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Abstract. J \C (U

Doublgaifferenc¢ (DD) seismic data are widely used to define elasticity distributfon in the Earth’s igfe or, and its variation

in time. DD data are often pre-processed from ean.hquake)( recordings through Eipertzppin\ii)y whege couples of earthquakes

are selected based on some user-defined criteria, and DD data are computed from the selected couples. We develop a novel
methodology for preparing DD seismic data based on a trans-dimensional algorithm, without imposing pre-defined criteria
on the selection o@ of eve Lji\/\é’dc apply it to a seismic database recorded on the flank of Katla volcano (Iceland),
where elasticity variations in time been indicated. Our approach quantitatively defines the presence of changepoints that
separate the seismic events in time-windows. Within each time-window, the DD data are consistent with the hypothesis of
time-invariant elasticity in the subsurface, and DD data can be safely used in subsequent analysis. Due to the parsimonious

W/

behavior of the trans-dimensional algorithm, only changepoints supported by the data are retrieved. Our results indicate that: Jact ‘/R
(a) retrieved changepoints arc consistent with first-order variations in the data (ie. most striking changes in the DD data |- ?‘:i

: £
are correctly reproduced in the changepoint distribution in time); (b) changepoint locations in time d(? correlate R‘either with .
changes in seismicity rate,nor with changes in waveforms similarity (measured through the cross-correlation coefficients); andc,\/LéfVLj}e )
(c) noteworthy, the changepoint distribution in time seems to be insensitive to variations in the seismic network geometry during 7

~

the experiment. QOur results(pr that trans-dimensional algorithms can be

s ivelyjpplicd to pre-processing of geophysical

data before the application of standad routines J(i;ﬁi. before using them to solv¢ standard geophysical inverse problems ) Tthe—

| &i@ otk  Flechucly
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1 Introduction

S

Data preparation is a daily routine in the worklife of geoscientists. Before using data to get insights into the Earth system,
geoscientists try to deeply understand their datasets, to avoid introducing, ¢.g. instrumental issues, redundant data, un-wanted
structures {ike
2005). All

and are maigly based on expert opinion. Previous experience drives scientists in selecting the most trustable portion of their

ta density anomalies, and many others (Yin and Pillet, 2006; Berardino et al., 2002; Lohman and Simons,

€ activitics for preliminary data analysis can be considered as exploration of the “data space” (Tarantola, 2005)

experiments, cleaning data-sets before using them for getting new knowledge about Earth model parameters. There are two
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main reasons for moving a step forward from expert opinion. First, the huge amount of (often multidisciplinary) data, ac-
cumulating in geosciences in the last decade, requires more and more data screening and preparation, sometimes involving
multidisciplinary expertise. Rescarch activities could greatly benefit from a more automated exploration of the data space able
to case preparatory tasks. Second, expert opinion is a human activity and is mainly bascd on dual categories, e.g. good/bad
data, and can not easily handle a continuous probability distribution over the data (i.e. expert opinion can not easily associate
a continuous “confidence” measure to ¢ach data-point). A

In recent years, in the framework of Bayesian inference, exploration of the data space has been introduced inAfew cases
to “explore” unknown features of the dalafsats. For example, the so called Hierarchical Bayes approach has been introduced
to cstimate data uncertainties from the data themselves (Malinverno and Briggs, 2004). More complex Hierarchical Bayes
approaches have been developed to measure the data correlation as well (e.g. Bodin et al., 2012a; Galetti et al., 2016) or
to evalu&‘tc an error model (e.g. Dettmer and Dosso, 2012). The exploration ot: the data space, in all these studies, implies ﬁ(
consideksgme additional unknowns (e.g. data uncertainties or error correlation length), so called hyper-parameters or nuisance
parameters, and to estimate them directly from the data. A steptforward in exploration of the data space has been yépresented
by Steininger ct al. (2013) and Xiang el al. (2018), where the authors used a data space exploration approach to evaluate the
performance of two different error models direct] y from the data. In such studies, the number of hyper-parameters considered
is not fixed, but can assume two different values (1 or 2), depending on the error model considered. Another interesting, recent
case of exploration of the data space is represented by the work of Tilmann et al. (2020), M "t‘};??iuthors used Bayesian
inference to separate the data in two sets: “outliers” and “regular”. In this case, the data themselves are probabilistically

evaluated 1o understand their contribution to the final solution as “regular” data or “outlier”, i.e. the data are classified in two

. . . . . o hes?
different families, according to their coherence with the hypothesis of being “regular” data or not, s Ul"]‘w e

sV ACE
In this study, we push the exploration of data space in a new direction. We develop an alggrithm for compuucrig Bayesian in-

ference specifically for the exploration of the data space. Exploration of the data space is pefformed through a trans-dimensional
algorithm (e.g. Malinverno, 2002; Sambridge et al., 2006) so that the number of hypet-parameters is neither fixed nor limited
to 1 or 2. We represent data structure as partitions of the covariance matrix 0@, i.e. changepoints that create sub-matrices
of the covariance matrix with homogeneous characteristics, where the number of partitions is not dictated by the user, but it is
derived by the data themselves, in a Bayesian sense (i.e. we obtain a posterior probability distribution, PPD, of the number of
partitions). In this way, similar to Tilmann et al. (2020), portions of data can be classified and used differently in the subsequent
steps of the analysis. ,rj pz o<?' L(a 5
We apply our algorithm to prepare a widely cxp]oilct}‘seismic data}fset, the seismic double-difference (DD) datagset, that have~
been used as input in seismic tomography for defining subsurface elasticity (e.g. Zhang and Thurber, 2003) and its variation in
time (e.g. so called “time-lapse tomography”, Calg et al., 2011; Zhang and Zhang, 2015). DD data need o be re-constructed
from specific partitions of the original data (i.e. seismic events). Subjective choices have a great impact on the definition of DD
data. In particular, such choices can be used to limit the number of DD data itself and the selection, in turn, could introduce

biases in the subsequent definition of the elastic model and its variations in time. We apply our algorithm to statistically define,

