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1 Summary

In this manuscript the authors discuss and compare several mixed finite-elements for solving the
incompressible Stokes problem in the context of geodynamic applications. The study focuses on
finite-element spaces which have been traditionally used (i.e. implicitly advocated) in the field of
geodynamics (Q1 − P0) or those adopted in more recent studies (Q1 − Q1 stabilized, Q2 − Q1,
Q2 − P−1). The intention of the study is to elucidate which element pair is “the best at accu-
rately simulating typical geodynamic situations”. This point is meaningful for both practitioners
and developers of geodynamic software. The evaluation of finite-elements for “typical geodynamic
situations” is assessed by examining the solution quality and solver performance for several well
known analytic solutions of viscous flow and an idealised model problem.

Overall the rational and design of the evaluation conducted is sound. Furthermore, the conclu-
sions reached are correct. The conclusions do not identify an answer to the question “what is the
best element-pair to use for geodynamics simulations?”. Rather, by a process of elimination, the
authors identify that the Q2 − Q1 and the Q2 − P−1 elements are the only suitable candidates (of
those elements under examination). No clear advice is provided as to which of these two should
be preferred in general, or in specific modelling contexts. It would be helpful if further discussion
was provided to elaborate on when Q2 −Q1 might be preferred over Q2 − P−1 (and vice-versa).

There are two major benefits of the Q2 − P−1 element which make it distinct from Q2 −Q1 that
have not been discussed. These are that only the Q2 − P−1 element: (i) provides local (element-
wise) conservation, i.e.

∫
Ωe
∇ · uh dV = 0, where Ωe is the domain of element e; (ii) allows the

element face geometry to be described by a quadratic (2D) or bi-quadratic (3D) representation
without degrading the apriori error estimates (or committing a finite element crime). I detail these
points and why they are important in the general comments section below. There is one other
technical point about the apriori error estimates related to the Q2 − P−1 element which should be
clarified in the revision - I expand upon this in the general comments below.

2 Major comments

2.1 Conservation

Given a domain Ω partitioned into non-overlapping elements Ωe, such that Ω = ∪Ne=1Ωe, the discrete
solution uh obtained with Q2 − P−1 element satisifies∫

Ωe

∇ · uh dV = 0. (1)

In contrast, the solution obtained with Q2 −Q1 only satisfies∫
Ω
∇ · uh dV = 0. (2)

That is, the former element (Q2 − P−1) provides local conservation (element-wise, Ωe), whilst the
latter element (Q2 −Q1) only provides global conservation (domain-wise, Ω).
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The type of the conservation provided by an element (or lack there-of in the case of Q1 − Q1)
is important for the solution quality of buoyancy driven flows. You express this point in your own
results when you examine the solution associated with Q1 − Q1. The point is also true when you
discretize ∇ · u = 0. The type of conservation property you have places restrictions on the type of
transport discretization which can be used if you wished to couple the discrete Stokes flow solution
(uh) with the transport of a material property say χ (representing for example rock-type or lithology),

∂χ

∂t
+∇ · (uhχ) = 0, (3)

or even with the conservation of energy (i.e. evolution of temperature), i.e.

∂T

∂t
+∇ · (uhT ) = ∇ · (κ∇T ) +Q. (4)

I refer to Dawson et al. (2004) for an in-depth discussion of compatible transport schemes. By
way of illustrating the point, based on Dawson et al. (2004), the uh obtained from Q2 − P−1 could
be used to solve (4) with a finite-volume (FV) scheme, SUPG or the entropy viscosity method. In
contrast, since the uh obtained from Q2 − Q1 does not satisfy a local conservation property, you
cannot use FV to solve (4), however usage of SUPG and or the entropy viscosity method would be
valid.

Given the ubiquitous nature of including equations such as Eqs. (3) and (4) in geodynamic
modelling, the type of conservation you obtain from a given mixed finite-element type is important
to highlight and discuss.

2.2 Error estimates for Q2 − P−1

The error estimates you have stated in equation (4) (in the submitted manuscript) do not apply
in general for the Q2 − P−1 element pair. I refer you to Boffi & Gastaldi (2002) and Matthies &
Tobiska (2002) for further details. The P−1 function space has at least two possible representations,
either it is expressed in the global coordinates (x, y, z), or in the element-local coordinates (ξ, η, ζ)
- the latter referred to as the “mapped coordinates” in Boffi and Matthies’ papers. When defining
Q2−P−1 spaces on non-coordinate aligned meshes, the “mapped” representation of the P−1 space
will result in sub-optimal convergence with respect to your estimate in equation (4).

This point does not affect any of the results you have presented in this submission, but it is
important to be aware of in general as any practitioner who follows your study and attempts to
extend the results to a more general mesh may find that equation (4) is not valid.

2.3 High-order geometry

When using Q2 −Q1 in spatial dimensions d, the only representation of the element geometry you
can use is Q1. Hence the geometry of your element face must be defined by a Q1 space in d − 1
dimensions. The arguments for why this is true are similar to those discussed in Boffi & Gastaldi
(2002) and Matthies & Tobiska (2002). It is a disappointing reality that when using a mixed element
with two continuous spaces (Qk and Qk−1) the geometric representation of the element is limited
to Qk−1. In practice this means that any Lagrangian or ALE formulations you might wish to use
with Q2 −Q1 need to respect this geometric restriction.

