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Abstract. Geodynamical simulations over the past decades have widely been built on quadrilateral and hexahedral finite

elements. For the discretisation of the key Stokes equation describing slow, viscous flow, most codes use either the unstable

Q1×P0 element, a stabilised version of the equal-order Q1×Q1 element, or more recently the stable Taylor-Hood element

with continuous (Q2×Q1) or discontinuous (Q2×P−1) pressure. However, it is not clear which of these choices is actually

the best at accurately simulating “typical” geodynamic situations.5

Herein, we are providing for the first time a systematic comparison of all of these elements. We use a series of benchmarks

that illuminate different aspects of the features we consider typical of mantle convection and geodynamical simulations. We

will show in particular that the stabilised Q1×Q1 element has great difficulty producing accurate solutions for buoyancy-

driven flows – the dominant forcing for mantle convection flow – and that theQ1×P0 element is too unstable and inaccurate in

practice. As a consequence, we believe that theQ2×Q1 andQ2×P−1 elements provide the most robust and reliable choice for10

geodynamical simulations, despite the greater complexity in their implementation and the substantially higher computational

cost when solving linear systems.
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1 Introduction

For the past several decades, the geodynamics community’s workhorse for numerical simulations of the incompressible Stokes

equations has been the use of (continuous) piecewise bi/tri-linear velocity and piecewise constant (discontinuous) pressure finite

elements, often in combination with the penalty method for the solution of the resulting linear systems (e.g. Donea and Huerta,30

2003). This velocity-pressure pair is often referred to as the Q1×P0 Stokes element, and sometimes as the Q1×Q0 element

(Gresho and Sani, 2000). It is used, for example, in the ConMan (King et al., 1990), SOPALE (Fullsack, 1995), SLIM3D

(Popov and Sobolev, 2008), CitcomCU (Moresi and Gurnis, 1996; Zhong, 2006), CitcomS (Zhong et al., 2000; McNamara

and Zhong, 2004; Zhong et al., 2008), Ellipsis (Moresi et al., 2003; O’Neill et al., 2006), UnderWorld (Moresi et al., 2003),

DOUAR (Braun et al., 2008), and FANTOM (Thieulot, 2011) codes and has therefore been used in hundreds of publications.35

The popularity of this element can be explained by its very small memory footprint and ease of implementation and use. On

the other hand, it has a rather low convergence order that makes it difficult to achieve high accuracy; maybe more importantly,

the element is known not to satisfy the so-called LBB condition (e.g. Donea and Huerta, 2003) and is therefore unstable. This

instability noticeably manifests itself through oscillatory pressure modes (e.g. Fig. 18 of Thieulot et al. (2008) or Fig. 36 of

Thieulot (2014)) and makes it not suited for large scale three-dimensional simulations coupled to iterative solvers (May and40

Moresi, 2008). The unreliability of the pressure also makes this element a dubious choice for models in which some of the

parameters – e. g., the density or the viscosity – depend on the pressure.

The more modern alternative to this choice is the Taylor-Hood element that uses (continuous) polynomials of degree k for

the velocity and of degree k− 1 for the pressure, where k ≥ 2.1 This element is not only LBB-stable, but owing to its higher

polynomial degree is also convergent of higher order. It is therefore widely used in commercial flow solvers, and is also the45

default element for the ASPECT code in geodynamics (Kronbichler et al., 2012; Heister et al., 2017). This element is obviously

more difficult to implement, and building efficient solvers and preconditioners is also more complicated (Kronbichler et al.,

2012; Clevenger et al., 2020). However, these drawbacks can be mitigated by building on one of the widely available finite

element libraries that have appeared over the past 20 years; for example, ASPECT inherits all of its finite element functionality

from the deal.II library (see Bangerth et al. (2007); Arndt et al. (2020)). We will note that one can also use a number of variations50

of the underlying idea of the Taylor-Hood element, for example on quadrilaterals and hexahedra by using Qk ×P−(k−1) (see

for instance May et al. (2015), Lechmann et al. (2011) and Thielmann and Kaus (2012)) in which the pressure is discontinuous

1Strictly speaking, Taylor and Hood (1973) only introduced the Q2×Q1 element on quadrilaterals. However, finite element practitioners use the term

“Taylor-Hood” for both the 2d and 3d cases, for both the case of simplex and quadrilateral/hexahedral meshes, and for all cases with k ≥ 2. See also (John,

2016, p.98).
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and of (total) polynomial degree k−1, but missing the part of the finite element space on every cell that distinguishes the space

Qk on quadrilaterals/hexahedra from the space Pk that is typically used on triangles/tetrahedra.2 Another variation is to enrich

the pressure space by a constant shape function on each cell (see, for example, Boffi et al. (2011) and the references therein).55

All of these alternatives are stable for k ≥ 2, and in keeping with common usage of the term, we will also refer to all of these

variations as “Taylor-Hood” or “Taylor-Hood-like” elements even though they are strictly speaking not what Taylor and Hood

proposed in Taylor and Hood (1973).

A third option is the use of Q1×Q1 elements where both velocity and pressure use bi- or tri-linear shape functions. This

combination of elements is not LBB-stable by default, but numerous stabilisation techniques – typically adding a pressure60

dependent term to the mass conservation equation – have been proposed in the literature (see e.g. Norburn and Silvester, 2001;

Elman et al., 2014; Gresho et al., 1995). Herein, we will discuss in particular the variation by Dohrmann and Bochev (2004)

that is simple to implement and does not involve any tunable parameter. This approach is used in the Rhea code (Burstedde

et al., 2009, 2013) in conjunction with Adaptive Mesh Refinement (AMR), allowing for the numerical solution of whole Earth

models at high resolutions (Stadler et al., 2010; Alisic et al., 2012). Another example of the use of this method is the work65

of Leng and Zhong (2011), also using AMR, to study thermochemical mantle convection. Both the ELEFANT code with an

application to the 3D thermal state of curved subduction zones (Plunder et al., 2018), and the GALE code (Moresi et al., 2012)

with application to the 3D shapes of metamorphic core complexes (Le Pourhiet et al., 2012) or oceanic plateau subduction

(Arrial and Billen, 2013), use the stabilised Q1×Q1 method. Finally the ADELI code was coupled to a stabilised Q1×Q1

flow solver in the context of lithosphere-asthenosphere interaction studies (Cerpa et al., 2014, 2015, 2018).70

The availability of all of these options leads us to the main question of this paper: Which element should one use in geody-

namics computations based on the Stokes equations?, or, in the absence of clear-cut conclusions, Which ones should not be

used? On the face of it, this seems like a simple question: The consensus in the computational science community is that using

moderately high degree elements (say, k = 3 or k = 4) yields the best accuracy for a given computational effort (measured

in CPU cycles), unless one wants to change the solver technology to use matrix-free methods where even higher polynomial75

degrees become more efficient. This conclusion is based on the higher convergence order of higher-degree methods, but bal-

anced by the rapidly growing cost of matrix assembly and linear solver effort for higher-degree methods. On the other hand,

the recommendation to use higher-degree methods is predicated on the assumption that the solution is smooth enough – say,

the velocity is in the Sobolev space Hk+1 of functions that have, loosely speaking, at least k+ 1 derivatives – so that one

can actually achieve a convergence rate of O(hk) in the energy norm and O(hk+1) in the L2 norm where h is the mesh size.80

This assumption generally requires that all coefficients, such as density and viscosity, are sufficiently smooth on length scales

resolvable by the mesh. This may not be the case in realistic geodynamics problems given that density and viscosity often

2The discontinuous space P−(k−1) for the pressure can be interpreted in two, incompatible, ways: First, one can map the corresponding space from the

reference cell to each of the cells of the mesh, as one also does for the velocity; or, one can define shape functions directly in the global coordinate system,

without mapping from the reference cell. The two agree on cells that are parallelograms, but not on more general meshes. Since our experiments are all on

meshes in which all cells are rectangles, the distinction does not matter for the current paper, but we point out that the error estimates (4) stated in Section 3.1

only hold for the latter definition. See Boffi and Gastaldi (2002); Matthies and Tobiska (2002) and (John, 2016, section 3.6.4) for more information.
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depend discontinuously on the solution variables (velocity or strain rate, pressure, temperature, and compositional variables);

indeed, in many models, the viscosity may vary by orders of magnitude on short length scales.

