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Abstract. We reconstruct the 3D Fault Model of the structures causative of the 2010-2014 Pollino seismic activity by 13 

integrating structural-geological and high-resolution seismological data. We constrained the model at the surface with fault-14 

slip data, and at depth, by using the distributions of selected high-quality relocated hypocenters. Relocations were performed 15 

through the non-linear Bayloc algorithm, followed by the double-difference relative location method HypoDD applied to a 3D 16 

P-wave velocity model. Geological and seismological data highlight an asymmetric active extensional fault system 17 

characterized by an E to NNE-dipping low-angle detachment, with high-angle synthetic splays, and SW- to WSW-dipping, 18 

high-angle antithetic faults.  19 

Hypocenter clustering and the time-space evolution of the seismicity suggest that two sub-parallel WSW-dipping seismogenic 20 

sources, the Rotonda-Campotenese and Morano-Piano di Ruggio faults, are responsible of the 2010-2014 seismicity. The area 21 

of the seismogenic patches obtained projecting the hypocenters of the early aftershocks on the 3D fault planes, are consistent 22 

with the observed magnitude of the strongest events (Mw=5.2, and Mw=4.3). Since earthquake-scaling relationships provide 23 

maximum expected magnitudes of Mw=6.4 for the Rotonda-Campotenese and Mw=6.2 for the Morano-Piano di Ruggio faults, 24 

we may suppose that, during the sequence, the two structures did not release entirely their seismic potential.  25 

The reconstructed 3D fault model also points out the relationships between the activated fault system and the western segment 26 

of the Pollino Fault. This latter was not involved in the recent seismic activity but could have acted as a barrier to the southern 27 

propagation of the seismogenic faults, limiting their dimensions and the magnitude of the generated earthquakes. 28 
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1 Introduction 29 

In recent years, the reconstruction of 3D Fault Models (hereinafter referred to as 3DFM) obtained by integrating surface ad 30 

subsurface data, has become an increasingly practiced methodology for seismotectonic studies (e.g., Lavecchia et al., 2017; 31 

Castaldo et al., 2018; Klin et al., 2019; Ross et al., 2020; Porreca et al., 2020; Barchi et al., 2021; Di Bucci et al., 2021; SCEC, 32 

2021). Detailed structural-geological data are used to define the active faults geometry at the surface whereas high-quality 33 

geophysical data are needed to constrain the shape of the sources at depth. The 3DFM building helps determining the spatial 34 

relationships and the interactions between adjacent sources and identifying any barriers hampering at depth the propagation of 35 

the coseismic rupture. Moreover, such an approach leads to accurately estimating the area of the seismogenic fault, and 36 

therefore the expected magnitude. 37 

 38 

In Italy, reconstruction of 3DFM could give important achievements in the Apennine active extensional belt, which is affected 39 

by significant seismic activity (ISIDe, 2007; Rovida et al., 2020). This belt consists of ~NW-SE striking Quaternary normal 40 

fault systems, and the related basins, located just west or within the culmination zone of the chain (Calamita et al., 1992; 41 

Brozzetti and Lavecchia, 1994; Lavecchia et al., 1994, 2021; Barchi et al., 1998; Cinque et al., 2000; Brozzetti, 2011; Ferrarini 42 

et al., 2015, 2021). Its structural setting is very complicated due to a polyphase tectonic history characterized by the 43 

superposition of Quaternary post-orogenic extension on Miocene-Early Pliocene folds and thrusts and on Jurassic-Cretaceous 44 

sin-sedimentary faults (e.g., Elter et al., 1975; Ghisetti and Vezzani, 1982, 1983; Lipmann-Provansal, 1987; Mostardini and 45 

Merlini, 1986; Patacca and Scandone, 2007; Vezzani et al., 2010; Ferrarini et al., 2017; Brozzetti et al., 2021). 46 

 47 

Over time, detailed structural geological studies made it possible to recognize several seismogenic faults in the Apennine 48 

active extensional belt (Barchi et al., 1999; Galadini and Galli, 2000; Maschio et al., 2005; Brozzetti, 2011) and, in some cases, 49 

to document, through paleo-seismological data, their reactivation during the Holocene (Galli et al., 2020). Furthermore, the 50 

increasing availability of high-resolution imagery allows fault mapping at the sub-meter scale (e.g., Westoby et al., 2012; 51 

Johnson et al., 2014; Cirillo, 2020; Bello et al., 2021b, 2021c), while accurate geophysical prospections (e.g., Ground 52 

Penetrating Radar), allows investigating the fault surface at shallow depths (few meters or tens of meters; e.g., Gafarov et al., 53 

2018; Ercoli et al., 2013, 2021). Conversely, the geometries of the faults at depth are rarely available since high-resolution 54 

deep geological and geophysical constraints are often lacking (i.e., deep wells and/or seismic profiles). In fact, in the last 55 

decades, seismic reflection prospecting and deep-well exploitation for hydrocarbon research, avoided the area affected by 56 

active extension, and focused on the eastern front of the chain and on the Adriatic-Bradanic foreland basin system (ViDEPI: 57 

www.videpi.com, last access: 19 April 2021). 58 

This lack can be compensated with well relocated high-resolution seismological datasets, to be integrated with geological ones. 59 

In Italy, datasets of highly precise re-located hypocenters were collected during recent seismic sequences (Chiaraluce et al., 60 

2004, 2005, 2011, 2017; Totaro et al., 2013, 2015). These sequences include thousands of earthquakes (in confined volumes 61 
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of rock) which appear to roughly connect with the fault traces at the surface. Therefore, such distributions of earthquakes are 62 

generally referred to as ongoing rupture processes affecting an entire, or wide portions of seismogenic faults. 63 

In some cases, very high-resolution hypocenter locations (Chiaraluce et al., 2017; Valoroso et al., 2017), as well as reflection 64 

seismic lines, allow to clearly highlight the seismogenic structures at depth (Sato et al., 1998; Bonini et al., 2014; Lavecchia 65 

et al., 2011, 2012a, 2012b, 2015, 2016; Gracia et al., 2019; Porreca et al., 2018; Barchi et al., 2021). 66 

The study area of this work includes the northern sector of the so-called “Pollino seismic gap” (Fig. 1), in which paleo-67 

earthquakes up to M=7 are documented (Michetti et al., 1997; Cinti et al., 1997, 2002), whereas the location and size of 68 

seismogenic sources are a matter of debate (Michetti et al., 2000; Cinti et al., 2002; Papanikolaou and Roberts, 2007; Brozzetti 69 

et al., 2009, 2017a). Brozzetti et al. (2017a) mapped a set of active faults in the sector between the Mercure, Campotenese, and 70 

Morano Calabro Quaternary basins (Fig. 1a). During 2010-2014, this area was affected by a low to moderate instrumental 71 

seismicity (Pollino seismic activity), climaxing with the 25 October 2012, Mw 5.2 Mormanno earthquake, and characterized 72 

by thousands of recorded events (Totaro et al., 2013, 2015). During the sequence, two others moderate events occurred close 73 

to the village of Morano Calabro: on 28 May 2012 (Mw 4.3) and on 6 June 2014 (Mw 4.0; Fig. 1b). According to Brozzetti et 74 

al. (2017a), the whole seismicity was arranged in two major clusters and a minor one. Each major cluster was associated with 75 

one moderate event and was generated by an independent seismogenic structure. The pre-existence of a seismic network, that 76 

was implemented after the beginning of the sequence, provided a high-quality database of relocated hypocenters (Totaro et al., 77 