[
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in a more objective way, the distribution of partitions in the DD data. We show how a more data-driven approach can obviate

60 prert-driven data selection and can be used as a preliminary tool for, ¢.g., lime-lapse seismic tomography.

eask)

Doubl?:difference seismic data are widely used for reloc: ing seismic events and imaging the subsurface (e.g. Waldhauser

1.1 Double;difference data in seismology

and Ellsworth, 2000). DD data rely on the assumption offco-located events for which seismic recordings have been obtained
from the same station (Zhang and Thurber, 2003) or for the same pair of stations (e. 2. Guo and Zhang, 2016). The concept of

65 co-located events relies on exper[k)pmion and relates to the average spaual‘djmensmn of the local heterogeneity in the seismic C«IL&
T N————— 7 ) -

Xf@f_@‘ It is g@er:illy assumed a-priori as' a ma).umum distance between h.yp()f:cntcr?' in ord<-:r to consider a @ﬁl of ﬂ”/"_
events to be included in the DD data, together with a high value of cross-correlation for their waveforms. A DD datum is the
differential travel-time for the selected cmpc/;:f events, © same scheme has been applied to more complex analyses,
iﬂy\%(e full waveform inversion (Lin and Huang, 2015). Based on the assumption of @t co-logat °d events, the information
70 contained in the DD datum can be used to refine event locations (e.g. small events referred to a master event, Waldhauser and
Ellsworth, 2000) or the seismic properties of the rocks in the area where events are clustered (¢.g. Zhang and Thurber, 2003).
In recent years, seismic monitoring of subsurface processes has also been realized through seismic tomography (e.g. Chiarabba
et al., 2020) and in particular with the analysis of DD data: rock weakening due 10 mining activities (Qian et al,, 2018; Ma
et al., 2020; Luxbacher et al., 2008), granite {racturing during geothermal well stimulation (Calé ct él., 2011; Calé and Dorbath,
75 2013)and oi}(&/gas operations (Zhang et al., 2006). For monitoring purpose,san additional assumption is considered during DD
data preparation: clastic properties of the media traversed by the seismic waves should not change between the occurrence
of the selected pairs of events. This fact implies the computation of the so called time-lapse analysis, where pre~defined time-
windows are considered and static images of the subsurface (Calé et al., 2011), or differential clastic models (Qian et al., 2018),
are reconstructed for each tirneKwindow. In any case, the most relevant issue in time-lapse tomography remains how to define
80 the timexwindows, which artificially separate events and prevent their coupling to obtain DD datas Rnw many time‘windows
are meaningful to construct DD data? And which should be their timeplengths? This issue is critical duc to the dependence
of the number of DD data %n the number of events coupled and, thus, from the number of limckwindows, as schematically

shown in Figure 1. oN ' iWerTomnd

The definition of the set of time§windows, on which the sequence of 3D time-lapse tomographi&§ should be computed,
85 Vdcmand@(te-ﬂle expertjopinion. There are three main possibilities in time-lapse tomography: (a) imposing timejwindows
based on known seismic history (before and after a known, relevant seismic cvent? Young and Maxwell, 1992; Chiarabba et al.,
2020); (b) keeping the same length for all time-windows (e.g. one day, Qian et al., 2018), or (¢) trying to have the same amount
of data in all the time windows (e.g. Patan¢ et al., 2006; Kerr, 2011; Zhang and Zhang, 2015). In other cases, the Iengtﬁ’:)f
the timtiwindows vary based on research needs (e.g. Calé6 et al., 2011). A human-defined set of time’windows might mask
90 the real variations of the physical properties, ¥ the time-evolution of the elastic model found £an be not associated y{ the

investigated geophysical process. i oyt Cevld (,J'l,/fL
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(a) One changepoint, Np '1/8 (b) Two changepoints, Np=9
A "
Additional
“change-point” Ea*_l!hquake X “cham }
t{ Time Time

Figure 1. Schematic example of standard preparation of DD data in different timefvindows. Timq&vindows are defined by changepoints

(also called “hardfpartitions™). Here, for sake of s'mplic.ity, we represented the travel-lime to station ALF for each seismic events (yellow

stars) as a function of origin time. A DD datum ‘ed black line) is prepared for each pair of events not separated by a changepoint. (a)
D data can be prepared. (b) In case of two changepoints, only Np = 9 DD data can be

” AetS nol mald, sut

Here, we tackle the ifsue of defining the number and time&len gth of the timeﬂvindows in DD data preparation though a novel