Such considerations put into question whether higher order methods are really worth the effort for actual geodynamics85

simulations. Given these divergent theoretical thoughts, the only way to resolve the question is by way of numerical compar-

isons. We have consequently extended ASPECT so that it can use all of the element combinations above, and will use these

implementations in the comparisons in this paper.

Goals of this paper. Having outlined the conflict between the expected superiority of higher-degree elements for the Stokes

equation on the one hand, and the expected lack of smoothness of solutions in realistic geodynamic cases, our goals in the90

paper are as follows:

1. To quantitatively compare the solution accuracy of the various options (Q1×P0,Qk×Qk−1,Qk×P−(k−1) and stabilised

Q1×Q1) using a variety of analytical benchmarks for which the exact solution is known. As we will see below, there

is little point working with k > 2 in geodynamics applications, and so the only cases we consider for Taylor-Hood-like

elements are Q2×Q1 and Q2×P−1.95

2. To extend these numerical comparisons to cases where it is known that the stabilised Q1×Q1 demonstrates problematic

behaviour that may make it unusable in many practical situations. In particular, we will consider the case of buoyancy-

driven flows.

3. To conclude our considerations by comparing the available options using a realistic geodynamical application. This will

allow us to draw conclusions as to what element one might want to recommend for geodynamics applications.100

While we have approached this study with an open mind and without a strong prior idea which element might be the best, let

us end this introduction by noting that members of the crustal dynamics and mantle convection communities have occasionally

expressed a dislike of the stabilised Q1×Q1 element for its inability to deal with large lithostatic pressures and free surfaces

absent special modifications of the formulation. For example, Arrial and Billen (2013) comment on the need to modify the

physical description of the problem due to the stabilisation (with references replaced by ones listed at the end of this paper):105

All the models were run with the open source code Gale. [...] Gale uses Q1–Q1 elements to describe the pressure

and the velocity. However, this formulation is unstable and a slight compressible term is added in the divergence

equation to stabilise it (Dohrmann and Bochev, 2004). Ideally, this term should be applied on the dynamic pressure

and not on the full pressure. To fix this, a hydrostatic term corresponding to the reference density and temperature

profile, is subtracted from the full pressure and the body force vector.110

Few other negative comments concerning the Q1×Q1 element appear on record in the published literature, although one can

find the following quote in Lehmann et al. (2015) :

We do not consider theQ1×Q1/stab element (Dohrmann and Bochev, 2004; Bochev et al., 2006; Burstedde et al.,

2009), as stabilisation of this element is achieved by introducing an artificial compressibility that dominates for
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flows mainly driven by buoyancy variations (May et al., 2015). In geophysical flow models this yields unphysical115

pressure artifacts for cases where both the free surface of the Earth and mantle flow are considered, because the

driving density contrast between cold sinking plates and the warmer surrounding Earth’s mantle is much smaller

than the density difference between rocks and air (Kaus et al., 2010; Popov and Sobolev, 2008; Mishin, 2011). In

our experience, this results in artificial “compaction” of the Earth’s mantle if Q1×Q1/stab element is used, which

makes them unsuitable for these purposes.120

Indeed, our numerical experiments will encounter a similar issue, see Section 6.

We are not aware of any other significant publications in the geodynamics literature that specifically discuss the relative trade-

offs between the elements we consider herein, specifically between the Q1×P0 and Taylor-Hood elements, and consequently

believe that our discussions here are useful for the community.

2 The governing equations125

For the purpose of this paper, we are concerned with the accurate numerical solution of the incompressible Stokes equations:

−∇ · [2ηε(u)] +∇p= ρg in Ω, (1)

−∇ ·u = 0 in Ω, (2)

where η is the viscosity, ρ the density, g the gravity vector, ε(·) denotes the symmetric gradient operator defined by ε(u) =

1
2 (∇u+∇uT ), and Ω⊂ Rd,d= 2 or 3 is the domain of interest. Both the viscosity η and the density ρ will, in general, be130

spatially variable; in applications, this is often through nonlinear dependencies on the strain rate ε(u) or the pressure, but

the exact reasons for the spatial variability are not of importance to us here: What matters is that these coefficients may vary

strongly and on short length scales.

In applications, the equations above will be augmented by appropriate boundary conditions and will be coupled to additional

and often time dependent equations, such as ones that describe the evolution of the temperature field or of the composition of135

rocks (see, for example, Schubert et al. (2001); Turcotte and Schubert (2012)). This coupling is also not of interest to us here.

3 Discretisation using finite element methods

3.1 Formulation and basic error estimates

For the comparisons we intend to make in this paper, equations (1)–(2) are discretised using the finite element method. A

straightforward application of the Galerkin method yields the following finite-dimensional variational problem: Find uh ∈140
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Uh,ph ∈ Ph so that

(ε(vh),2ηε(uh))− (∇ ·vh,ph) = (vh,ρg),

−(qh,∇ ·uh) = 0, (3)

for all test functions vh ∈ Uh, qh ∈ Ph. Here, (a,b) =
∫

Ω
a(x)b(x)dx. For simplicity, we have omitted terms introduced

through the treatment of boundary conditions. The finite-dimensional, piecewise polynomial spaces Uh and Ph can be chosen

in a variety of ways, as discussed in the introduction. In particular, if they are chosen as Uh =Qk and Ph =Qk−1 – i.e., the145

Taylor-Hood element – then the discrete problem is known to satisfy the LBB condition and the solution is stable (Elman et al.,

2014). Here, Qs is the space of continuous functions that are obtained on each cell K of a mesh T by mapping polynomials

of degree at most s in each variable from the reference cell [0,1]d. Likewise, the problem is stable if one chooses Uh =Qk

and Ph = P−(k−1) where now P−s is the space of discontinuous functions obtained by mapping polynomials of total degree

at most s from the reference cell. In both of these cases, we expect from fundamental theorems of the finite element method150

(see, for example, Elman et al. (2014)) that the convergence rates are optimal, i.e., that the errors satisfy the relationships

‖∇(u−uh)‖L2 =O(hk),

‖u−uh‖L2 =O(hk+1),

‖p− ph‖L2 =O(hk), (4)

where h is the maximal diameter over all cells in the mesh T.

On the other hand, if one chooses Uh =Q1 andPh = P0, i.e., the unstableQ1×P0 element with piecewise linear, continuous155

velocities and piecewise constant, discontinuous pressure, then the best convergence rates one can hope for would satisfy the

following relationships, based solely on interpolation error estimates:

‖∇(u−uh)‖L2
=O(h),

‖u−uh‖L2
=O(h2),

‖p− ph‖L2 =O(h). (5)

In practice, if the numerical solution shows pressure oscillations (see for instance Sani et al., 1981a, b), one will not even160

observe the rates shown above, but might in fact obtain a worse pressure convergence rate, for example ‖p−ph‖L2
=O(h1/2).