2013, 2015; Brozzetti et al., 2017a). 78 

 79 

In such context, we reconstruct the 3DFM involved by the 2010-2014 seismic activity to investigate, at depth, the cross-cut 80 

relationships between the faults having different attitudes and timing of activation. Furthermore, we provide the geometric 81 

parameters of the sources to estimate the expected magnitudes. Finally, we discuss some 3D-seismotectonics methodological 82 

aspects which dwell on the improvements that the proposed procedure provides to the definition of the source model and on 83 

its limits. 84 
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 85 
Figure 1: Seismotectonic context of the study area. (a) Active faults of the Southern Apennines with major historical and 86 
instrumental earthquakes from Parametric Catalogue of Italian Earthquakes, CPTI15 v3.0 (Rovida et al., 2020, 2021). (b) 87 
Normal faults cropping out between the Mercure, Campotenese, Morano Calabro, and Castrovillari Quaternary basins (after 88 
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Brozzetti et al., 2017a) with distribution of the 2010-2014 Pollino seismic activity (contoured areas) and focal mechanisms of 89 
the events with Mw>4.0 (Totaro et al., 2015, 2016). 90 

 91 

 92 

2. Geological Setting 93 

 94 

The Mt. Pollino massif is located at the Calabrian-Lucanian boundary (Fig. 1) in a sector of the Apennines structured during 95 

the Middle-Late Miocene contractional tectonics, which affected the western Adria Plate (D'Argenio, 1992; Patacca and 96 

Scandone, 2007; Ietto and Barilaro, 1993; Iannace et al. 2004, 2005, 2007). The surface geology in this area is characterized 97 

by the superposition of two main tectonic units derived from different paleogeographic domains. These are represented (from 98 

bottom to top), by 1) the "Apenninic" units (or “Panormide”; Triassic - Early Miocene), which are characterized by carbonate 99 

platform, including the Verbicaro and Pollino Units, locally intruded by basaltic rocks (Ogniben, 1969, 1973; Amodio Morelli 100 

et al., 1976; Iannace et al., 2007; Patacca and Scandone, 2007; Vezzani et al., 2010; Tangari et al., 2018), 2) by the "Ligurian" 101 

units (Late Jurassic – Early Cretaceous), that consist of ophiolites and deep-sea sedimentary deposits derived from the Western 102 

Tethys oceanic basin (Ogniben, 1969, 1973; Amodio Morelli et al., 1976; Liberi et al., 2006; Liberi and Piluso, 2009; Filice 103 

et al., 2012, 2013, 2015). 104 

 105 

During uppermost Miocene and Pliocene times, the folds and thrusts pile was displaced by WNW-ESE-striking left-lateral 106 

wrench faults (Grandjacquet, 1962; Ghisetti and Vezzani, 1982; Van Dijk et al., 2000). Subsequently, regional-scale 107 

extensional fault systems, consisting of E- and W-dipping conjugate normal faults, dissected the Tyrrhenian side and the core 108 

of the orogen, which assumed a typical basin and range relief. This Quaternary phase caused the reactivation of the previous 109 

strike-slip structures such as the Pollino fault (POL), whose normal to normal-oblique kinematics has been documented since 110 

the Early-Middle Pleistocene (Ghisetti and Vezzani, 1982, 1983, Brozzetti et al., 2017a). 111 

 112 

At present, the age of onset of the extensional tectonic is still under discussion; it is referred by some authors to the Early 113 

Pleistocene (Ghisetti and Vezzani, 1982; Schiattarella et al., 1994; Papanikolaou and Roberts 2007; Barchi et al., 2007; Mattei 114 

et al., 2007; Cifelli et al., 2007; Amicucci et al., 2008; Brozzetti, 2011; Robustelli et al., 2014), while it would not be older 115 

than the Middle Pleistocene, according to others (Caiazzo et al., 1992; Cinque et al. 1993; Hyppolite et al., 1995; Cello et al., 116 

2003; Giano et al., 2003; Spina et al., 2009; Filice and Seeber, 2019). 117 

 118 

In the Campania-Lucania and north-Calabria sectors of the southern Apennines, the active extensional belt includes three main 119 

alignments of normal faults and Quaternary basins, arranged in a right-lateral en-echelon setting (Fig. 1a). From north to south 120 

they are: the internal alignment, including the Irpinia fault, the Melandro-Pergola and Agri basins the intermediate one, 121 

developing from the Tanagro-Vallo di Diano basins to the Mercure-Campotenese and Morano Calabro basins the external 122 
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alignment, developing from the Castrovillari fault to the southern Crati basin (Pantosti and Valensise, 1990, 1993; Ascione et 123 

al., 2013; Galli and Peronace, 2014; Ghisetti and Vezzani, 1982, 1983; Barchi et al., 1999, 2007; Blumetti et al., 2002; 124 

Amicucci et al., 2008; Maschio et al., 2005; Villani and Pierdominici, 2010; Brozzetti, 2011, Faure Walker et al., 2012; 125 

Brozzetti et al., 2009, 2012, 2017a, 2017b; Robustelli et al., 2014; Sgambato et al., 2020; Bello et al., 2021a). 126 

All along the above alignments, the geometry and kinematics of the major normal faults are kinematically compatible with a 127 

SW-NE direction of extension (Maschio et al. 2005; Brozzetti, 2011; Brozzetti et al., 2009; 2017a). A similar orientation of 128 

the T-Axis is obtained from the focal mechanisms of the major earthquakes from CMT and TDMT databases (Pondrelli et al., 129 

2006; Scognamiglio et al., 2006; Montone and Mariucci., 2016; Totaro et al., 2016) and from GPS data (D'Agostino et al., 130 

2014, Cheloni et al., 2017). The recent activity of these normal fault systems is firstly suggested by the control exerted on the 131 

distribution of seismicity, as shown by the location of upper crustal instrumental earthquakes (ISIDe Working Group, 2007; 132 

Brozzetti et al., 2009; Totaro et al., 2014, 2015; Cheloni et al., 2017; Napolitano et al., 2020, 2021; Pastori et al., 2021; Sketsiou 133 

et al., 2021; De Matteis et al., 2021) and of destructive historical events (Fig. 1; Rovida et al., 2021). 134 

The area affected by the 2010-2014 seismicity extends from the Mercure to the Campotenese and Morano Calabro basins, 135 

along the intermediate extensional fault alignment which, according to previous literature, consists of three main sets of 136 

genetically-linked normal and normal-oblique active faults (Brozzetti et al., 2017a; Figs 1b, 2; Acronyms list in Supplementary 137 

Text 1). The first one, referred to as the Coastal Range Fault Set (CRFS; red lines in Figs 1b, 2) dips E- to NNE and 138 

encompasses four sub-parallel major fault segments named, from west to east, Gada-Ciagola (GCG), Papasidero (PPS), Avena 139 