Here, only one changepoint is present, so Np

prepared.

approach. To simplifyfthe experiment, we focus on closely associated events recorded ¢n a volcanic edifice in Iceland. Such &

cluster of events, whith spans no more than 100 meters in diameter, is considered as’ puncrua source of repeating events,/

95 veh are recorded f#afh a seismic station 6 km awa;yfor more than two years continuo this way, we assume perfectly
co-located events and we can focus on Limckvariations of DD data. More generally, the novel approach can be applied to both
temporal and spatial associations (i.e. to define both timekvindows and spatiawcngth for associating events, and composing

DD data).
1.2 Background on Bayesian inference, Markov chain Monte Carlo sampling and trans-dimensional algorithms

100  Geophysical inverse problems have been solved for a long time following direct search or linearized inversion schemes, due to
. . . . . 3 . . .
the limited number of computations needed to obtain a solution. Such solution have been given in the form of a single “final

model, presented as representative of the Earth's physical propertics. Thanks to the computallonal resources now available,

such approaches are outdated for more sophisticated and€pu-fime consuming workilows, multiple models are evaluated

and compared, to obtain a wider view of the Earth’s physigal properties. Algorithms based pn Bayesian inference belong to
105 this second category, Wiyfe the “solution” is no r@ a single model’but a distribution of probability on the possible value of

A i fohi
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the investigated parameters, following Bayes theorem (Bayes, 1763):

_ p(m)p(d m)

(d) S‘Lu( (l)

where p(m | d) represent the information obtained on the model parameters m through the data d, so called “posterior prob-

p(m|d) -

ability distribution (PPD)”, or simply “posterior”. Such information is obtained combining the prior knowledge on the model:
110 p(m), with the likelihood of ﬂ the model % the data: p(d | m). The denominator of the right term is called “evidence” and
represents the the probability of the data in the model space:
Mand

p(d) = f p(m)p(d | m)dm . g vt o

The evidence is a high-dimensional integral that normalizes the PPD. 1t is generally difficult to compute and, thus, meth-

ods whtth do not require its computation (K§p Markov chain Monte Carlo, McMC, sce below) are widely used in Bayesian

115 inference. q,\ G/J/ ,S\JJ/\. al

The Likelihood of the data for a given model is necessary to evaluate and compare different set of model parameterq It is

generally cxpressed as’f (85 4!(,1}‘:( ;
1 ]
tom el - e enl e achusl el /”aww bt ”’m

A YA

where ¢ represents the fit between model prediction p#f the i-th observation 0;, 1.e{€}= (0; — p;), through theTovariance

A natds Vewnding .
is W M/i— COVZLV\Z(MLL’ W’Oﬂy M,GI’ UW(4)

Due to the difficulties in computing the evidence and the analytic solution of Equation 1, and lhanks to the improved com-

120

matrix of the-€rror

=el(Ce.

putational resources, in the last two decades the emerging trend in Baycsian interence is represented by “sampling methods”,

“b\w\s ‘f\'@.he direct computation of Equation 1 is

d'py the sampling of the model space according to the PPD (Sambridge
125 and Mosegaard, 2002). Onc of the most famous sampling methods is called Markov chain Monte Carlo,

herglthe chain sam-
ples the model space according to probability rules,dikd @iibbs sampler or Metropolis rule (Metropolis et 1., 1953; Gelman
al., 1996). Briefly, starting from a given point in fhe imodel space, called current model, a new point of} the model space,
calléd candidate mode! is proposed and {isited hcdordi g to some rules based on the PPD. In particular, the Metropolis rulc
coupled to the approach developed in-2 grd and Tdrantola ( 1995) which is the workflow adopted in thig study, accepts or

130  rejects to move from

@ Soth &S = rcya(a%cl/ ! 7[;3, which
o = L{Meang)/L(mey,). ‘ o

This is a simplified version of a more general formulation of the acceptance probability in Metropolis-based McMC (Gal-

lagher et al., 2009). It is worth that our workflow does not directly specify the dimensionality of the model space. In

fact, following the recent advancemefts in the solution of geophysical inverse problems, we do ne-myore consider models with

M\g nol—
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a fixed number of parameters, but we make use of the so called trans-dimensional (trans-D) algorithm*and propose candidate
models with a different number of dimensions with respect to the current models. This approach is called ¢rans-dimenssonal
sampling and it has been widely used for the solution of geophysical inverse problems in the last dccadey(Malinvemo, 2002;
Sambridge et al., 2006; Bodin ct al., 2012a; Dettmer ct al., 2014; Mandolesi et al,, 2018; Poggiali et al., 2019). Trans-D al-
gorithms have been proven to be intrinsically “parsimonious” (Malinverno, 2002) and, thus, they preferably sample simpler
models with respect to complex ones. This is one of the most important characteristics of trans-D algorithms, enabling a fully

data-dﬂverﬂsolution for the model parameters.