Finally, if one uses Uh =Q1 and Ph =Q1, then this unstable element combination can be made stable if one replaces the

discrete formulation (3) by the following, stabilised version due to Dohrmann and Bochev (2004):

(ε(vh),2ηε(uh))− (∇ ·vh,ph) = (vh,ρg),

(qh,∇ ·uh)−
(

(I −π0)qh,
1

η
(I −π0)ph

)
= 0. (6)

Here, I is the identity operator and π0 is the projection onto piecewise constant functions – i.e., π0f is the function that on165

each cell is equal to the mean value of f on that cell. For this element, the rates one might hope for are as follows (see again
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Dohrmann and Bochev (2004)):

‖∇(u−uh)‖L2
=O(h),

‖u−uh‖L2
=O(h2),

‖p− ph‖L2
=O(h). (7)

Dohrmann and Bochev (2004) report that for some test cases, one might in fact obtain ‖p−ph‖L2
=O(ht) with t≈ 1.5, though170

it is not clear whether this rate can be obtained for all possible applications. We also observe this improved rate in one of our

benchmarks in Section 5.

3.2 A closer look at the error estimates

A comparison of (4) with (5) and (7) would suggest that the Taylor-Hood element can obtain substantially better rates of

convergence if one only chooses the polynomial degree k large enough.175

However, this is an incomplete understanding because the O(hm) notation hides the fact that the constants in this behaviour

depend on the solution. More specifically, a complete description of the error behaviour would replace (4) by the following

statement: There exist constants C1,C2,C3 <∞ so that

‖∇(u−uh)‖L2
≤ C1 h

k ‖∇k+1u‖L2
,

‖u−uh‖L2
≤ C2 h

k+1 ‖∇k+1u‖L2
,

‖p− ph‖L2 ≤ C3 h
k ‖∇kp‖L2 . (8)180

The validity of these statements clearly depends on the solution to be regular enough so that ∇k+1u and ∇kp actually exist

and are square integrable – in other words, that u ∈Hk+1 and p ∈Hk, where Hk are the usual Sobolev function spaces.3 On

the other hand, all that is guaranteed by the existence theory for partial differential equations is that u ∈H1 and p ∈ L2 =H0;

any further smoothness should only be expected if, for example, the domain Ω is convex, and if viscosity η and right hand side

ρg are also smooth. Indeed, this is the case for many artificial benchmarks where these functions are chosen a priori; on the185

other hand, in “realistic” geodynamics applications, one might expect η and ρ to be discontinuous at phase boundaries, and

potentially vary widely. In such cases, one needs to accept that the solutions only satisfy u ∈Hq and p ∈Hq−1 with q ≥ 1 but

possibly q < k+ 1. Numerical analysis predicts that in such cases, the best case rates in (8) will be replaced by the following:

‖∇(u−uh)‖L2
≤ C1 h

min{q−1,k} ‖∇min{q,k+1}u‖L2
,

‖u−uh‖L2
≤ C2 h

min{q,k+1} ‖∇min{q,k+1}u‖L2
,

‖p− ph‖L2 ≤ C3 h
min{q−1,k} ‖∇min{q−1,k}p‖L2 . (9)190

3For a concise definition of the Lebesgue space L2 and the Sobolev spaces of functions Hk , see Elman et al. (2014). Loosely speaking, L2 is the set of all

functions f for which the integral of the square over the domain,
∫
Ω |f(x)|2 dx is finite. We say that such a functions are “square integrable”. Hk is the set

of all functions whose kth (weak) derivatives are square integrable.
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Similar considerations apply for the Q1×P0 and the stabilised Q1×Q1 combinations, where a closer examination yields

the following rates that would replace (5) and (7):

‖∇(u−uh)‖L2
≤ C1 h

min{q−1,1} ‖∇min{q,2}u‖L2
,

‖u−uh‖L2
≤ C2 h

min{q,2} ‖∇min{q,2}u‖L2
,

‖p− ph‖L2
≤ C3 h

min{q−1,1} ‖∇min{q−1,1}p‖L2
. (10)

In other words, we will only benefit from the added expense of the Taylor-Hood element with k ≥ 2 if the solution is195

sufficiently smooth, namely if at least q > k ≥ 2. The question whether indeed q > 2 for a given situation is one of PDE theory

and difficult to answer in general without using particular knowledge of η, ρg, and Ω. On the other hand, one can observe

convergence rates experimentally for a number of cases of interest, and so in some sense, it would be a legitimate question to

ask “What is the regularity index q of typical solutions in geodynamics applications?” At the same time, this requires careful

convergence studies on problems that are typically quite challenging to solve already on any reasonable mesh, let alone several200

further refined ones. As a consequence, we can not answer this question in the generality stated above. Instead, we will below

approach it by considering a number of benchmarks that illustrate typical features of geodynamic settings in an abstracted way

(in Section 5), followed by a model application (in Section 6). In particular, the examples in Sections 5.2 and 5.3 will illustrate

cases where the exact solution is not smooth enough to achieve the optimal convergence rate.

We end this section by noting that all of the estimates shown above guarantee that the error on the left of an inequality205

decreases at least at the rate shown on the right side, but they do not state that on a given sequence of meshes, the rate might not

in fact be better. Indeed, this often happens: For example, if one aligns meshes with a discontinuity in coefficients (as we do for

the SolCx benchmark discussed in Section 5.2), one often observes optimal rates – or convergence rates between the minimal

theoretically guaranteed and the optimal ones – for some elements even if the solution lacks regularity. Actually observing the

minimal theoretically guaranteed convergence rate for solutions lacking regularity often requires choosing randomly arranged210

meshes – a case we will not consider herein.

4 Comments about the use of the Q1 ×Q1 element in geodynamics computations

Before delving into the details of numerical experiments, let us consider one other theoretical aspect. An interesting complica-

tion of geodynamics simulations compared to many other applications of the Stokes equations is that the hydrostatic component

of the pressure is often vastly larger than the dynamic pressure, even though only the dynamic component is responsible for215

driving the flow. As we will discuss in the following, this has no importance when using the Q1×P0 or the Taylor-Hood

elements, but turns out to be rather inconvenient when using a stabilised formulation that contains an artificial compressibility

term. This issue is also mentioned in the quote from Arrial and Billen (2013) reproduced in the introduction, and in May et al.

(2015).
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To illustrate the issue, consider the force balance equation (1). We can split the pressure into hydrostatic and dynamic220

components, p= ps + pd where we define the hydrostatic pressure via the relationship

∂

∂z
ps = ρref(z)gz(z), (11)

coupled with the normalisation that ps = 0 at the top of the domain. In defining ps this way, we have made the assumption that

the vertical component gz of the gravity vector dominates its other components. Furthermore, we have introduced a reference

density ρref that somehow reflects a depth-dependent profile. As we will discuss below, there is really no unique or accepted225

way to define this profile, though one should generally think of it as capturing the bulk of the three-dimensional variation in

the density via a one-dimensional function.

By splitting the pressure in this way, (1) can then be rewritten as follows:

−∇ · [2ηε(u)] +∇pd = ρg− ρrefgzez in Ω.