(AVN) and Battendiero (BAT). Their strike varies southward from N-S to WNW-ESE. 140 

The other two fault sets strike ~NW-SE and dip ~SW (blue lines in Figs 1b, 2). The western one, developing from Rotonda to 141 

Campotenese villages, consists of two main right-stepping en-echelon segments. They are referred to as ROCS system and 142 

include the Rotonda-Sambucoso (RSB) and Fosso della Valle-Campotenese (VCT; Fig. 2). The eastern set, including the en-143 

echelon Castello Seluci - Piana Perretti - Timpa della Manca (CSPT), the Viggianello-Piani del Pollino (VPP) and the 144 

Castrovillari (CAS) faults, represents the break-away zone of the Quaternary extensional belt. In the area between these two 145 

W-dipping sets, the W to NW-dipping Morano Calabro-Piano di Ruggio (MPR) and Gaudolino (GDN) faults show evidence 146 

of Late Quaternary activity (Brozzetti et al., 2017a; Fig. 2). 147 

GPS and DInSAR analysis demonstrated as the Pollino area was affected by important deformation rates during the 2010-148 

2014 seismic activity, with increasing and decreasing of slip values due to the temporal and spatial variation of the recorded 149 

seismicity (Passarelli et al. 2015). 150 

 151 

 152 

3 Seismotectonic Setting  153 
 154 

According to Michetti et al. (1997, 2000) and Cinti et al. (1997, 2002), POL and the adjacent CAS faults were associated with 155 

at least two strong earthquakes (M 6.5 and M 7.0), occurred in the period 2000-410 B.C. and 500-900 A.D., respectively. The 156 
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epicenter of the 8 January 1693 earthquake (M 5.3, CPTI15, Rovida et al., 2020, 2021; Fig. 1b, Fig. 2) is also located within 157 

the hanging wall of the CAS and at the footwall of the MPR fault, some kilometers eastward of the 2012 and 2014 Morano 158 

Calabro strongest events. The epicenter locations of the Mw 5.5, 1708, and Mw 5.1, 1894 earthquakes (Rovida et al., 2021), 159 

close to the northern termination of the RSB and within its hanging wall, allow hypothesizing the latter fault as the possible 160 

seismogenic source. 161 

The main instrumental event recorded in the Pollino area is the Mw 5.6 Mercure earthquake (9 September 1998; Fig. 1b), which 162 

was followed by some hundred aftershocks and that was associated by Brozzetti et al. (2009) with the SW-dipping CSPT (Fig. 163 

1b, Fig. 2), located some kilometers to the NE of the Mercure basin. 164 

The focal mechanisms of the three strongest earthquakes (Mw 5.2, 25 October 2012-Mormanno; Mw 4.3, 28 May 2012-Morano 165 

Calabro; Mw 4.0, 6 June 2014-Morano Calabro) are consistent with extensional (upper crustal) deformations (Montone and 166 

Mariucci 2016; Mariucci and Montone 2020).  167 

All the associated WSW-ENE oriented T-axes are also quite parallel to the geological and seismological least compressional 168 

axis, as provided by the tensorial analysis in the neighbouring Mercure area (Brozzetti et al., 2009; Ferranti et al., 2017) or 169 

derived from borehole breakouts (Montone and Mariucci 2016; Mariucci and Montone 2020), and GPS data (D'Agostino et 170 

al., 2014). As discussed by Totaro et al. (2015, 2016) and Brozzetti et al. (2017a), the available focal solutions well correlate 171 

with the Quaternary normal faults recognized in the epicentral area, represented by N-S to NNW-SSE-striking (W-dipping) 172 

seismogenic sources. 173 

Correlating the hypocenters distribution with the active faults at surface, the seismogenic source of the 25 October 2012 174 

Mormanno Earthquake (Mw 5.2), is identifiable in both the segments of the WSW-dipping ROCS system (RSB and VCT in 175 

Fig. 1b, Fig. 2). These faults dip 70°-75°, at the surface, and would reach a dip of ~55° at depth (Brozzetti et al., 2017a). 176 

Through similar reasonings, the WSW-dipping MPR fault was suggested to be the causative fault of the eastern Morano 177 

Calabro cluster (Fig. 1b) and of its two major events (Mw 4.3, 28 May 2012 and Mw 4.0, 6 June 2014). The fault extends for 178 

~7 km in a N170 direction and is co-axial with the W-dipping nodal planes of the two main events of the sequence (Fig. 1b). 179 

The partial reactivation of the CAS could be invoked to explain the minor cluster of seismicity recorded at the eastern side of 180 

the study area, although some of the events seem to be located at its footwall. 181 

 182 

4 Data and Methods 183 

4.1 Structural survey and fault kinematic analysis 184 

 185 

We performed a series of fieldwork campaigns, at 1:25.000 scale, in the study area and surrounding sectors, to collect fault-186 

slip data to be integrated with the geological-structural observations reported in Brozzetti et al. (2017a). In addition to 187 

traditional survey methods, we used the Fieldmove App (PetEx Ltd., version 2019.1) installed on a tablet computer to acquire 188 

the data in the field (e.g., Allmendinger et al., 2017; Novakova and Pavlis, 2017; Testa et al., 2019; Cirillo, 2020), and we 189 
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managed them in ArcGIS v.10.8 (ArcMap©). Fig. 2 shows the location of the survey sites, considered structurally 190 

homogeneous outcrops falling within a maximum distance of 500 m (see also Supplementary Fig. 2). The overall fault-slip 191 

dataset was first subdivided into minor and local homogenous kinematic subsets, the latter represented as pseudo-focal 192 

mechanisms using FaultKin 8 software (Marrett and Allmendinger, 1990; Allmendinger et al., 2012; Fig 3). The fault/slip data 193 

were subsequently inverted (see following sec. 4.3). 194 

 195 

 196 

 197 



9 
  

Figure 2: Structural Map at the Calabrian-Lucanian boundary (after Brozzetti et al., 2017a) with location of fault-slip data 198 
measurements. Fault key: CRFS= Coastal Range Fault Set; GCG= Gada-Ciagola fault; PPS= Papasidero fault; AVN= Avena 199 
fault; BAT= Battendiero fault; ROCS= Rotonda-Campotenese fault system; VCT= Fosso della Valle-Campotenese fault; 200 
RSB= Rotonda-Sambucoso; CVN= Cozzo Vardo-Cozzo Nisco fault; MPR= Morano Calabro-Piano di Ruggio fault; VPP= 201 
Viggianello - Piani del Pollino fault set; VPPa= Viggianello-Prastio fault; VPPb= Vacquarro-Piani del Pollino fault; GDN= 202 
Gaudolino fault; POL= Pollino fault; CAS= Castrovillari fault; SDD= Serra Dolcedorme fault; PAC= Monte Palanuda – 203 
Campolungo fault; Cast= Castelluccio fault; CSPT= Castello Seluci-Piana Perretti-Timpa della Manca fault; CSPTa= Castello 204 
Seluci - Piana Perretti fault; CSPTb= Timpa della Manca - La Fagosa fault. 205 