2 Data — {m"f’f“}’”’{/

We use data from a clustef of repeating earthquakes located on the southern flank of Katla volcano (Iceland; Figure 2a). This
seismic aclivit@ in Iuiy 2011 following an unrest episode of the volcano (Sgattoni et al., 2017) and continued for
several years with remarkably similar waveform features over time. The cluster is located at very shallow depth (< 1 km)
and consists of small magnitude events (~ —0.5 - 1.2 ML), characterized by cmergent P wavg and unclear S wave, a narrow-
bandgd frequency content around 3 Hz at most stations)and correlation coefficients well above 0.9 at the nearest stations during
the entire sequence. The temporal behavior is also peculiar, with a regular event rate of about 6 events per day during warm
seasons gradually decreasing to one event every 1-2 days during cold seasons (Sgatloni et al., 2016b). Sgattoni et al. (2016a)
obtained relative locations of 1141 events recorded between July 2011 and July 2013 by designing a method optimized for very
small clusters that includes the effects of 3D heterogeneities and tracks uncertainties throu ghout the calculation. The number
of relocated events depends on a selection of the best events among a total of > 1800, based on thresholds on correlation
coefficient and amount of detected P and S phases. The tesulting size of the cluster is on the order of 25 x 50 x 100 m? (easting,
northing, depth), with estimated uncertaintics on the order of few tens of meters (Figure 2b). Changes in the station network

configuration around the cluster occurred due to technical problems, with the greater loss of data in the second part of the

Gg/\-@/scqucnce, £ January 2012. This coincides with a clear increase in relative location uncertainties, which correlates also with

160

165

a decrease in correlation cocfficients, mainly for S phases. Other temporal changes in waveform correlation were identified by
Sgattoni et al. (2016a) in August 2012 and January 2013. In this study we focus on P-wave data recorded at station ALF (part
of the Icelandic Meteorological Office seismic network), which is located about 6 km away from the cluster (Figure 2a) and is
the only nearby station that has been continuously operating during the entire time. The similarity of the waveforms recorded at
ALF is remarkable, with correlation coefficients of the @
2¢). To compute the DD dataset, we use the ori gin times (OF;) of N, == 1119 relocated events from S gdttoni et al. (2016a). We

Levents above 0.99 throughout the entire period of study (Figure

remark that the increased location uncertainties due to the nktwork geometry change in January 2012 may affect the quality of

of meWevant for computing uncertainties in the

the locations' the events and, consequently, the determinatiok
DD data (seq Section 2.1).

010
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Figure 2. (a) Map of the southern flank of Katla volcano (Iceland; é()pography information from the National Land Survey of Iceland).
The caldera rim is outlined by the black dashed line. White areas are glaciers. The star marks the Tocation of the seismic cluster. Dark
brown triangles: permanent lcelandic Meteorologicat Office (IMO) seismic stations. Orange triangles: temporary Uppsala University seismic
stations operating between May 2011 and Avgust 2013. (b)ppialive locations (blue points) and uncertainties {4 std; grey lines) from Sgattoni
et al. (2016a) (c) gample waveforms of the Z component recorded at station ALF throughout the entire period investigated and correlation
coefficients of the P waves with respect to the master event used for the relative locations shown in (b). Panels (a) and (b) have heen modified
from Sgattoni et al. (2016a). Panel (c) has been modified from Sgattoni et al. (2016b).
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2.1 Data uncertainties from full-waveform investigation

To apply our novel Bayesian approach, we need to estimate a covariance matrix of the n the DD data. Having an origin

time for each event (given by the location obtained in Sgattoni et al. (2016a) using the full seismic network), we derive the ﬂ(r/
DD data and their uncertainties directly comparing the raw waveforms and finding the absolute delays between each of

170 events. From the absolute delays of the PAarrivals, the subtraction of the timtifdiﬂ"ercnces in the OT's of two cvents gives the DD
datum for%e. We estimate the absolute timt{delay between two events following the Bayesian approach described

in Piana Agostinetti and Martini (2019). Briefly, we collected a 20-s record of each event, centred on the approximate P-wave-

e s o

arrival time. We compute @rskm of the events, so called “wavelet” (Figure 3a). From the wavelet, wf compute \‘
: residuals for each event (Figure 3b). Event r¢siduals define a standard deviation function o (t) for the 2(s record.
475{ Event residuals are also auto-correlated to obtain an averaged auto-correlation function r{L). The standard deviation and the

auto-correlation function are used to define a covariancé matrix Ce,w (the same for all the waveforms? Piana Agostinetti and

a— fb@‘(’ R Vl}@%@(, Vi oF
O\wﬁ«@%ﬁ&/ W&W? e e wavel b |
W C. SRS, unu . /(kaﬁa 7 ©

A AN

Noteworthy, the use of a diagonal covariance matrix instead of a full covariance
ix would risk to underestimate @ biasing the subsequent analysis for defining the DD timqﬂvindows. Having the
odel for the waveforms,for each cﬁﬂ of waveforms, we perform a Markov chain Moate Carlo sampling (Mosegaard
185 and Tarantola, 1995) to reconstruct the PPD of the time-shift between the two waveforms. Following Sgattoni et al. (2016a),
we use a 1s-long timckwindow to compute the likelihood of the waveforms, centred on the approximate P-wave arrival time.
Starting with N, — 1119 events, we obtain N, x (Ne—1)/2 DD data. The total number of DD data is Np = 625521. DD data
value d;; and uncertainties 045, associat (§) events i and j, are reported in Figure 4. Striking changes in DD values sﬁggcst
the presence of clustering of data in time, byt the exact number and positions of such clusters are not easy to define by visual