Since this is the only equation in which the pressure appears, it is obvious that the velocity field so computed is the same whether230

or not one uses the original formulation solving for u,p, or the one solving for u,pd. More concisely, the observation shows

that the velocity field so computed does not depend on how one chooses the reference density ρref. The original formulation

is recovered by using the simplest choice, ρref = 0. As a consequence, many geodynamics codes use formulations that only

compute the dynamic pressure pd, using a reference density ρref(z). Importantly however, there is no canonical way for this

definition: one might choose a constant reference density, a depth-dependent adiabatic profile, or one computed at each time235

step by laterally averaging the current three-dimensional density field ρ(x,y,z, t); each of these options – and likely more –

have been used in numerical simulations one can find in the literature. In any case, pressure-dependent coefficients such as the

density or viscosity are then evaluated by using ps+pd where pd is computed as part of the solution of the Stokes problem and

ps is the hydrostatic pressure defined by (11) using the particular choice of reference density used by a code. On the other hand,

the ASPECT code notably always computes the full pressure instead of splitting it in hydrostatic and dynamic components (see240

the discussion in Kronbichler et al. (2012)), corresponding to the particular choice ρref = 0.

The problem with the stabilised Q1×Q1 formulation – different from the use of the other element choices – is that the

velocity field computed from the Stokes solution is not independent of the choice of the reference density. This is because the

mass conservation equation is modified by the stabilisation term and – in the simple case of a constant viscosity – reads

−∇ ·u− 1

η
Πpd = 0. (12)245

Here, Π = (I −π0) is the operator that corresponds to the stabilisation term in (6).4

The point of these considerations is that different choices of ρref (including the choice ρref = 0 that leads to the original

formulation) do have an effect here because they lead to different pd = p− ps for which Πpd is different: that is, the amount

4To arrive at this form for the operator, one needs to re-write (6) using
(

(I −π0)qh,
1
η

(I −π0)ph

)
=
(
qh,

1
η

(I −π0)∗(I −π0)ph

)
where the asterisk

denotes the adjoint operator. One then shows (I −π0)∗ = (I −π0) and finally that Π = (I −π0)2 = I −π0, which follows by recalling that projection

operators are idempotent.
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of artificial compressibility depends on the splitting of the pressure into static and dynamic pressures. In other words, the

discretisation errors ‖u−uh‖L2
and ‖∇(u−uh)‖L2

discussed in the previous section will in general depend on the choice250

of the reference density profile, and the latter will need to be carefully defined in order to lead to acceptable error levels. As

we will show in the benchmarking section, the specific choice of ρref in fact has a rather large effect. This is in line with the

previously quoted comments in Arrial and Billen (2013).

Let us end this section by commenting on two aspects why this issue may not be as relevant in other contexts in which

stabilised formulations have been used. First, in many important applications of the Stokes equations, the flow is not driven by255

buoyancy effects but by inflow and outflow boundary conditions (e.g. Turek, 1999; Zienkiewicz and Taylor, 2002). Indeed, in

those conditions both the density and the gravity vector is generally considered spatially constant, and the choice of reference

density and hydrostatic pressure is then obvious and unambiguous. In these cases, computations are always performed with

only the dynamic pressure because the hydrostatic pressure does not enter the problem at all except in the rare cases of fluids

with pressure-dependent viscosities.260

Second, while we have here considered the stabilisation first introduced in Dohrmann and Bochev (2004), earlier stabilised

formulations used a pressure Laplacian in place of the operator Π above. (See, for example, Brezzi and Pitkäranta (1984) or

the variation in Silvester and Kechkar (1990), as well as the analysis in Bochev et al. (2006).) That is, instead of (12) they used

a formulation of the form

−∇ ·u− ch2∆p= 0, (13)265

where c is a tuning parameter that also incorporates the viscosity. If one uses this formulation for cases in which the reference

density is chosen as a function that is constant in depth – as was often done in earlier mantle convection codes considering

the Boussinesq approximation – and if one computes in a Cartesian box with a constant gravity vector g = gez , then ps is a

linear function, and consequently ∆ps = 0. In other words, ∆p= ∆(p−ps) = ∆pd, which implies that the computed velocity

field again did not depend on the exact choice of ρref as long as it was chosen constant. This property does not hold for the270

formulation of Dohrmann and Bochev because Πp 6= Π(p− ps) = Πpd for linear pressures ps because Πps 6= 0: Π subtracts

from ps the average value on each cell, leaving a piecewise linear, discontinuous function.

Of course, whether one uses the Dohrmann-Bochev formulation (12) or the addition of a pressure Laplace as in (13), the

formulation is consistent. That is, as the mesh size h goes to zero, the added stabilisation term also goes to zero. In the limit,

the numerical solution therefore satisfies the original mass conservation equation. In other words, the limit is independent of275

the choice of ρref, even though the solutions on a finite mesh are not.

5 Numerical results for artificial benchmarks

In this section, let us present computational results for three analytical problems and a buoyancy-driven flow community

benchmark. While the first of these (Section 5.1) is simply used to establish the best convergence rates one can hope for in the

case of smooth solutions, the remaining test cases were chosen because they illustrate aspects of what we think how “typical”280
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solutions of geodynamic applications look like in an abstracted, controlled way. In particular, the “SolCx” benchmark in

Section 5.2 demonstrates features of solutions in which the mesh can be aligned with sharp features in the viscosity, and the

“SolVi” benchmark in Section 5.3 does so in the more common case where the mesh can not be aligned. Finally, the “sinking

block” case in Section 5.4 shows a buoyancy-driven situation in which all of the discussions of the previous section on the

choice of a reference density will come to play. All of these cases are simple enough that we know (quantitative or qualitative285

features of) the solution to sufficient accuracy to investigate convergence rigorously.

While these benchmarks provide us with insight that allows us to conjecture which elements may or may not work in practical

application, they still are just abstract benchmarks. As a consequence, we will consider an actual geodynamic application in

Section 6.

All models are run with the ASPECT code. We have limited ourselves to two-dimensional cases as we do not expect that290

three-dimensional models would shed any more light on the reached conclusions. Although ASPECT is built for adaptive mesh

refinement (AMR), we have chosen not to use this feature in order to reflect that the majority of existing codes use structured

meshes.

5.1 The Donea & Huerta benchmark

Let us start our numerical experiments with the simple 2D benchmark presented in Donea and Huerta (2003). The exact295

definition involves lengthy formulas not worth repeating here, but in short it consists of the following ingredients: (i) The

domain is a unit square; (ii) the viscosity and density are set to 1; (iii) velocity and pressure fields are chosen to correspond to

smooth polynomials describing circular flow with no-slip boundary conditions. We then choose an (unphysical) gravity vector

field that produces these velocity and pressure fields. This set up produces the smooth solution shown in Fig. 1 for which we

would expect that the higher-order Taylor-Hood element is highly accurate.300

We verify this in Fig. 2 for the four element choices of interest in this work:Q1×P0, stabilisedQ1×Q1,Q2×Q1,Q2×P−1.

Looking at the velocity error, we recover a cubic convergence rate (q = 3) for the Q2×Q1 and Q2×P−1 elements, and a

quadratic convergence rate (q = 2) for those choices using the Q1 elements for the velocity. The pressure error is of linear rate

for the Q1×P0 element and of quadratic rate for the Q2×Q1 and Q2×P−1 elements. All of these are as expected. For the

stabilisedQ1×Q1, we obtain the better-than-expected rate of 1.5 already mentioned in Dohrmann and Bochev (2004), see also305

Section 3.

Fig. 3 shows the root mean square velocity as a function of the mesh size as obtained with the four elements in question.

Again, the second-order elements are more accurate.