 206 
 207 
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 208 
 209 
Figure 3: Kinematic analysis and pseudo-focal mechanisms obtained from fault/slip data using the FaultKin 8 software 210 
(Allmendinger et al., 2012). Pseudo-focal mechanisms are boxed with different colours on the basis of the fault system to 211 
which they belong to (color key as in the map of Fig. 1, Fig. 2). For each fault system, the density contour of the T-axis 212 
computed for each focal mechanism is reported (lower hemisphere projection). A.s.v.=Average striae value, A.f.p.=Average 213 
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fault plane, n=number of fault-plane measurements. Numbers in the rectangles (top left of each focal mechanism) refer to the 214 
group of fault/slip data belonging to or neighbouring of a single site (location in Supplementary Fig. 2).  215 

 216 

4.2 Hypocenter location 217 

 218 

To better characterize the 3D features of the tectonic structures located in the study area, we performed a high-quality 219 

hypocenter location. We enlarged, with respect to previous works by Totaro et al. (2013, 2015) and Brozzetti et al. (2017a), 220 

the time window for earthquake analyses (i.e., January 2010 and October 2018), selecting earthquakes with local magnitude 221 

greater than 1.0 and hypocentral depth range 0-30 km from the INGV and the University of Calabria database (www.ingv.it, 222 

last access: 19 April 2021; http://www.sismocal.org, last access: 19 April 2021). Automatic and manually revised P- and S-223 

wave arrival time picks have been selected for this dataset. The recording network, including both temporary and permanent 224 

stations managed by the University of Calabria and INGV (D'Alessandro et al., 2013; Margheriti et al., 2013), consisted of 61 225 

stations with a maximum epicentral distance of 150 km (Supplementary Fig. 1). We computed accurate absolute hypocenter 226 

locations by applying first the non-linear Bayloc earthquake location algorithm (Presti et al., 2004, 2008) and subsequently the 227 

double-difference relative location method HypoDD (v.2; Waldhauser, 2001), and using the 3D velocity model by Orecchio 228 

et al. (2011). The Bayloc algorithm gives for each earthquake a probability density cloud with shape and size related to the 229 

main factors involved in the location process (e.g., network geometry, picking errors), and allows a generally more accurate 230 

estimate of hypocenter parameters and location uncertainties with respect to the more commonly used linearized location 231 

methods (e.g., Lomax et al., 2000; Husen and Smith, 2004; Presti et al., 2008). The application of the Bayloc algorithm 232 

provides, on average, horizontal and vertical errors of the order of 1.0 and 1.5 km, respectively, allowing us to obtain a well-233 

constrained database. As the second step, we apply the HypoDD algorithm, which minimizes phase delay-time residuals 234 

between pairs of events recorded at common stations (Waldhauser and Ellsworth, 2000). We compute the delay times from 235 

each event to its 30 nearest neighbours within 10 km distance, and to further ensure the robustness of the double-difference 236 

inversion, only event pairs with at least eight phases observed at common stations were used. The final relocated dataset 237 

consists of 3109 events (Fig. 4 and Supplementary Fig. 1). During the decade before the 2010-2014 Pollino sequence, the 238 

instrumental data available within a range of nearly 75 km from the Mercure basin, referred to background seismic activity 239 

(Frepoli et al., 2005; Castello et al., 2006; Brozzetti et al., 2009). A significant seismic activity which affected the region, was 240 

the moderate magnitude 1998-1999 Mercure sequence that developed in the northern part of the homonym Quaternary basin 241 

(Supplementary Fig. 1; Guerra et al., 2005; Arrigo et al., 2006; Brozzetti et al., 2009) and showed some similarities to the 242 

recent Mercure-Pollino sequence (e.g., prevalent kinematics of focal mechanisms and hypocentral depth range). We explored 243 

the data available for this seismic activity to compute a high-quality earthquake location, following the procedure described 244 

above for the 2010-2018 earthquakes dataset. Since the recording network operating during the 1998-1999 seismic phase was 245 

significantly different from today, in terms of the number of stations deployed in the region and their spatial distribution, the 246 

available data do not allow to reach the high level of constrain needed to perform the 3D structural model reconstruction. 247 

http://www.sismocal.org/
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 248 

 249 

Figure 4: Time-space evolution of the 2010-2018 seismic activity in the Pollino area. Each panel shows the distribution of 250 
focal mechanisms (Totaro et al., 2015, 2016) and epicenters concentrated in a series of neighbouring clusters numbered as Cl 251 
0, 1, 2, and 3 from west to east, according to their activation time. See section 5.2 for the sequence description. The Focal 252 
mechanisms are classified following Frohlich (2001) kinematics classification (blue beachball= Normal kinematics; light 253 
blue= Normal Strike kinematics). Red small circles represent the epicentres of focal mechanism solutions. 254 
 255 
4.3 Geological and seismological stress tensor inversion 256 

 257 

To investigate the coherence between the geological and the seismological stress fields, we applied stress tensor inversions to 258 

the available fault-slip data (Figs. 2, 3) and focal mechanisms (Fig. 4). We used the ‘TENSOR’ program and the inversion 259 

procedure proposed in Delvaux and Sperner (2003). We applied it separately on the different datasets. The procedure computes 260 

the orientation of the three principal axes of the stress ellipsoid (σ1, σ2, σ3) and the stress ratio Φ = (σ2-σ3)/(σ1-σ3) that 261 
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optimize the misfit Function (i.e., F5 in ‘TENSOR’ program, described as f3 in Delvaux and Sperner, 2003). The latter is built  262 

i) to minimize the slip deviation between the observed slip line and resolved shear stress (30° misfit value is not expected to 263 

be exceeded), and ii) to favour higher shear stress magnitudes and lower normal stress to promote slip on the plane. The 264 

inversion procedure provides for the preliminary (kinematic) analysis of data using an improved version of the Right Dihedron 265 

method (Angelier and Mechler, 1977) to determine the starting model parameters (e.g., the reduced stress tensor). The stress 266 

ellipsoid is then computed through a 4D grid-search inversion involving several runs during which the reduced tensor is rotated 267 

around each stress axis with a decreasing range of variability (from ±45° to ±5°), and the full range of Φ values (0-1) is 268 

checked. Each step attempts to find the parameters that minimize the misfit function and that are used as a starting point for 269 

the next run (see for details Delvaux and Sperner, 2003).  270 

The geological data input consists of 268 quality selected fault/slip data measured in the study area (Fig. 2, 3). During the 271 

formal inversion, the same weight value was assigned to each fault. The seismological data input is represented (initially) by 272 

both nodal planes of each focal mechanism; afterwards, the plane that is best explained by the stress tensor in terms of the 273 

smallest misfit function is considered as the actual fault plane (Delvaux and Barth, 2010). The inverted seismological data are 274 

represented by focal mechanisms from Totaro et al. (2015, 2016) and reported in Fig. 4. An exponential weighting factor 275 