190 inspection. Moreover, some of those changes could bé&give: by odifications of the seismic network, in principle mapped in

which in turn could introduce a bias in ou data, as

shift in the
processes used to define each single DD datum, as aifirst approximation we consider our final covariance matrix of thg'a

195 | in the DD data CJ as a 625521 x 625521

diagonal, omitting the corrciatipn betwe‘f*v ‘ givek by, e.g., biases in OT determination. o 7
As oY WM "~ NOT 0 e U “éu/f((m fies !
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Figure 3. (a) Original waveforms (grey lines) and their stack, called “wavelet” (oran ge line). (b) Residual of each single waveform (grey
lines) with respect to the “wavelet”. As a reference, the,,residua])’ for the first (last) trace is shown as blue (red) line. (c) Auto-correlation of

the single residuals {grey line) and averaged value of the autocorrelation {orange line).

3 Analgorithm for exploration of double-difference data space

What happens to the DD data-set if we create a har%artition in time, i.e. il we artificially separate some events from the
others? As clearly illustrated in Figure 1, the number of data Ny in the DD dalga/scl varies, decreasing for increasing number
of hard/{)artition& From a Bayesian point of view, this is not admissible, because Equations 3 and 5 need to consider the same
number of data points in two models to allow their comparison (see also Tilmann et al., 2020).

Our novel approach to solve this issue relies on the introduction of a family of “hyper-parameters”, which represent the
partitions of the events, and such hyper-parameters are used for scaling the different entries in the data covariance matrix

C.. In our approach, the number of “hyper-parameters™ in the family is not fixed, but it is directly derived from the data

themselves. Following a Bayesian inference approach, we reconstruct the statistical distribution of the hyper-parameters (i.c.
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Figure 4. DD data presented as a matrix of i j-couples: (a) values; and (b} uncertainties.
event pattitions) in time through / trans-dimensional McMC sampling. \cn/iﬁlmduced in geophysical

and Briggs, 2004). Hyper-parameters are generally part of the » th physical parameters. As stated in

Bodin et al. (2012b), estimated hyper-parameters do not only , but include other contributions

or simplified model parameterization. Hyper-parameters have been used to esg#fnat e‘@'models {Dettmer and Dosso, 2012;
Galetti et al., 2016) or to discriminate between two different families of, c;;'(') models (Steininger et al., 2013; Xiang et al.,
2018). In this last case, the number of hyper-parameters belonging to a model vector is not constant, but can be one or two,
depending on the family. More recently, a nuisance parameter has been introduced to evaluate the probability for cach datum
215 1o belong to the “regular data” or to the “outliers” (Tilmann et al., 2020).

For the DD case, we introduce a family of hyper-parameters to estimate which portions of the DD data violate our initial

assuraptions. In fact, in our assumptions, doubieﬁmffcrencc data are computed from of seismic eveuts occurred in the

same rock volume, recorded at the same seismic station. For perfectly co-located evepfts, and in absence of a y change in the
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rock seismic velocity field between the first and the second event, double ¢ dlffert.nce measurements should have mean 0 and
should be distributed following the Gaussian error model defined in Swtxon 2.1, represented by the covariance matrix CZ. In

this case, the value of the fit (1), expressed as:

$=—a’c:d of )

with d the DD dgta vector, should be close to Ns.

When the value ¢ s1gmﬁcantly deviates from Np, a modified covariance matrix C, o{m} should be considered, where the
portion of the dala mconmstem with the hypotheses are considered differently from the portions of DD data m do not
violate the hypotheses. The new modified covariance matrix C.(m)} is obtained as '

Ce(m) = W(m) C; W(m) [ i (8)

where the matrix W(m) is a diagonal matrix witch -conl‘ains a weight for each DD datum, based on the hyper-parameters.
Noteworthy, if we use Equation 8 in Equation 3, we see that in our case the dependence of the Likelihood function on the model
does no esi@anymore in the residuals, astsgenerally dane ﬁﬁgﬁ%physical inverse problems ut only in the Covariance matrix.
However, for a simple casc (@ ours, we highlight that this dependence coul moved back to the residuals, if
we allow the physical assumpti§ns to be variable in time (i.e. if we allow the elastic model to change in time, which in our
assumption can not). g/(,L\ &4

The fully novel idea in our algorithm resides in the trans-dimensional behaviour of our exploration of the data space. In fact,

the number of hyper-parameters in the model (and, thus, the pumber of partitions of CZ) is not fixed and can change along

the McMC sampling betWeen a Thrind z i - At the end of the McMC sampling, we can compute a PPD of the
number of partitions in the problem, an information tuﬂy@d from the data and priors.