These results are not surprising: The solution is smooth, and consequently one would expect to obtain optimal order conver-

gence in all cases. One can carry out similar experiments for the SolKz benchmark (Zhong, 1996), which also has a smooth310

solution; we have obtained identical error convergence rates.
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Figure 1. Donea & Huerta benchmark. Velocity (left) and pressure (right) fields obtained on a 32× 32 mesh with Q2×Q1elements.
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Figure 2. Donea & Huerta benchmark. Error convergence as a function of the mesh size h. Left: Velocity error ||u−uh||L2 . Right: Pressure

error ||p− ph||L2 . The two leftmost points are missing for Q1×P0 since the solver failed to converge; the data points for Q2×Q1 and

Q2×P−1 are on top of each other.

Finally, we also investigate the cost associated with solving this problem using the various elements. Fig. 3 shows the number

of outer FGMRES iterations of the Stokes solver as a function of the mesh size.5 This number is nearly constant with increasing

resolution for the stable or stabilised elements while it becomes exceedingly large for the unstable Q1×P0 element, reflecting

the fact that lack of LBB stability corresponds to the smallest eigenvalue of the system matrix tending to zero – and thereby315

driving the condition number to infinity. Indeed, our linear solver does not converge in the 1000 iterations we chose as a limit

for the smallest mesh sizes.
5The concrete number of iterations of course depends on the preconditioner used – here the one described in Kronbichler et al. (2012). The important point

of the figure is, however, how the number of iterations changes (or doesn’t) with the mesh size h.
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Figure 3. Donea & Huerta benchmark. Left: Root mean square velocity as a function of the mesh size h. The dotted line is the analytical

value. Right: Number of FGMRES solver iterations as a function of the mesh size h.

5.2 The SolCx benchmark

The SolCx benchmark is a common benchmark found in many geodynamical papers (e.g. Zhong, 1996; Duretz et al., 2011;

Kronbichler et al., 2012; Thielmann et al., 2014). It uses a discontinuous viscosity profile with a large jump in the viscosity320

value along the middle of the domain, resulting in a discontinuous pressure field. The domain is a unit square, boundary

conditions are free-slip on all edges, and the gravity vector points downwards with |g|= 1. The density for SolCx is given by

ρ(x,y) = sin(πy)cos(πx) and the viscosity field is such that

η(x,y) =

 1, if 0≤ x≤ 0.5

106 if 0.5< x≤ 1.

We show the velocity and pressure fields in Fig. 4. The discontinuous jump of the viscosity field by a factor of 106 results325

in separate convective cells on the left and right sides of the domain, though with vastly different strengths. The pressure also

reflects this disjoint behaviour.

As in the Donea & Huerta benchmark, we compute the velocity and pressure error convergence for all four elements.

Those are shown in Fig. 5. As documented in Kronbichler et al. (2012), the second order element with discontinuous pressure

Q2×P−1 performs better (pressure error convergence isO(h2)) than its continuous pressure counterpartQ2×Q1 (convergence330

is only O(h1/2), but the better convergence order with the discontinuous pressure can only be obtained if the discontinuity

in the viscosity is aligned with cell boundaries – which is the case here. Also of interest here is the fact that the Q1×P0

outperforms the Q1×Q1 element for both velocity and pressure. All of these observations are readily explained by the fact

that a discontinuous pressure can only be approximated well when using discontinuous pressure elements with cell interfaces

aligned with the discontinuity in the viscosity.335
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Figure 4. SolCx benchmark. Velocity (left) and pressure (right) fields obtained on a mesh with a resolution of 32×32 grid with theQ2×Q1

element.
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Figure 5. SolCx benchmark. Error convergence as a function of the mesh size h. Left: velocity error; right: pressure error.
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Figure 6. SolVi benchmark with inclusion of radius 0.2. Velocity (left) and pressure (right) fields obtained on a 256× 256 mesh using

Q2×Q1 elements.

5.3 The SolVi (circular inclusion) benchmark

The SolCx benchmark in the previous section allows for aligning mesh interfaces with the discontinuity in the viscosity. This

is an artificial situation that will, in general, not happen in actual, large-scale geodynamics applications where the interfaces

between materials may be at arbitrary locations and orientations in the domain, and may also move with time. An example

is the simulation of a cold, subducting slab (with correspondingly large viscosity) surrounded by hot, low-viscosity mantle340

material. Consequently, it is worth considering a situation in which it is impractical to align mesh and viscosity interfaces.

This is done by the SolVi inclusion benchmark which solves a problem with a viscosity that is discontinuous along a circle.

This in turns leads to a discontinuous pressure along the interface which is difficult to represent accurately. Using the regular

meshes used by a majority of codes, the discontinuity in the viscosity and pressure then never aligns with cell boundaries. Even

though ASPECT can use arbitrary, unstructured meshes (and can also used curved cell edges), we will honor the setup of this345

benchmark by only considering regular meshes.

Schmid and Podlachikov (2003) derived a simple analytical solution for the pressure and velocity fields for such a circular

inclusion under pure shear and this benchmark is showcased in many publications (Deubelbeiss and Kaus, 2008; Suckale et al.,

2010; Duretz et al., 2011; Kronbichler et al., 2012; Gerya et al., 2013; Thielmann et al., 2014). The velocity and pressure fields

are shown in Fig. 6.350

A characteristic of the analytic solution is that the pressure is zero inside the inclusion, while outside it follows the relation

p= 4ε̇
ηm(ηi− ηm)

ηi + ηm

r2
i

r2
cos(2θ) (14)
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where ηi = 103 is the viscosity of the inclusion and ηm = 1 is the viscosity of the background medium, r =
√
x2 + y2 and

θ = arctan(y/x), and ε̇= 1 is the applied strain rate if one were to extend the domain to infinity. The formula above makes it

clear that the pressure is discontinuous along the perimeter of the disk, with the jump largest at θ = 0,±π2 ,π.355

Deubelbeiss and Kaus (2008) thoroughly investigated this problem with various numerical methods (FEM, FDM), with and

without tracers, and conclusively showed how various schemes of averaging the density and viscosity lead to different results.

Heister et al. (2017) also come to this conclusion, and also considered how averaging the coefficient on each cell affects the

number of iterations necessary to solve the linear systems. We repeat these experiments here but with our larger set of different

elements. Specifically, results obtained with no averaging inside the element (‘No’), arithmetic averaging (‘Arith’), geometric360

averaging (‘Geom’) and harmonic averaging (‘Harm’) are shown in Fig. 7. We see that (i) all four elements show the same rate

of convergence: O(h) for velocity errors and O(h0.5) for pressure errors; (ii) harmonic averaging always yields lower errors,

validating the findings of Heister et al. (2017); (iii) the number of iterations in the Stokes solver is the lowest for the stabilised

Q1×Q1 element; and (iv) this number is not strongly affected by the method of averaging (with the exception of the Q2×P−1

element). The observation that none of the elements reach their optimal convergence rate also supports our decision, briefly365

mentioned in the “Goals of this paper” part of the Introduction, to not further investigate higher-order Taylor-Hood elements

Qk×Qk−1 or Qk×P−(k−1) with k > 2: We know from experiments such as the current one that these elements will not yield

better convergence orders despite their additional cost.

Since harmonic averaging yields the lowest errors we select this averaging and now turn to the pressure field for all elements

as shown in Fig. 8. We find that the recovered pressures on the line y = 1 follow the analytical solution outside of the inclusion370

but are less accurate inside the inclusion where it should be identically zero (Fig. 9).

5.4 The sinking block

As discussed in Section 4, the stabilised Q1×Q1 element is sensitive to the choice of a reference density profile as not only

the computed pressure, but also the computed velocity field depends on this choice. This is only relevant for buoyancy-driven

flows, but because none of the benchmarks shown previously are driven by buoyancy effects in the presence of a background375

lithostatic pressure to any significant degree, let us next consider a setup in which this is the dominant effect. To this end,

we perform an experiment based on a benchmark similar or identical to the ones presented in May and Moresi (2008), Gerya

(2010), Thieulot (2011) and Schuh-Senlis et al. (2020).