(corresponding to the earthquake magnitudes) has been assigned to account for the prevailing kinematics of the most energetic 276 

events. The final inversion (Fig. 5) includes only the fault- and focal-planes that are best fitted by a uniform stress field (Gephart 277 

and Forsyth, 1984). 278 

 279 
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 280 
 281 

Figure 5: Stress inversion results for the geological- (a) and seismological (b) data. On the lower hemisphere Schmidt nets, 282 
the pairs fault plane/slickenline pairs (a) and focal plane/kinematic indicators (rake) (b) are reported (great circles represent 283 
the fault planes; the dark and pink arrows indicate the measured slip directions (or rake) and resolved shear stress respectively). 284 
The histograms represent the corresponding misfit angles vs the number of data points; nt = total number of fault data; n = 285 
number of successfully inverted fault data; σ1, σ2, σ3 = principal stress axes; Φ = stress ratio = (σ2-σ3)/(σ1-σ3); the quality 286 
ranking factors (QR) and the stress inversion parameters with associated uncertainties (1σ standard deviations) are listed in 287 
panel (c). On the small upper left nets, the computed stress field represented as a focal mechanism is also reported. The triangles 288 
reported on the lower right corner of each panel (a) and (b) show the kinematic classification of data according to Frohlich 289 
(2001). (c) Geological and seismological stress tensor parameters computed starting from slip-vector measurements collected 290 
along the investigated fault systems (Figs. 2, 3) and focal mechanisms, respectively (see. Sect. 3 and Fig. 4). Key: nt = total 291 
number of data (e.g., plane/slickenline); n = inverted data; σ1, σ2, σ3 = principal stress axes; Φ = stress ratio = (σ2-σ3)/(σ1-292 
σ3). QR = quality ranking: AQRw as in Sperner et al. (2003) and A-QRfm as in Heidbach et al. (2010). 293 
 294 

 295 

4.4 3D Model building  296 

 297 

Following the methodology defined by the Community Fault Model of Southern California (Nicholson et al., 2014; Nicholson 298 



15 
  

et al., 2015; Plesch et al., 2014), also applied for recent Italian earthquakes (Lavecchia et al., 2017; Castaldo et al., 2018; Bello 299 

et al., 2021a), we obtained the 3DFM of the Pollino area by integrating Quaternary fault mapping (Brozzetti et al., 2009, 300 

2017a; this paper) with high-quality seismicity dataset (2010-2018), and by using the Move suite software v. 2019.1 (Petroleum 301 

Experts Ltd). 302 

 303 

In particular, we created several sets of closely spaced transects (distance=2 km) to cross and sample the seismogenic fault 304 

zones in different directions (Fig. 6). The first two sets (oriented SW-NE and NW-SE) are respectively ~perpendicular (e.g., 305 

sections a, b in Fig. 6) and ~sub-parallel (e.g., sections c-e in Fig. 6) to the ROCS (VCT and RSB), and MPR active faults 306 

(e.g., sections f in Fig. 6). A further NNE-SSW-striking set of transects was traced ~ perpendicular to the active fault 307 

alignment bounding eastward the study area, which includes the CSPT and VPP faults (sections g and h in Fig. 6). 308 

The 3DFM building was carried out following three steps graphically depicted in Fig. 7 and synthetically described below. 309 

 310 

Step 1 - Extrusion of fault traces to shallow depth 311 

The traces of the Quaternary faults are “extruded” to a pre-set depth of 2 km b.s.l, according to the fault planes dip 312 

measured in the field. In the absence of measured dip-angles, we assumed a fixed value of 60°. The obtained so-called 313 

“fault ribbons” are rimmed upward by the topographic surface (a 10 m-resolution DEM; Tarquini et al., 2012). 314 

 315 

Step 2 - Down-dip extrapolation of the faults along seismological sections  316 

Starting from the analysis of the seismological transects (Fig. 6), we traced the deep geometries by connecting the fault 317 

ribbons with the seismicity clusters at depth (Fig. 7b,c) downward to the base of the seismogenic layer.  318 

 319 

Step3 - Building of 3D fault surfaces 320 

This step allows reaching the final 3D reconstruction (Fig. 7c,d) by interpolating, through the Delaunay triangulation 321 

method (Delaunay, 1934), all the fault lines as interpreted along the seismological cross-sections (Step 2). The result is 322 

the fault plane surface that best approximates and connects the clusters of seismicity and the surface geology (represented 323 

by the fault traces extruded). 324 

 325 

 326 
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 327 
Figure 6: Epicentral map (upper-right panel) and hypocentral distributions (sections a-i) of the 2010-2018 seismic activity 328 
occurred in the Pollino area. In the cross-sections the earthquakes (grey dots) within a half-width of 1 km have been also 329 
reported as density contours computed using Kernel Density Estimation. The histograms related to each section shows the 330 
depth distribution of the hypocenters. The traces of all the serial cross-sections analyzed in this study are reported in map view 331 
(upper-right panel) as thin grey lines, while the bold lines relate to the sections (a-j) shown in this figure.  332 
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 333 

 334 
Figure 7: 3D fault model building, from the surface (10 m-resolution DEM from Tarquini et al., 2012) to the base of the 335 
seismogenic layer. Faults acronyms as in Fig. 2. (a) “Fault ribbons” obtained by extruding the fault traces mapped at the surface 336 
down to 2 km depth and considering the fault dip-angles measured in the field. (b) 3D fault model as in (a) with the relocated 337 
seismicity. (c) Fault extrapolation at (seismogenic) depth through the clusters of hypocenters; the modelled faults connect the 338 
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ribbons with the zones at the depth where concentrations of hypocenters are higher. The density contours of the seismicity and 339 
the base of the seismogenic layer are also shown (see also panel d). (d) Final 3D fault model obtained integrating the detailed 340 
Quaternary fault pattern with the high-quality 2010-2018 seismicity dataset. 341 
 342 

5 Results 343 

5.1 Geological and Seismological Stress Tensors  344 

 345 

The computed geological stress tensor (Fig. 5) shows a relevant percentage of fault/slip vector pairs (~53%) consistent with a 346 

uniform extensional stress field which is characterized by a N244 trending- and sub-horizontal σ3. The stress ratio 347 

Φ=0.22±0.13 and the rank quality is QRw=A (ranking as in Sperner et al., 2003). Nearly all the kinematic axes related to the 348 

inverted data belong to a normal-fault regime, as also pointed out by the triangle in Fig. 5 (Frohlich 2001).  349 

The seismological stress tensor (Fig. 5b) obtained from inverting 50 actual fault planes (nt = 124 nodal planes) shows a normal 350 

fault regime with an ENE-WSW trending and sub-horizontal σ3 (N062/01 ±19). The stress ratio Φ=0.52 ±0.3 and the rank 351 

quality is QRfm=A (ranking as in Heidbach et al., 2010). Most of the nodal planes show normal-fault kinematics (see Fig. 5b). 352 

In both the inversions, a normal-fault regime with sub-horizontal and collinear (~SW-NE trending) σ3-axis has been obtained. 353 

This result points out the coherence between the geological (long-term) and the present-day stress field and the persistence of 354 

this extensional regime at least since the Middle Pleistocene (Brozzetti et al., 2017a). 355 

In addition, it is worth noticing as 76% of the successfully inverted fault/slip vector pairs are related to the active fault planes 356 

belonging to the E- and W-dipping domains (Fig. 5a), while the remaining 24% include data related to the S-dipping system 357 