In our algorithm, a model is described by a set of & changepoints that define the partitions of C, and their associated quantities,

3.1 Model parameterization

thatis: m = (k, T, 74 ). The k-vector 1}, represents the time-occurrence of the k changepoints éﬂfh the k-vector 7y, contains
tojeach changepoint. We assume that a DD datum d; ; j» associated(lp event § and j, retains its original
S médnﬁ with weight Wi;(m):

the weights associat

vanance cr ; if no changepgint occurs between O7;, and OT - Otherwise, its imporia

I By

Wi;(m) = 10%5 ), \ L»J"kk’\ )

where w,; is computed as: \\

9)

~This s reall,

’ coafus ing (10)
Y e ) QV\ (S & \/Q_()ﬁ)V‘ JW

g laf}ﬂﬁ (sm oY Mm] ﬂ\ awé, Om, llzLAJ»)( mﬂ q
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3.2 Candidate selection . \ i 1! ( [ ﬁl/ﬂ"‘ /)
ve & (i h e Huse
Cﬁw‘jf‘fj &‘A/? \” 0 (,LJ&# %ﬁ:’({{ { ”\()(I/,hd'()c

Having an efficient workflow fo he McMC sampling is fundamental for keeping the _spu-time within acceptable

32.1 Recipe

limits. From a theoretical point of view, any recipe can be implemented at the core of the McMC due to the fact that results (i.e.
Equation 1) do not depend on the McMC details!, i.e.)the same prior informatigh jointed vith the same data will give the same
PPD, whatever recipe is selected for the McMC sampling. However, inefficient recipey can take too long to sample adequately
the PPD and, thus, from a practical point of view, the users should spend some time in §efining a proper recipe. In our case, to
perturb the current model and propose a new candidate model, we randomly select one df the following four “moves™:

Nwavd

1. (This move is randomly selected with probability P, = 0.4) The i-th changepoint is moved from its time-position 1.
There are two equally-possible perturbations: the chan gepoint time-position 7; is randomly selected from the prior, or
the changepoint time-position 7} is slightly perturbed from the original value in the current model with a My
approach (Appendix A2, Piana Agostinetti and Malinverno, 2010) MLaniy J 0“(” M i 7

2. (Py = 0.4) The weight ; of the i-th changepoint is perturbed with a micro-McMC approach (Appendix A2, Piana Agostinetti
and Malinverno, 2010)

3. (=0 IMof a changepoint: a new changepoint is added to the current model H,&'JUJ Q(f)w’i' 79 (g iv‘( N

and g
4. (P; = 0.1) Death of a changepoint: a changepoint is removed from the current model. Ve v, A,( (S

e ‘ Vl wh { C
The last two moves represent the trans-dimensional maoves, @ the dimensionality of the model is changed from the current

model to the candidate. For move (3), we follow the approach described in Mosegaard and Tarantola (1995} and we propose
a completely new changepoint with T3, , and Tie+1 randomly sampled from their prior distributions. For move (4), we simply

randomly select one changepoint and remove it from the model.

'as long as the recipe follows the necessary pmbabilistjc rules (Sambn'dge and Mosegaard, 2002; Mosegaard and Sambridge, 2002}

O m:a\fb ﬂdw &L(Mki,7 -
AHﬁ mjﬂu‘ TN WL, uw\, as in Moo (rwﬁ(MmjfZ
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G0

3.2.2 Prior information //\gwd v ((
: . "N
Uniform prior probability distributions are selected for our inverse problem. Here, the number of changepoints is omprised
between 0 and 100. Changepoints can be distributed everywhere in time between 2011.5 and 2013.7. To make the algorithm
more efficient, we sct a minimum distance between two changepoints as large as 0.5 day (Malinverno, 2002). Changepoint

weights 7 follow z( uniform prior probability distribution between 0.0 and 1.0.

4 Finding data-driven time-variations of rock elasticity during Katla’s seismic swarm

Cha Weﬂv{—( g
We apply our novel methodology for the definition of the hard-partitions in DD data to the data;}ct recorded on Katla volcano
in [celand, during a two year monitoring experiment. Based on'\the observations of the limited dimension of the cluster with
respect to the events-station distance (100 m versus 6.0 km) and theverall hi gh similarity of the waveforms (correlation coef-
ficient always larger than 0.9), our algorithm is able to map out which portions of the data violate our underlying hypotheses:

co-located events and constant elasticity field in time. Wil 3¢ arating Wose two effects with a single station would be chal-
y > Sep g 2

lenging, ‘ﬂere we want to illustrate in detail how the time-occurrence of the

potential approaches for the definition of hard-boundaries in DD data, namdly, variations in seismicity rate and waveforms QL
" <

. S Shep urig deffered= 1o

As shown in Figure 1, defining hard-partitions for DD data using exl;cn’opinion is a dangerous task, due to the limitation in

the number of data available for subsequent uses. For example, seismologists could be tempted to test if usin@dm_gmlg
) ) ) ) m;dv'lrkf C iV on ST \ oy
give better images in a subsequent seisniic tom&g_rggh&based on pre-defined ideas{on the subsurfaces structures. In fact, some ‘-/Q“Q,

cross~correlation.

changes in DD data are obviously present in the observations (Figurq\fl», between close td event 550 and 1050 for example), but

others are more subtle to be defined.  $81 9MMC /‘O(Lmj—i(— ' I:ig(, A Wau ) /j«:v wh o
We compute the data-space exploration running 100 independent McMC samplings, @m;:m)led 2 Mjllionk
of changepoint models. We discarded the first million # models and collected one model every 1000 in the subsequent¥ilion
models. Our final pool of models used for reconstructing the PPD is composed by 100 000 models. The fu]@vtimc for
halZmillion R/

models, together with the logarithmic value of the normalizing factor in Equation 3 (Figure Sa). The number of changepoints

running the algorithm is about 19 h()u§ ona IOO-CPU[cluster. The value of € chi-square decreases in the first

reaches a stable value around 15 to 20 after 1 Million kmodcls confirming the length of the burn-in period used (Figure
5b). The ratio between the number of event pairs not separated from any chagepoint (N ) and the total number of DD data
(Np) is also stable around 0.2 after 1 Million p( models, indicating that no relevant changepoint is added in the second half
of the McMC sampling. It is worth noticing that N should approximately indicate the number of DD data to be used in any
subsequent analysis.