It consists of a two-dimensional 512×512km domain filled with a fluid (the “mantle”) of density ρ1 = 3200kgm−3 and vis-

cosity η1 = 1021Pas. A square block of size 128×128km is placed in the domain and is centered at location (xc,yc)=(256km,380

384km) so as to insure that its sides align with cell boundaries at all resolutions, avoiding cases where the quadrature within one

element correspond to different density or viscosity values. It is filled with a fluid of density ρ2 = ρ1 +δρ and viscosity η2. The

gravity vector points downwards with |g|= 10ms−2. Boundary conditions are free slip on all sides. The pressure nullspace

is removed by enforcing
∫

Ω
p dV = 0 and only one time step is carried out. The benchmark then solves for the instantaneous

pressure and velocity field for this setup.385
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Figure 7. SolVi benchmark. Left to right: Q1×P0, stabilised Q1×Q1, Q2×Q1 and Q2×P−1. Top to bottom: Velocity error, pressure

error, and number of FGMRES iterations for the Stokes solve. The individual lines in each graph correspond to different ways of averaging

coefficients on each cell: dotted lines use the correct, unaveraged, values of coefficients at each quadrature point; dash-dotted lines compute

the arithmetic average of the values at the quadrature points on a cell and use the average for all quadrature points; dashed lines use the

geometric average; solid lines use the harmonic average. The gray dotted line in the first two rows indicates O(h) convergence for velocity

and O(h0.5) for pressure.

In a geodynamical context, the block could be interpreted as a detached slab (δρ > 0) or a plume head (δρ < 0). As such its

viscosity and density can vary (a cold slab has a higher effective viscosity than the surrounding mantle while it is the other way

around for a plume head). The block density difference δρ can then vary from a few to several hundred kgm−3 to represent a

wide array of scenarios. As shown in Appendix A.2 of Thieulot (2011), one can independently vary η1, ρ2, η2, and measure

|vz| for each combination: the quantity ν = |vz|η1/δρ is then found to be a simple function of the ratio η? = η2/η1: at high390

enough mesh resolution all data points collapse onto a single line.

In the following, we will denote by “Method #1” the approach where we do calculations with the density field as specified

above. “Method #2” consists of a ‘reduced’ density field from which the quantity ρ1 has been uniformly removed so that the

block has a density δρ while the surrounding fluid has zero density. As discussed above, the two choices will result in different

pressure, but the same velocity fields.395
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Figure 8. SolVi benchmark. Pressure field for the Q1×P0, stabilised Q1×Q1, Q2×Q1 and Q2×P−1 elements respectively from left to

right and top to bottom, at resolution 128x128, with no averaging. Note the different color scales, illustrating the differing size of over- and

undershoots for the different discretisations.
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Figure 9. SolVi benchmark. Pressure on the horizontal ray starting from the center of the inclusion at x= 1.
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We have carried out measurements for all four elements with η? ∈ [10−4 : 106], and δρ/ρ1 ∈ {0.25%,1%,4%} correspond-

ing to δρ ∈ {8,32,128}kgm−3. Results for ν = f(η?) for all elements, the three block density values, and five different mesh

resolutions are shown in Fig. 10 for the two methods.

When using the full density, we see that all elements, with the exception of the stabilised Q1×Q1 element, yield results

which align on a single curve on the plots once sufficient resolution is reached. We find that measurements pertaining to a given400

resolution but different δρ are always collapsed onto a single line. Worth noticing is the Q2×P−1 element whose results seem

to be the least resolution dependent. On the other hand the stabilised Q1×Q1 element yields very anomalous results which are

orders of magnitude off at all resolutions, especially for η1/η2� 1. In addition, we find that for this element, the value of δρ

strongly affects the measurements, as expected based on the discussions in Section 4; as a result, the curves for the same mesh

resolution but different δρ2 no longer coincide (see Fig. 10b).405

When reduced densities are used results are unchanged for the stable elements (only Q2×Q1 results are shown in Fig. 10e),

and the results for the stabilised Q1×Q1 results are substantially improved. For values η1/η2 < 1 we see that all results align

on the expected curve but this is far from true for η1/η2� 1 even at high resolution.

In Fig. 11 we show the velocity field in the case η? = 10−4 (i.e. the viscosity of the block is 10,000 times smaller than

the surrounding mantle) and δρ= 8kgm−3. When the Q2×Q1 element is employed in conjunction with Method 1 we see in410

Fig. 11a that the velocity field is strongest inside the block with a maximum value of about 5mmyr−1 in its center. We see

that the Q2×Q1 and Q2×P−1 elements yield near identical results (Fig. 11b) so we consider this to be the correct solution

of the physical experiment. The same setup with the stabilised Q1×Q1 (left half of Fig. 11c) yields a velocity field that is

also maximal in the middle of the block but nearly 1000 times larger in amplitude. If we now switch to Method 2 (right half of

Fig. 11c) the amplitude of the velocity is reduced by two orders of magnitude but it is still much too large compared to the true415

solution.

These observations illustrate the unreliable nature of the results obtained with stabilised Q1×Q1 elements in the context of

buoyancy-driven flows. Looking at Fig. 10f we see that increasing the resolution to 512× 512 or 1024× 1024 would probably

yield the expected curve but such resolutions are intractable in three dimensions and better results can be obtained at much

lower resolutions with other elements.420

Finally, in Fig. 12 we plot the normalised pressure p? = p/(δρgLb) at the center of the block (where Lb is the size of the

block), as a function of the viscosity ratio η? in the case where a reduced density field is used. For theQ2×Q1 and the stabilised

Q1×Q1 elements, the pressure at this point is uniquely defined since the elements have continuous pressures. For the other

two elements the pressure is discontinuous across element edges and it is therefore not uniquely defined at our measurement

point. We have then chosen to measure it at four locations corresponding to (xc± δx,yc± δy) where δx= δy = 0.1m, and425

show the normalized pressures at all four of these locations in the figure. For the Q2×P−1 element, the difference between

these values is negligible, but not so for the Q1×P0 for which the pressure is a stair-step function with very different values

depending on which step an evaluation point is on. The distance between the two lines for the Q1×P0 element decreases with

mesh refinement (indicating convergence of the pressure to the true value), but only slowly and, matching the observation in

Section 5.1, at the cost of not only a fine mesh but also very large numbers of linear solver iterations.430
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Figure 10. Sinking block benchmark. a,b,c,d) ν = |vz|η1/δρ as a function of η? = η2/η1 as obtained with with the four elements with full

density; e,f) same with reduced density for only two element types. Legend: • 16×16 resolution,� 32×32 resolution,� 64×64 resolution,

4 128× 128 resolution, N 256× 256 resolution. Colors represent the element used. For each mesh resolution, we show separate curves for

δρ/ρ1 ∈ {0.25%,1%,4%}; for all but the stabilisedQ1×Qq element, these curves coincide. Note the different y-axis used for the stabilised

Q1×Q1 element in b) and f).
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a) b) c)

Figure 11. Sinking block benchmark with δρ/ρ= 0.25% and η? = 104 on 256×256 element mesh. a) Viscosity and velocity field. b) Ve-

locity field obtained with Q2×Q1 element (left of vertical white line) and Q2×P−1 element (right of vertical line) both using full density;

c) Velocity field obtained with stabilised Q1×Q1 with full density (left) and stabilised Q1×Q1 with reduced density (right).

