoseismological trenches, 522 

drilling and sampling for dating (e.g., luminescence, radiocarbons, etc).  523 

Such investigations could help to address the following crucial points, namely: i) ground truthing the presence of such 524 

past coseismic surface breaks along the VCT, ii) define their timing, iii) obtain a recurrence time for the most energetic 525 

events, and ultimately iv) aid a quantitative evaluation of the probability that a strong earthquake could hit the area in 526 

the near future. 527 

6. Conclusions 528 

Our workflow allowed for the creation of a detailed 3D model which reconstructs the near-surface pattern of 529 

paleoseismic ruptures across an area straddling the VCT active fault across the Campotenese continental basin (Mt. 530 

Pollino region). Based on previous geological mapping, the VCT in southern section of the study area was 531 

hypothesized to be buried under a clastic Holocene cover. 532 

We have used non-destructive GPR survey, a powerful tool to investigate the shallow geological structures. The 533 

processing, analysis, assemblage, and interpretation of the 49 GPR profiles was pursued using expertise, techniques, 534 

and tools borrowed from reflection seismic industry applications. The use of GPR has allowed us to quickly investigate 535 

the study area with low costs, in a non-destructive manner and without special authorizations. A relatively fast pseudo-536 

3D GPR survey operated during four days of team fieldwork was an efficient compromise between spatial coverage 537 

of the study site and duration of the acquisition. On the other hands, the data processing was non-trivial, requiring 538 

about six months overall to set up an optimized workflow, due to challenging characteristics like the steep and rugged 539 
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topography as well as sharp lateral variations of geophysical properties of media (Triassic Dolostones vs Quaternary 540 

deposits).  541 

More in detail of the study area, our structural reconstruction shows several sets of sub-vertical discontinuities (1-4 m 542 

depth range), which we interpreted as extensional surface faulting, bounding small local “graben or semi-graben-like” 543 

structures located within Holocene sediments and down to underlying dolostones. We have also identified some 544 

chaotic and laterally discontinuous GPR-stratigraphic facies, interpreted as near-fault deposits (i.e. colluvial wedges 545 

?). These structures suggest the possibility that surface faulting occurred in relatively recent times, but its traces were 546 

successively leveled by the concurrent natural processes of erosion, aggradation and, anthropogenic activities. All 547 

these buried features suggests that past strong earthquakes (6 < Mw < 7) might have occurred in the study area, which 548 

is located within the central sector of the well known "Mt. Pollino seismic gap”. As in the time range covered by the 549 

historical seismological catalogs there is no record of such energetic events, we hypothesize that the area could be at 550 

high risk of occurrence of a strong earthquake.  We hope the primary effect of our work is to raise the level of attention 551 

regarding the seismic hazard in the Campotenese area, thus prompting further research to achieve an improvement of 552 

the base-knowledge for assessing its seismogenic potential. We firmly promote a more widespread use of our GPR 553 

workflow, particularly where near-surface data are scarce, as a base study for other seismic gaps worldwide.  554 
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GPR dataset presented in this study is available on request from the corresponding author. 570 
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Table 1 1017 

GPR survey information and parameters 

Antenna frequency (MHz) 300 (preferred) 500 

Number of acquired profiles 45 4 

Total profile length (m) 3789.5/4153 363.5/4153  

Profile distance (m) 10 and 25 (in g1 and g2)  not regular  

Traces distance (m) 0.05 0.02 

Number of samples 1024 512 

Time window (ns) 300-200* 200-100* 

Table 2 1018 

Processing Flow 
Parameters 

(300 MHz) 

Parameters 

(500 MHz) 

Trace editing, coordinates editing 

and corrections 
- - 

Time-zero correction - - 

Dewow (ns) 10 5 

Amplitude recovery function: 

g(t)=(1+a*t)*e(b*t) 

linear: 0.5 (2014) & 1.2 

(2015) exponent: 0.15 

(2014) & 0.6 (2015) 

linear: 0.5 (2014) & 1.2 (2015) 

exponent: 0.15 (2014) & 0.6 (2015) 

Velocity analysis 
Diffraction hyperbola 

fittying 
Diffraction yperbola fitting 

Background removal (ns) 
Applied from 5 ns to end 

(computed on all the traces) 

Applied from 5 ns to end  

(computed on all the traces) 

Bandpass  filter (MHz) 32/96/650/700  64/112/750/800 

F-K filter customized customized 

Time migration (2D Kirchhoff) 2D velocity models 2D velocity models 

Topographic correction GNSS/GIS Elevations GNSS/GIS Elevations 

Time-depth conversion 

(Quaternary deposits) 
v = 0,7 m/ns v = 0,7 m/ns  

 1019 

 1020 

Figures and Tables captions: 1021 

Figure 1 - Location maps of the study site (DTM sources: TINITALY by Tarquini et al., 2012 and by Regione 1022 

Calabria - www.regione.calabria.it, under license IODL 2.0. - https://www.dati.gov.it/iodl/2.0/): a) the image 1023 

illustrates the southern Italian peninsula with the regional faults pattern and the historical strong earthquakes; 1024 

b) map showing the studied region with local faults, and the detailed location of the three historical seismic 1025 

events (stars); c) detailed location of the GPR survey area within the Campotenese Quaternary basin crossing 1026 

a possible VCT fault splay. 1027 
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Figure 2 - GPR acquisition campaigns: a) GPR grids collected at the study site during the three field visits 1028 