Looking to the full details of the PPD reconstructed from the McMC samplings, we obscrve the preseqce of long time-
windows completely without any changepoint (e.g- between 2011.7 and 2012.4) demonstrating th arsimoniosity bf the trans-
D approach: if changepoints are not supported by the data they are removed during the sampling and do not appear in the final
PPD (Figure 6¢). Moreover, the most probable (relevant) changepoint (changepoint number 3 in Figure 6¢) perfectly aligns

13
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Figure 5. Evolution of some parameters along the McMC sampling. (a) Chi-square value (blue crosses) and logarithmic value of the nor-
malizing factor in the likelihood function (red dots). (b) Number of changepoints in the sampled models (blue crosses) and ratio between
the number of un-affected data (i.e. DD data where the two events are not separated by any changepoint) and the total number of DD data,
Ni/Np (red dots). " i/ & A/((J [.J(’_,,

de " e

with one of the most striking changgin the DD data as showd in Figure 6a, confirming the goodness of the approach. The
distribution of the weights clearly defines the partition of e C.{m), @niﬁal data (i.c) DD data related to even?occurring
at the initial stages of the swarm, in 2011) slowly release their “connection” to later events and, thus, indicate that they should
not be included in s&%scquent analysis. From the histogram of the number of changepoints in each sampled model, we can
see how the trans-D algorithm works: no less than 10 and no more than 20 changepoints are generally considered, even if we
allow g umber to increase (o a%%n&rcd Combining this information with the dispribution of chagepoints in time given in
Figure 6e, we define eleven re]eva:j/changepoinls (red arrows). We acknowledge that& number could be, again, a subjective
choice, however, looki_ng@ﬁ;.lrc 6d, we see that changepoints can be “ranked” in some sense given their mean PPD weights.
For example, changepoints 2, 5, and 9 have clearly associated lower weights 9{9}:;\, ers and, thus, should be
considered as less relevant. Our methodology does not solve all issues connected to the preparation of DD data, but, at least,
it can be used to quantify the occurrence of changepoints and their importance, and such quantification can be exploited in a
~ T Owhr S |0 1A 6(7 (,@

angepoints with the cross-correlation coefficients between each event

later stage depending on the subseguent analysis planned.

We compare the timefoccurrence,of the resulti

in the seismic swarm and the largest one (see Sga_ttoni et al., 2016a, for details). Both P-wave and S-wave cross-correlation

coefficients display some degree of variability and defined patt€rmsyn the time}window used in this study (Figure 7), even if
we w%l consider that the smaller values are alwgys larger than 0.9. We observe that there is no clear correlation between
changepoint position in time and cross-correlation/values. In mid 2011, arounq evetn 300, and early 2012, aroun@mo,

we have two changepoints @ cross-correlatipn seems stable for both Py and Sﬁ'waves. At the beginning of 2012, when
i 4 \aﬂﬁ\,ﬂ ”\3 .

14
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Figure 6. Results of the application of the algorithm to the Katla dataXscl. (a) DD data and position of the most probable changepoints, see

panel (e). Changepoints occurrence in time is indicated by red arrows on top. (b) Mean posterior values for the weights associale(.(lg each

DD datum. (c) Histogram of the number of changepoints in the sampled models. (d) 1D marginal PPD for the values of the changepoints in

time. (¢) Histogram of the distribution of changepoints in time. Red arrows and numbers indicate the most probablé timefpccurrence for a

changepoint.
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Figure 7. Correlation coefficients for P-waves {(a) and S-waves (b} for each event with respect to the largest event (see Sgattoni et al., 201 6a,

for details). In each plot, the most probable time-occurrences for the 11 relevant changepoints are also reported (yellow arrows).
Wed wAairtas
325  the seismic network has hesw redefined, the cross-correlation for Sfwaves changes dramatically, %Qﬂe the change in cross-
correlation for P-waves is less evident, and no changepoint is found at all. Our results seem to indicate that variations in
cross-corrclation cocfficients (for example, computed for repeating carthquakes) could indicate }L unfrealistic variations in

elasticity and could be a problematic choice for a monitoring system of the subsurface. Na \\41 Fl““

TN

We also compare the position of the retrieved changepoints with the seismicity rate, another parameter usually associ-
; @ tim%variau‘ons of the subsurface properties (c.g. Dou et al., 2018). In Figure 8, we report the seismicity rate every

two weeks. The rate of cvents is highly variable along the studied time-window, with values ranging between few and more

330

than 30 events/week. The seismicity rate decreases in 2012, with some bursts up 10 15 events/week in late 2012. As for the
cross-correlation coefficients, the position of the retrieved changepoints does not simply correlate with the time-history of the
seismicity rate. We have found changepoints gherd the seismicity rate is very high (2011.6) and very low (e.g. 2013.4). The