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

−8.5

−8

−7.5

−7

·10−2

η? = η1/η2

p
/
(δ
ρ
g
L

b
)

Q1×P0

Q1×Q1 stab
Q2×Q1

Q2×P−1

Figure 12. Sinking block benchmark. Normalised pressure p/(δρgLb) in the center of the block as a function of the viscosity ratio η?. These

computations use a 256×256 mesh and the reduced density. For theQ1×P0 andQ2×P−1 elements with their discontinuous pressure spaces,

we show the normalized pressures at several slightly displaced points (xc± δx,yc± δy). For the Q2×P−1 element, the difference is not

visible, but for the Q1×P0 this yields the two very different red curves; this is due to the fact that the pressure for this element forms a

stair-step function for which two of the evaluation points are on a lower and two on a higher step.

21



In addition to the slow convergence of the Q1×P0 element, the most striking conclusion of this benchmark is that for

buoyancy-driven flows, the solution obtained using the stabilised Q1×Q1 element on typical meshes does not only strongly

depend on the choice of the otherwise arbitrary reference density, but is also almost entirely unreliable even on meshes that are

already quite fine.

6 Numerical results for a model application435

While the previous sections have built our intuition for which element may actually work in the context of geodynamics appli-

cations, they have only done so through abstract and idealised benchmarks. It is therefore interesting to investigate what one

would find in more realistic setups, and consequently we have also investigated convergence for a situation still sufficiently

simple that numerical simulations can reach reasonably high accuracy, but that has more of the complexity one would generally

find in “real” simulations. Given that the previous examples have highlighted that the stabilised Q1×Q1 element has diffi-440

culties with the pressure approximation, we are specifically interested in a situation where the material behaviour is pressure

dependent.

To this end, we here consider an example of continental extension. The setup is similar to ones that can be found in Huismans

and Beaumont (2002); Jammes and Huismans (2012); Naliboff and Buiter (2015); Brune et al. (2017), and we specifically use

the one that can be found in the “continental extension” cookbook of the manual of the ASPECT code (Bangerth et al., 2021).445

The situation we model here is characterised by the following building blocks: On a domain of size 400km×100km, we impose

an extensional horizontal velocity component of±0.25cm/year on the sides, and a vertical upward velocity of 0.125cm/year

at the bottom. The tangential components are left free. At the top, we allow for a free boundary. More interestingly, we use a

pressure- and temperature-dependent visco-plastic rheology of Drucker-Prager type with parameters for viscous deformation

based on dislocation creep flow laws:450

ηdisl =A−1/nε̇−1+1/n exp

(
Q+ pV

nRT

)
(15)

whereA is a material constant, n is an index typically between 3 and 4,Q is the activation energy, V is the activation volume,R

the gas constant, T the temperature and ε̇ is the effective strain rate (the square root of the second invariant of the corresponding

tensor). Stresses are limited plastically at a yield stress σy = C cos(φ) +P sin(φ) via a Drucker-Prager criterion where C is

the cohesion and φ the angle of friction. We use distinct values for some of these parameters in the initially 20 km-thick upper455

crust (wet quartzite), an initially 10 km-thick lower crust (wet anorthite), and the mantle (dry olivine) which initially occupies

the remaining 70 km in depth. Deformation is seeded by a weak area within the mantle lithosphere. We only carry out a single

time step as obtained with a CFL number of 0.5.

A complete and concise description of this setup has more parameters than are worth spelling out in detail here. For a

detailed description, see Naliboff and Buiter (2015) and the section of the ASPECT manual along with the corresponding input460

files. For the purposes of this paper, the important part is that both the yield stress and the dislocation creep rheology depend

on the pressure; as a consequence, we can anticipate that elements that result in poor pressure accuracy may not yield accurate

simulations in general.
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This setup produces localised shear zones that accommodate the majority of the deformation. Fig. 13 illustrates the structure

of the resulting solution. Each panel of the figure shows in its left half the solution produced by the stabilised Q1×Q1 element465

and its right half that produced by the Taylor-HoodQ2×Q1 element. Because the solution is symmetric, the two halves should

be mirror images. It is, however, clear from several of the panels that this is not the case: the Q1×Q1 element produces large

artifacts at depth where the pressure is large and the pressure-dependence of the material strong.

This effect is also demonstrated in a different way in Fig. 14 where we show laterally averaged quantities for the different

elements and different mesh resolutions. Even though it is clear from Fig. 13 that lateral averaging should result in a better470

approximation (than pointwise evaluations) of the correct quantities for a given depth, Fig. 14 shows that even the average

is far from correct. On the other hand, the figure shows that with increasing mesh resolution, the solutions produced by the

Q1×Q1 seem to converge to the solutions generated by the other elements – albeit very slowly and at what one might consider

an unacceptable cost.

To investigate the origin of these convergence problems of theQ1×Q1 element, one should recall that the model is nonlinear.475

As a consequence, the artifacts may be related to the discretisation, or to a failure of the nonlinear iteration – and the two may

be connected. All of the solutions we show were taken after 100 Picard iterations to resolve the nonlinearity of the model, with

nonlinear convergence shown in Fig. 15. (One could accelerate convergence by using a Newton solver (Fraters et al., 2019),

but this is not relevant for the work herein.) Looking at the evolution of the nonlinear residual during these iterations, we see

that it decreases quickly and for most element choices then plateaus at about 10−5 relative to the starting residual. In contrast,480

for the stabilised Q1×Q1 element, increasing the mesh resolution yields lower nonlinear residuals – but even on the finest

mesh, the nonlinear residuals are still substantially worse than for any of the other elements, with no apparent progress after

about 20 iterations. Of course, we are not the first to observe that convergence is hard to come by for these sorts of problems

(see for example Spiegelman et al. (2016)) and recent approaches to regularize visco(-elasto)-plastic deformation by Duretz

et al. (2020) and Jacquey et al. (2021) have been found to improve the convergence behaviour of the nonlinear solvers.485

Our interpretation of this experiment is that the inability of the Q1×Q1 element to generate accurate pressure fields leads

to values for the pressure-dependent rheology that are so far away from their correct values – and, indeed, from the values on

nearby cells – that they greatly increase the condition number of the linear systems that have to be solved in each nonlinear

iteration. The resulting difficulty of solving these Picard steps accurately then affects the speed with which the nonlinear

residual is reduced by the Picard iteration, to the point where the condition number is so large that no convergence can be490

achieved any more. Only mesh refinement, with the attendant increased accuracy of the pressure solution (and, consequently,

a more accurate viscosity) helps in restoring the ability to actually solve this problem to small nonlinear residuals.

7 Conclusions

In this contribution, we have provided a side-by-side comparison of the most widely used quadrilateral finite elements. As

outlined in the introduction, most finite element solvers used in the geodynamics community rely on one or the other of these.495
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a)

b)

c)

d)

Figure 13. Application example. a) Vertical component of the velocity field; b) pressure field; c) Effective viscosity field; d) Effective Strain

rate field. In all figures, the left half (left of the vertical line) shows data obtained with the stabilised Q1×Q1 element, whereas the right half

shows results obtained with the Q2×Q1 element. Note the large deviations between the two towards the bottom of the domain. All results

were obtained on an 800× 200 mesh with a cell size of 0.5 km.
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Figure 14. Application example. a) Laterally averaged effective viscosity; b) Laterally averaged velocity magnitude. The line styles chosen

become increasingly assertive (dotted to solid lines) as mesh resolution is increased.