(aerial image source: Regione Calabria - www.regione.calabria.it, under license IODL 2.0. - 1029 

https://www.dati.gov.it/iodl/2.0/); b) acquisition phase using the 300 and 500 MHz antennae (in the insert) and 1030 

GNSS receiver used for accurate data positioning; c) GNSS base station set up during the fieldwork. 1031 

Figure 3: Topographic correction of GPR profiles: a) example of accuracy degradation of GNSS data, 1032 

displaying an outlier both in map view and in topographic profile, on which the positioning error is 1033 

considerable; b) GNSS coordinates and topographic profile after the correction; c) raw GPR section displaying 1034 

high reflectivity in the central sector; d) example of full processed profile with topography displaying various 1035 

reflection patterns encompassing dipping reflections and diffractions. Vertical exaggeration is 4. 1036 

Figure 4: Migration tests performed during the GPR data processing: a) unmigrated 2D GPR profile, 300 MHz 1037 

antennae; b) migrated profile using a constant velocity v = 0.07 m/ns, light-blue arrows indicate good 1038 

diffractions collapse; c) migration output obtained with a constant velocity v = 0.09 m/ns, with dark-blue arrows 1039 

suggesting good migration results (migration artefacts are shown by red arrows); d) migration results using a 1040 

constant velocity v = 0.11 m/ns, with dark-blue arrows highlighting good hyperbolas collapse, particularly 1041 

within the high reflective unit; red arrows highlight clear migration smiles. 1042 

Figure 5: Example of 2D time-migration of radar profiles: a) example of hyperbolic diffractions fitting used for 1043 

2D velocity model building; a constant velocity value has been assumed in deeper no-diffraction areas for 1044 

interpolation purposes; b) 2D time-migration results, highlighting the good performance of the process, which 1045 

collapsed the hyperbolic diffractions and restored reliable reflection geometry. 1046 

Figure 6: GPR data visualization: a) fence diagram showing the three-dimensional location of some 1047 

representative GPR profiles in the northern sector of the study site; b) bidimensional GPR profile displaying 1048 

the central high reflective sector and dipping reflections across the hill; c) spatial variation of a 2D amplitude-1049 

frequency spectrum linked to variable physical properties of media along the profile. Vertical exaggeration is 1050 

4. 1051 

Figure 7: Correlation between GPR profiles and outcropping geology at the study site: a) unmigrated 300 MHz 1052 

profile displaying numerous hyperbolic diffractions; b) migrated profile displaying the apparent vs true layer 1053 

dip associated to fractured dolostone formation (facies fc1) and Quaternary deposits in attenuated sectors (GPR 1054 

facies fc2); c) Triassic Dolostone formation outcropping on the hill (red arrow indicates the bedding) and 1055 

nearby Quaternary deposits of the basin; d) an example of Quaternary colluvial and alluvial deposits 1056 

outcropping nearby the survey site. Vertical exaggeration is 2.5. 1057 

Figure 8: GPR data interpretation: a) three-dimensional image of the surveyed area, displaying the Dolostone 1058 

outcrops bounding the basin and the surveyed hill. The coloured surface represents the interpolated horizon 1059 

reconstructed after the picking of the interpreted Dolostone top reflection (DTM source: Regione Calabria - 1060 

www.regione.calabria.it, under license IODL 2.0. - https://www.dati.gov.it/iodl/2.0/); b) migrated radar profile 1061 

with the main interpreted fault splays and related sedimentary structures within the Quaternary deposits 1062 

(detail of unmigrated data in the two grey inserts): 1) semi-continuous and sub-horizontal reflections (fc1, 1063 

Quaternary deposits) onlapping the lower boundary (Dolostone top, black line above fc2); reflections package 1064 

thickening and truncation with localized attenuation, which suggest the presence of a colluvial-wedge close to 1065 

a W-dip normal fault (~0.6 m vertical offset); 2) mode discontinuous, from subparallel to wavy reflections 1066 

package (fc1) downlapping the lower Dolostone top boundary; the asymmetric, truncated reflectors thickening 1067 

is bounded by two possible conjugate normal fault strands (~0.5 m offset) displacing both fc1 and fc2; 3) 1068 

contorted reflections package with limited continuity, displaying thickening, truncation and distributed 1069 

attenuation, suggesting colluvial wedge deposits lying above fc2 close to a fault zone with a W-dip normal fault 1070 

(~0.8 m vertical offset). Vertical exaggeration is 2. 1071 

Figure 9: Results of the three-dimensional analysis and interpretation performed on the entire GPR dataset:  1072 

a) 3D structural model inferred after the geological mapping at the scale of the basin (DTM sources: TINITALY 1073 

by Tarquini et al., 2012 and by Regione Calabria - www.regione.calabria.it, under license IODL 2.0. - 1074 

https://www.dati.gov.it/iodl/2.0/); b) GPR section view with interpretation including synthetic and antithetic 1075 

fault splays; c) detailed structural scratch of faults obtained by the analysis and correlation across the entire 1076 

GPR dataset d) synthetic stereo-net plots of the fault planes in c), reporting the mean Dip Azimuth / Dip angle 1077 

extracted for the identified four main sets of discontinuities, with a Dip Azimuth ranging between N 235-245° 1078 

and N 062-072° for the for the west-dipping and East-dipping normal faults, respectively. Vertical exaggeration 1079 

is 2. 1080 

Table 1: Main information and GPR parameters used during the data collection (* the time window was 1081 

adapted depending on the surveyed area). 1082 

Table 2: Customized flow and details of the parameters used during the processing of the GPR dataset. 1083 
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