335 most probable changepoint (changepoint number B) occurs in a period of sustained seismicity rate whith starts 5-6 weeks

1(;« Nkeok %WV
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Figure 8. Comparison between the seismicity rate (grey histogram) and the time-occurrences for each changepoint (red arrows and numbers).

before. If our changepoints indicate variations of subsurface elasticity, the time-history of seismicity rauLshould be carefully
evaluated before using it for tracking elasticity changes in time. . -I{- U’EU b" Mot Ve “"(" ;S & W
i Vol ct)c[» %Wﬂaj hwit h\e WM\L \ferr™
Moy pULbwd .
5 Discussion (/«/{Aﬂb\ ((, “‘rer\/
The DD data recorded on Katla volcano and the

ults presented here glearly indicate that timelvariations in elastic propertics
340 M occurred between 2011 and 2014/%n the south flank of

to apply standard DD/analysis for retrieving elasjicity variations, with no need of

e volcanic edifice. Thus, data-driven timq(windows can
be found using our approach to define ¥h
preparing the DD data following subjective choices on the €ou events."Bei\;{é\tﬁg algorithm ndturaily parsimonic}ps, there
is almost no possibility of having “no DD data” (i.e. one partition per event). Datz*pan;iti()ns are alwaysi)la limited numbcr, ’
even if, strictly speaking, their number should be given by the user because, as final output, we have the full PPD and not\ Aw/ k"’"
345  just one set of partitions. Defining the exact number of partitions to use in subsequent analysis depends on the analysis itself. [ (as L
Our approach quantifies the presence and the relevance of the changepoints. Using such information could be straightforward KW‘/\{J\C

in some cases (¢.g. if we look for one most probable changepoint only) or more complex (e.g. if we also wish to appreciate

rrelation between changepoints) which can be measured using the PPD). It is worth noticing that, in simple cases, our

algorithm generally performs as expert’fnpinion (c.g. in the case of the search for one most probable changepoint), and this

330 confirms the overall performance of our methodology. In more complex cases, the weights associatedfg the changepoints
should be used to classify the changepoints themselves, and this allows selecting the most relevant chdngepoints using 4

quantified information. a/(’{(,\

The network of seismic stations deployed around Katla volcano changed in time. This fact has been previously indicated as

a potential “bias” in the analysis of the seismic data themselves, as the location uncertainties increased after major network

55 operations (January 2012). Our results point out that the changepoints found do not correlate with such change in the seismic

network. Being statistical analysis, our methodology seems to be insensitive to changes in the acquisition system. Alternatively,

the changes in location uncertainties comfdbenot large enough to affect our procedure. In both cases, our approach demon-

may ack- b

Qom[,vlnw i el y'w?
Unauay
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W whiick-
strates to be well-suited for handling long-lived databases, where changes in the spatial distribution of observational points is
likely to occur from time to time.
360 Finally, we investigate how our changepoints relate to more commonly-used indicators of sub-surface variations of elasticity,
6‘0 l}'\ edlketime-series of cross-correlation coefficients and seismicity rate. In both cascs, we found poor correlation between our

results and the time-series of the two quantities. this observation is not totally unexpected since the two time-series are

based on different seismological observables, it suggests that care shopld taken when investigating time-variations of elasticity

retrieved from methodologies based on cross-correlation, dod to re approaches based on variations of the seismicity rate

Akﬂqu

365 as a proxy of “rock instabilities™ (Dou et al., 2018).

6 Conclusions

We developed an algorithm for defining data-driven partitions in a seismic database, for a more objective definition of double-
difference data. The algorithm is based on the trans-dimensional sampling of data-structures, here represented as partitions
of the covariance matrix. The algorithm has been tested in the casé”a seismic database acquired in a volcanic seuing,@ _

370  subsurface variations of rock elasticity have probably occurred over a period of two years. Our results indicate that: (Eﬂ qé:

1. trans-dimesional algorithms can be efficiently used to map data-structures in the case of double-differences data, namely
separating events with a number of changepoints deﬁncj\time}\\_avindOWS consistent with the underlying hypothesis
(here a constant-in-time elasticity field between station ¥nd event cluster);

ot~
2. changepoints are quantitatively defined and, thus, can be ranked based on their relevance (i.c.}weighls) and probability

375 of occurrence at a given time;
3. the results obtained are insensitive to changes in network geometry during the seismic experiment.

Future development and testing will provide additional insights into the use of trans-dimensional algorithms for the explo-
ration of the data-space. For example, in this specific case, our al gorithm can be applied to :@ nversion of both P-wave and
S-wave databases following the approach described in Piana Agostinetti and Bodin (2018), to reconstruct a set of changepoints

380 based on P-wavef data and a set of changepoints based on S—wavekdata. Comparing the two sets of changepoints, “decoupled
changepoints” (i.e. changepoints occurring for one set of waves and not for the other) would properly map out elasticity vari-
ations, resolving the trade-off (still existent now) between elasticity changes and changes in event locations. In fact, variations
in event location would be indicated by “coupled changepoints”, i.e. changepoints occuring in both sets (Piana Agostinetti and
Badin, 2018). .

385 Data availability. Waveform data used in this study come from the Icelandic permanent seismic network run by the Icelandic Meteorological

Office (IMO). The data are available upon request to IMO.
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