At the same time, we are not aware of a comprehensive comparison of their relative strengths – or their weaknesses, as they

may be.

Using the artificial, linear benchmarks discussed in Section 5, we can infer that when the solution is smooth, the Taylor-

Hood variations Q2×Q1 and Q2×P−1 provide far better accuracy than the lower-order elements Q1×P0 and the stabilised

Q1×Q1. This advantage is largely lost when one considers problems in which the viscosity is discontinuous. Since we believe500

that the real Earth has relatively narrow phase transition zones where the viscosity may jump by large factors, benchmarks like

the SolVi one in Section 5.3 are relevant and illuminate important aspects.

From these considerations, one may conclude that the Taylor-Hood variations are too expensive – in terms of their number

of degrees of freedom and the attendant memory and CPU time cost. However, we believe that this is not so:

– For buoyancy-driven flows such as the sinking block benchmark in Section 5.4, the stabilised Q1×Q1 element is largely505

unable to reproduce the correct solution and, furthermore, depends on using a formulation in which one subtracts a

reference density from the actual density; this is equivalent to defining a hydrostatic pressure profile and only attempting

to solve for the “dynamic” component of the pressure. Crucially, however, there are many ways of defining such a

reference density, neither of which is canonical and “obviously right” in complex mantle convection simulations. Since

the solution obtained with the stabilisedQ1×Q1 element strongly depends on the specific choice of reference density, we510
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Figure 15. Application example. Nonlinear residual as a function of nonlinear iteration step for all four elements and for different mesh

resolutions.

conclude that the element cannot be made robust for the kinds of flows we encounter in real mantle convection situations.

We have also verified this assertion using an application where we consider continental extension (Section 6), and where

the inability to produce accurate pressure solutions also greatly affects the convergence of the nonlinear solver, to the

point where the computed solution must be considered unusable. We have shown that these errors can be reduced when

choosing very fine meshes, but the attendant cost is unacceptable when compared with that of using other elements on515

far coarser meshes.

There are other considerations to believe that the procedure of trying to subtract a reference density (or a hydrostatic

pressure) can not be a successful strategy. For example, simulations of free or deformable surfaces (at the Earth surface

as well as at the core-mantle boundary) require accurate knowledge of the total pressure. This is true for coupled for-

mulations of flow and surface deformation (Rose et al., 2017) and approaches such as the “sticky air” method (Crameri520

et al., 2012). But similar considerations also apply to nonlinear material laws in which the pressure enters the viscosity

or, more commonly, phase computations that determine the density and other thermodynamic material properties from

the pressure and the temperature. Indeed, one could conjecture that the stabilised Q1×Q1 element would also fail for

compressible Stokes simulations, though we have not verified this here.

We conclude from these thoughts that the stabilised Q1×Q1 element is not a viable choice for mantle convection simu-525

lations. It is important to point out that the cases we consider as crucial here – buoyancy-driven flows, large hydrostatic
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pressures, and pressure-dependent rheologies – are uncommon on most of the engineering applications for which the

Q1×Q1 was originally developed; as a consequence, it is not surprising that what we find here contradicts substantial

parts of the engineering literature where the element remains widely used.

– We believe that the Q1×P0 element is also not a viable choice. As shown by several of the analytical benchmarks,530

the errors that result from using this element can be orders of magnitude larger than the corresponding errors that

result from the Taylor-Hood-type elements. This is no longer the case once we consider discontinuous viscosity profiles

(see Section 5.3), but this element is also unable to accurately solve the buoyancy-driven case discussed in Section 5.4.

Furthermore, as pointed out before, this element is not LBB-stable which, despite considerable efforts in the past decades,

has limited its use in combination with iterative methods: because of the corresponding condition number increase, the535

number of iterations is found to grow in a somewhat unpredictable manner with an increase in resolution. This may

explain why, despite the Citcom codes’ success over two decades with studies based on models counting up to ∼100M

elements on several hundreds of processors (e.g. Jadamec and Billen, 2012), the current generation of massively parallel

codes relies on either stable (Kronbichler et al., 2012; May et al., 2015) or stabilised elements (Burstedde et al., 2013),

or uses the finite difference method (Kaus et al., 2016).540

In summary, we think that the Taylor-Hood variations Q2×Q1 and Q2×P−1 present the best compromise for robust

mantle convection and crustal dynamics simulations based on the finite element method. This is not because these elements

are “obviously better” than the others, but due more to a “last man standing” argument: The other choices simply disqualified

themselves by failing to provide adequate accuracy in one situation or another. At the same time, the lack of regularity one

expects of typical scenarios also implies that we should not expect higher-order Taylor-Hood elements Qk+1×Qk or Qk+1×545

P−k with k > 2 to provide substantially better accuracy compared to their much higher computational cost. Although we have

only shown results for two-dimensional simulations, experience – including the experience with the ASPECT code used here

that solves two- and three-dimensional problems within the same framework – suggests that all of these considerations would

also apply to the three-dimensional (hexahedral) analogs of the ones we have used.

The experiments we have shown do not provide clear guidance whether one should use the Q2×Q1 or Q2×P−1 element.550

But other considerations can provide such guidance. Most notably, the elements with discontinuous pressure elements (namely,

the Q2×P−1, but also the Q1×P0 elements) have the “local conservation” property where the velocity satisfies∫
K

∇ ·uh =

∫
∂K

n ·uh = 0

on every cell K of the mesh, a property also satisfied by the exact solution. Local conservation is useful when considering that

the velocity computed in geodynamics models is often used in a second step to advect both the temperature field and chemical555

compositions (see, for example, Schubert et al. (2001)). A comprehensive investigation of the interplay of local conservation

and transport can be found in Dawson et al. (2004).

Of course, the choices we have considered here are not the only ones. One could, for example, consider “simplicial” (triangu-

lar and tetrahedral) elements instead of the quadrilateral and hexahedral ones we have used here. Indeed, some existing mantle
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convection codes use this strategy. One successful example is the TERRA-NEO code that uses equal-order linear tetrahedra560

(Gmeiner et al., 2015; Weismüller et al., 2015) stabilised by means of a pressure-stabilisation approach based on the addition of

linear least-squares terms (the “PSPG” approach, see Brezzi and Douglas (1988); Elman et al. (2014)); other examples include

Fluidity (Davies et al., 2011), MILAMIN (Dabrowski et al., 2008) and LaCoDe (de Montserrat et al., 2019). While we have not

evaluated simplicial elements, one might conjecture that many of the same conclusions would also hold: The unstable P1×P0

provides low accuracy and is unstable, the stabilised P1×P1 has difficulties with buoyancy-driven flows and large hydrostatic565

pressures, and the Taylor-Hood element P2×P1 is expensive but robust.

Finally, there are other, more exotic elements one could work with. Examples include the Rannacher-Turek element (Ran-

nacher and Turek, 1992), the Crouzeix-Raviart element (Crouzeix and Raviart, 1973; Dabrowski et al., 2008), or the DSSY

element (Douglas et al., 1999). We have not investigated these kinds of choices for four reasons: (i) The manuscript at hand

is long enough as it stands, (ii) these elements are not widely used, both within and outside our community, and (iii) many of570

these elements are difficult to implement in one regard or another, including complications with boundary conditions and with

dealing with unstructured and possibly curvilinear cells; finally, (iv) the elements mentioned above are not as widely available

or completely implemented in common software frameworks, and their use thus requires substantial additional implementation

work.

While we have not investigated these two possible directions for alternatives to the elements we have considered, we think575

that such studies would be interesting. We hope that our careful choice of test cases might also be useful to such studies.
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