(CVN and POL). The evidence together with the similarity between the computed stress tensors, is consistent with the prevalent 358 

activation, in the Late Quaternary, of the E- and W-dipping fault systems 359 

 360 
 361 

5.2 Time-space evolution of the Pollino sequence 362 

 363 

The 2010-2018 seismic activity in the Pollino-Mercure area followed a peculiar evolution over time (Fig. 4) with epicenters 364 

concentrated in a series of neighbouring clusters, numbered as Cluster 0, 1, 2, and 3, from west to east, according to their 365 

activation time. Such clusters, independent and unconnected to each other, are related to fault segments that are not in an along-366 

strike continuity. 367 

 368 

Cluster 0 (30/01/2010 - 31/07/2011) includes low magnitude (1.0≤ML≤2.9) activity located in an NNE-SSW oriented sector 369 

at the western boundary of the epicentral area. It is delimited westward by the more external segment of the E-dipping CRFS.  370 

Cluster 1 started after 05/10/2011 and lasted for the entire 2011-2014 seismic activity. It extended continuously, both 371 

northward and southward, reaching a NW-SE length of ~12 km (Fig. 4a-c). It comprehends the higher number of earthquakes 372 
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and is largely the major cluster as regards the wideness (~60 km2) and energy release. It includes 30 events with ML ≥3.0 373 

besides the 25 October 2012 strongest event of the whole Pollino seismic activity. During the 2015-2018 interval, Cluster 1 374 

area was affected by low seismic activity, mostly distributed in its northern and southern portions; conversely, its central part, 375 

where epicenters were particularly dense between 2011 and 2014, became less active. Overall, the surface extent of Cluster 1, 376 

which partly overlaps with Cluster 0, is limited eastward by the W-dipping RSB and VCT faults. Its southern boundary nearly 377 

coincides with the southeastern continuation of the AVN fault (PAC, Fig. 4c).  378 

Cluster 2 started in May 2012 in the sector between the two WSW-dipping RSB and the MPR faults. It elongates in N-S 379 

direction, for ~7 km to the northwest of the Morano Calabro town. Afterward, it was nearly continuously active, particularly 380 

during the periods May 2012 - October 2014 (Fig. 4b,c); also in the period 2015-2018, significant seismicity persisted (Fig. 381 

4d). Cluster 2 includes mainly low-magnitude events besides the strongest ones of 28 May 2012 and 6 June 2014 and three 382 

other earthquakes with 3.0 ≤ML ≤ 3.5. 383 

Further east, in the sector comprised between MPR and the alignment VPP-SDD-CAS faults, a minor cluster of seismicity 384 

(Cluster 3) develop since December 2011 (Fig. 4a). Since then (2011-2018), it was affected by poor and low-magnitude 385 

seismicity, which, however, was clearly above the threshold of background seismicity, with two ML=3.0 events (Fig. 4a-d). 386 

 387 

 388 
5.3 3D Fault Model of the Pollino area fault system 389 

 390 

 The obtained 3DFM (Fig. 8), which includes the seismogenic fault system involved during and after the 2010-2014 Pollino 391 

seismic activity (CRFS, ROCS, and MPR), also encompasses those faults (GCG, PPS, AVN, BAT, CSPT, VPP, SDD, CAS) 392 

that, while showing no direct evidence of recent seismic activity, play a significant role in the seismotectonic frame of the 393 

area.  394 

The westernmost fault structures (i.e., GCG and PPS), whose deep geometry is not strictly constrained by subsurface data, 395 

have been interpreted according to the structural extensional style proposed by Brozzetti et al. (2017a). The latter is coherent 396 

with the reconstructions of the active extensional belt of the southern and central Apennines described in the literature (Barchi 397 

et al., 2007; Amicucci et al., 2008; Brozzetti et al., 2011, 2017a, 2017b; Lavecchia et al., 2017). Overall, this style is 398 

characterized by an asymmetric extension driven by a low-angle (20° to 35°) E-dipping detachment fault, which represents 399 

the basal decollement of all the other extensional structures. In the model, all the faults are traced at the surface with their dip-400 

angle as measured in outcrop and evolve downward with nearly-listric geometries to join the detachment at increasing depth 401 

from west to east. The latter represents the structurally controlled base of the seismogenic layer. The GCG (Figs 1b, 8), which 402 

crops out at low-angle and overcomes all the other east-dipping faults (in terms of both slip and associate extension), is the 403 

currently inactive break-away zone of such a detachment. The AVN and BAT (Figs 2, 8), which are the easternmost E-dipping 404 

splays, are suggested to be active and seismogenic, being possibly the causative structures of the Cluster 0 of hypocenters 405 

(Fig. 4a). Cluster 1 and Cluster 2, which are downward confined by the E-dipping detachment, confirm the activity of the W-406 
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SW-dipping ROCS and MPR faults, that we consider them the main geological structures involved during the 2010-2014 407 

seismic activity (Figs. 4 and 8a,a1). Further east, the 3DFM has been widened to include the W-dipping CSPT and VPP faults, 408 

considered the outer seismogenic front of the extensional system. The along-strike continuity of POL and CVN is interrupted 409 

by the W-dipping ROCS and MPR faults (Fig. 8c,d), coherently with the cross-cut relationships observed in the field (Fig. 2). 410 

The deep geometry of POL and CVN is interrupted by the NNE-dipping AVN (Fig. 8d), which acts as the southern and basal 411 

boundary of the entire active fault system. 412 

Finally, the 3DFM shows that almost the whole 2010-2018 seismicity correlate with the W-dipping structures but without 413 

affecting their southern termination zones. In other words, no or very few events locate south of the intersection with POL 414 

and CVN faults. This latter observation suggests that although the POL and CVN did not play an active role in causing the 415 

considered seismicity, they play a significant role in influencing its distribution. 416 

 417 
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 418 
 419 

Figure 8: 3D Fault Model of the extensional system at the Calabrian-Lucanian boundary extrapolated down to ~10-12 km. In 420 
the panels (a) (b) (c) the geological-structural map (from Brozzetti et al., 2017a) is superimposed over a 10 m-resolution DEM 421 
(from Tarquini et al., 2012). The reconstruction of the fault systems is discussed in the paper. In the top panel (a), the lower 422 
right inset (a1) shows the detail of the main faults involved during the 2010-2018 seismic activity. (d) 3DFM of all extensional 423 
fault realized through the move software. For the acronyms, see supplementary text 1. 424 
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The faults belonging to the E-NE-dipping CRFS fault set are represented in red and violet, whereas the antithetic ROCS and 425 
MPR faults are shown as blue surfaces (fault acronyms as in Fig. 2). The yellow surface is the three-dimensional surface of 426 
the POL and its westernmost segment (CVN) bounding, to the north, the Campotenese basin. 427 
 428 

 429 

5.4 From 3D Fault Model to expected earthquake magnitude 430 

 431 

Coherently with what is observed in most Apennine chains (D’Agostino et al., 2001; Ferranti et al., 2014; Montone and 432 