In contrast, if you useQ2−P−1 with the P−1 space represented in the global coordinates, you do
not have this geometric restriction and your element geometry can be defined in Q2. The reason
this is valid is because you only have one iso-parametric mapping in your mixed finite-element
space (i.e. that related to velocity).

Geometric flexibility and the ability to model curved surfaces is of importance for providing high-
accuracy representations of topography in regional models, and also to facilitate more accurate
approximations of the sphere in global models (or regional cap type models). (I appreciate that
approximating the sphere by piece wise Qk patches is not the only way to achieve a spherical or
spherical cap model.)
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2.4 Solution regularity

In Sec 3.2 you discuss solution regularity and equations (9) and (10) introduce new error estimates.
I am not completely convinced these (equations / error estimates) currently add a lot to the paper.
I like the discussion and it is certainly valid, however currently the content and message is not (in
my opinion) well connected with the remainder of the paper. For instance, after Sec 3.2, solution
regularity is not discussed again in the context of any of the experimental results, and is only ever
mentioned in the conclusion where it asserts we expect a lack of regularity in typical geodynamic
scenarios (without further explanation).

The lack of a connection between solution regularity and the numerical results has the potential
to lead to some confusion. For example, based on the introduction of different error estimates,
and the order of accuracy reported for SolCx vs SolVi, readers may believe that SolCx possess
sufficient regularity (i.e. q = 2) since estimates (4) and (8) are satisfied forQ2−P−1, whilst the SolVi
solution lacks regularity (as estimate (4), (8) are violated for Q2−P−1). Hence, the reader may refer
to the estimate in (9) and the discussion of solution regularity to try and understand why SolCx and
SolVi differ in the obtained order of accuracy. Of course if you solve SolCx using Q2 − P−1 with a
mesh in which the element edges don’t align with the viscosity jump, then the order of accuracy in
estimate (4) and (8) is not valid. The sub-optimal convergence observed in this case has nothing
to do with the regularity of the true solution u, p as the physical problem is unchanged, rather all
that has changed is the discretization (the mesh) and the resulting discrete solutions uh, ph. Hence
a reader trying to understand the sub-optimal convergence in the context of SolCx vs. SolVi is not
going to understand the observation from thinking about solution regularity.

I think what could clarify all of this is: (i) extend Sec 3 such that independent of solution regu-
larity, it discusses under what situations the order of accuracy drops to h1/2, and why this occurs;
(ii) add additional experiments for SolCx which consider the case when the mesh elements are not
aligned with the jump in viscosity.

3 Comments / corrections

1. [lines. 50-55] The wording “..in which the pressure is discontinuous and of (total) polynomial
degree k − 1, but missing the shape functions that distinguish the space Qk on quadrilater-
als...” is not clear (and actually misleading). It is more precise to talk about the underlying
basis and not refer to shape-functions. P−1 has a basis of {1, ξ, η} (or {1, x, y}) whilst the
basis for Q1 is {1, ξ, η, ξη} (or {1, x, y, xy}). You cannot define the shape-functions for P−1 (in
practice or in code) by simply removing shape-functions associated with your Q1 implemen-
tation.

2. [lines. 50-55] You need to add a reference for the method mentioned here “Another variation
is to enrich the pressure space by a constant shape function on each cell.”

3. [pg. 23] Above line 475, you wrote “Our interpretation of this experiment is that the inability of
the Q1 ×Q1 element ...”. The last “1” next to “Q” should appear as a subscript.

4. [Fig. (3)] Stating “Number of FGMRES solver iterations as a function of the mesh size h” is
only meaningful if we know what preconditioner was used for the Stokes problem. Without
a preconditioner the iteration count will always increase as h decreases. I didn’t find in the
text or caption any statement (or reference to the preconditioner used in ASPECT) specifying
that you are preconditioning FGMRES and what preconditioner you used.

5. [lines. 175-185] The norm ‖∇(u − uh)‖2 is the H1 semi-norm as opposed to the H1 norm
given by

H1(Ω) := {u : Ω→ R|u,∇u ∈ L2(Ω)} .

You haven’t explicitly defined what Hk is (I think you are using the semi-norm), could you
please either define it with words or an equation to avoid confusion.
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6. The font size of the palette labels, tick numbers in Figures 1, 4, 6, 8, 11, 13 is too small and
should be increased for improved legibility.

7. In several places the writing infers that elements Q2 − Q1 and Q2 − P−1 are part of the
same finite element family (referred to as “Taylor-Hood”) – they are not. The elements are
distinct and the writing should reflect this point. Some instances I came across: line 205,
...“the Taylor-Hood elements...”; line 4, “or more recently the stable Taylor-Hood element with
. . . discontinuous (Q2 × P−1) pressure”. Taylor-Hood is to be understood as mixed elements
given by function spaces Qk −Qk−1 (quads/hexes) and Pk − Pk−1 (triangles/tets) for k ≥ 2.

8. I think Section 3 would be more complete and improved if it also included a discussion (and
references) which also cover the case when the order of accuracy drops to h1/2. This, in
addition to the comments about solution regularity, would further re-enforce why high-order
(here meaning k > 2) may not be useful in geodynamic modelling contexts.
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