Mariucci, 2016; Mariucci and Montone, 2020), the upper crustal Pollino seismicity develops in response to WSW- ENE 433 

oriented extension. This is well constrained by the focal solutions of the strongest events (Mw 5.2, 25 October 2012; Mw 4.3, 434 

28 May 2012, and Mw 4.0, 6 June 2014 earthquakes) and of all the Mw ≥ 3.5 earthquakes that occurred during 2010-2014, and 435 

with the results of the geological and seismological inversion (Fig. 5). Such consistency suggests that the present stress field 436 

is in continuity with the long-term one, which set up at least since the Early-Middle Pleistocene, as already suggested by 437 

previous works (Papanikolaou and Roberts, 2007; Brozzetti et al. 2009; 2017a). 438 

Comparing the distribution of the whole 2010-2018 seismic activity with the Late Quaternary structures mapped at the surface, 439 

we maintain that the ROCS and the MPR faults are suitable as the seismogenic sources for the Mormanno (2012, Mw 5.2) and 440 

Morano Calabro (2012, Mw 4.3 and 2014, Mw 4.0) earthquakes, respectively. In addition, our 3DFM allows a parameterization 441 

of the sources and their seismogenic potential assessment. The map view of the W-dipping faults (Figs. 9a) depicts irregularly-442 

shaped seismogenic boxes which are delimited to the east by the fault traces (at the surface) and to the west by the branch line 443 

of each fault with the base of the seismogenic layer. Some of these boxes include historical or instrumental earthquakes (Fig. 444 

9b), while others are not associated with any significant event. 445 

The performed 3D reconstruction allowed us to estimate the effective area extent of all the fault segments (Fig. 9c), that, when 446 

inserted in the appropriate scaling relationships, provide the expected magnitude possibly releasable in case of entire rupture 447 

(Fig. 9c). 448 

We also computed the magnitude values obtained using the regressions as a function of the surface fault length (Fig. 9c). 449 

Using six different empirical relations (Wells and Coppersmith, 1994; Wesnousky, 2008; Leonard, 2010; Stirling et al., 2013), 450 

we compared the values determined for all the investigated active normal faults (Figs. 9d,e). 451 

It is evident that, for each fault, the expected magnitude computed using fault area is lower than the one calculated by using 452 

fault length. The range of variation is narrower for the values calculated on the ground of fault-area regressions (yellow bars 453 

in Figs. 9d,e). 454 

Given the significant difference in the magnitude values computed using area- or length-based scaling relationships, we 455 

suggest that (where possible) the reconstruction of a 3D-fault geometry should be pursued and preferred in order to derive 456 

more reliable parameters to be used (Supplementary Table 1). This is even more essential in complex extensional systems as 457 

the one we investigated along the Calabrian-Lucanian border.  458 
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In fact, the 3DFM highlights as the areal extension of the W-dipping faults, depends on their position within the hanging wall 459 

of the detachment (see sect. 5.3). This implies that faults with comparable length at the surface may have significantly different 460 

areas, depending on the reached depths. The CSPT, VPP and CAS crop out at greatest distance from the GCG break-away 461 

zone. Consequently, they intersect the basal detachment at the higher depth and have the maximum area extent among the W-462 

dipping fault set (Fig. 9a,d). 463 

By applying the aforementioned scaling laws (Fig. 9) to the W-dipping faults identified to be involved during the 2010-2014 464 

seismic activity, we calculated the expected magnitude of ~Mw=6.1 for the VCT and the RSB, and of ~Mw= 6.2 for the MPR. 465 

Since the two faults (RSB+VCT) of the W-dipping ROCS has been interpreted to join at hypocentral depth to form a single 466 

structure (thus a unique seismogenic patch was reconstructed – Fig. 10a), a value of ~ Mw=6.4 could be reached in the case of 467 

a complete and concurrent ruptures on both the segments. The aforesaid values are sensibly higher than the magnitudes of the 468 

earthquakes recorded to date in the Mercure-Campotenese area (Figs. 1b, 9b), thus suggesting that the considered faults may 469 

have released only partially their seismogenic potential during historical times. 470 

This inference also agrees with the distribution and evolution of the 2010-2018 seismic activity. The clusters of the relocated 471 

hypocenters concentrated in the deepest parts of the ROCS and MPR faults (Fig. 6) confirming that only a portion of such 472 

faults ruptured during the sequence, without the rupture reaching the surface. 473 
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Figure 9: (a) Seismotectonic 3D Fault Model in map view. (b) Box representation of the W-dipping seismogenic faults 475 
belonging to the 3DFM with detailed segmentation pattern. Fault traces are numbered according to the table of the panel (c). 476 
The associated historical earthquakes from CPTI15 v3.0 (4.5<Mw<6.0; Rovida et al., 2020, 2021) and the epicentral 477 
distribution of the 2010-2018 seismic activity occurred in the Pollino area (1.0<Mw<5.2) are also reported. (c) Expected 478 
magnitude according to scaling laws (Wells & Coppersmith 1994, Wesnousky 2008, Leonard 2010, Stirling et al. 2013) and 479 
calculated based on fault area (A) and length (L).  480 
(d-e) comparison of magnitude values calculated for all the investigated active faults, using fault area- (d) and fault length-(e) 481 
based scaling relationships. 482 
 483 

6 Discussion 484 

 485 

6.1 Seismogenic patches activated during 2010-2014  486 

 487 

The seismogenic patches activated on the ROCS and MPR faults during the 2010-2014 seismic sequence are considered as the 488 

reasonable approximation of the actual portion of the faults which broke during the mainshock and the sequence of the early 489 

aftershocks. We obtained them by projecting the relocated hypocenters on the reconstructed fault surface and depicting their 490 

distribution using the Kernel density geostatistical analyst, available as a tool of the ESRI ArcGIS software package. The 491 

delimitation of each seismogenic patch and its parameterization allowed us to verify the correlation between its dimensions 492 

and the magnitude released by each fault during the mainshocks. 493 

The temporal analysis of the sequence shows that their overall extent was already well defined within the first 72 hours after 494 

the major events. Anyhow, inside the surrounding volumes, some seismicity had started before the mainshock and continued 495 

to persist constantly throughout the development of the entire sequence so that they include a percentage ≥ of 70% of the whole 496 

hypocenter locations. The along-strike elongation and area extent of the patches obtained over the VCT and MPR fault surfaces 497 

can be assumed respectively as the effective Subsurface Rupture Length and Rupture Area (RLD and RA in Fig. 10b, and 10c, 498 

respectively, according to Wells and Coppersmith, 1994) associated with the Mw 5.2 Mormanno (on VCT fault) and Mw 4.0 499 

and 4.3 Morano Calabro (on MPR fault) earthquakes. 500 

The parameters obtained for the VCT fault are RLD= 4.9 km and RA= 8.3 km2, while RLD= 1.2 km and RA= 3.6 km2 are 501 

assessed for the MPR fault. Introducing the aforesaid parameters in the appropriate scale relationships (Fig. 10b,c), we observe 502 

a good agreement between the theoretical magnitudes based on the Subsurface Rupture Length and the magnitudes of the 503 

mainshocks. The values obtained for the VCT fault (causative of the Mw 5.2 Mormanno earthquake) are = Mw 5.3, whereas 504 

for the MPR fault (causative of the Mw 4.0 and 4.3 Morano Calabro earthquakes) is Mw=4.5. The magnitude calculated using 505 

the RA-based relationships provides values slightly lower than expected for the VCT (4.9<Mw<5.0) and slightly higher for the 506 

MPR (4.5<Mw<4.6). In both cases, however, the magnitude values obtained using the scale relationships differ from those 507 

observed by an amount <0.3. 508 

 509 
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 510 
 511 

Figure 10: (a) Seismogenic patches activated during the 2010-2014 seismic activity on VCT and MPR faults. Their along-512 
strike elongation and area extent, shown by black arrows, are assumed to be the effective subsurface rupture length and rupture 513 
area (RLD and RA, according to Wells and Coppersmith, 1994). The association of the patches’ rupture with the Mw 5.2 514 
Mormanno of the 25 October 2012 (on VCT fault) and Mw 4.3 and 4.0 Morano Calabro (on MPR fault, 28 May 2012 and 6 515 
June 2014 respectively) earthquakes is suggested. (b) and (c) show the RLD and RA, respectively, obtained for both the VCT 516 
and MPR faults. 517 
 518 

6.2 Possible geometric restraints to coseismic rupture propagation 519 

 520 

The seismological dataset we used demonstrates that the two main clusters of earthquakes of the 2010-2018 seismicity were 521 

generated by as many independent sources related to the sub-parallel, 10 to 15 km-long, ROCS and MPR faults. 522 
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Brozzetti et al. (2017a) highlighted that the above seismogenic style, characterized by a perpendicular-to-fault strike evolution 523 

of the seismic activity, is unlike from those which followed the major instrumental earthquakes recorded in the Apennine 524 

Extensional Belt of Italy in recent years, such as the Colfiorito 1997 (Mw 6.0), L'Aquila 2009 (Mw 6.3) and Norcia 2016 (Mw 525 

6.5) events (Chiaraluce et al. 2011, 2017; Lavecchia et al., 2011, 2012a, 2016). They also speculated that this peculiar 526 

behaviour could have been controlled by the geometric fault pattern of the area, which is characterized by WSW-dipping faults 527 

bounded southward by nearly E-W pre-existing structures. These latter are genetically related to the regional-scale, long-lived, 528 

“Pollino lineament s.l.” (Bousquet, 1969, 1971; Ghisetti and Vezzani, 1982, 1983; Knott and Turco, 1991; Van Dijk et al., 529 

2000) and determine the abrupt contact between the Apennine carbonate platform unit and the San Donato metamorphic core 530 

complex (Grandjaquet 1962; Servizio Geologico Nazionale, 1970; Amodio Morelli 1976). The cross-cut relationships detected 531 

in the field between the ROCS-MPR set and POL-CVN, highlighted in our 3D model, lead us to exclude the latter fault to 532 

have a present seismogenic role, as also supported by the distribution of the instrumental earthquakes which clusterized along 533 

with N-S-striking crustal volumes. However, this significant structural-geological boundary, could exert an influence on the 534 

southward propagation of the currently active seismogenic faults, driving the eastward transfer of the active extensional 535 

deformation belt. This inference is confirmed by the spatial distribution of the hypocentres of the whole 2010-2018 relocated 536 

seismicity which is confined within the CVN footwall (Fig. 8d). 537 

 538 

7 Conclusions 539 

 540 

We reconstructed in detail the 3D geometry and kinematics of the interconnected fault pattern responsible for the moderate-541 

magnitude earthquakes which recently affected the Pollino area (Calabrian-Lucanian boundary). 542 

The main original outcomes are summarized as follows: 543 

- The geological and seismological stress tensors computed using geological- and seismological data demonstrated that they 544 

are consistent with a uniform normal faulting regime characterized by an ENE-WSW trending, sub-horizontal σ3. This result 545 

confirms the coherence between the long-term and the present-day stress field and the persistence of this extensional regime 546 

at least since the Middle Pleistocene. 547 

 548 

- The 2010-2018 seismic activity which affected the study area followed a peculiar evolution characterized by the concentration 549 

of epicenters in a series of sub-parallel ~NNW-SSE elongated clusters, independent and unconnected, which can be related to 550 

two major near-coaxial WSW-dipping faults possibly splaying from a common east-dipping basal detachment and concurrently 551 

releasing seismicity. 552 

 553 

- The accurate hypocenter re-locations provided a seismological dataset that was correlated with the active faults mapped at 554 

the surface. The hypocenter spatial analysis allows to reconstruct the geometry (3DFM) of the seismogenic sources which 555 

released seismicity during 2010-2014 and through 2018. This reconstruction, extrapolated down to the depth of ~10-12 km, 556 
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was the interpretative key to obtain the overall model of the Quaternary and active extension in the northern Calabria-Lucania 557 

Apennines. The 3DFM model includes all the faults playing a significant role, (either direct or indirect), on the seismogenesis 558 

of the study area. 559 

 560 

- The western segment of the Pollino Fault (CVN), despite not being currently active, seems to maintain a significant 561 

seismotectonic role. In fact, juxtaposing crustal sectors with different structures and compositions (Apennine platform domain 562 

to the north, and San Donato metamorphic core to the south) may act as a barrier to the southern propagation of the seismogenic 563 

faults of the Mercure-Campotenese sector (ROCS, MPR), limiting their dimensions and seismogenic potential. 564 

 565 

- Based on the dimension and shape of all the active faults of the Pollino area, we estimated the expected magnitudes using 566 

appropriate scaling relationships. The complete rupture of individual W-dipping faults which are recognized to have been 567 

causative of the 2010-2014 seismic activity, is expected to release a magnitude of ~Mw= 6.1 for the VCT and the RSB, and of 568 

~Mw= 6.2 for the MPR. Higher values, up to Mw=6.4, could be reached in the case of the complete and concurrent rupture on 569 

both RSB and VCT. The estimated values exceed the magnitudes of the associate earthquakes which struck the area to date, 570 

leading to hypothesize that the aforesaid faults released only partially their seismogenic potential. 571 

 572 

- The delimitation of the fault patches involved during 2010-2014, and their geometrical parameterization, support the 573 

consistence between the theoretical magnitudes based on the Subsurface Rupture Length and the magnitudes of the 574 

mainshocks. 575 

The estimates provided, for the VCT fault (which released the Mw 5.2 Mormanno earthquake) a Mw=5.3, and for the MPR 576 

fault (which released the Mw 4.0 and 4.3 Morano Calabro earthquakes) a Mw=4.5. The magnitudes calculated using the 577 

relationships based on the Subsurface Rupture Area (Mw~5.0 for the VCT and Mw~4.6 for the MPR), show slightly greater 578 

deviation from the observed values. 579 

 580 

This study pointed out as even in the case of low-to-moderate seismic activity, like the Pollino 2010-2014 one, the approach 581 

based on the three-dimensional reconstruction of the Quaternary fault surfaces (both directly involved and neighbouring in the 582 

extensional system) represents a real breakthrough in the seismotectonic analysis and, ultimately, in the cognitive path that 583 

leads to a better assessment of the seismic hazard of a tectonically active area. 584 
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