

1 Variscan structures and their control on latest to post-Variscan basin architecture; insights from
2 the westernmost Bohemian Massif and SE Germany

3
4 **Hamed Fazlikhani, Wolfgang Bauer and Harald Stollhofen**

5
6 GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 5
7 91054 Erlangen, Germany.

8 *Correspondence to: Hamed Fazlikhani (hamed.fazli.khani@fau.de)*

Formatted: Font: Not Bold, Italic, English (United States)

9 **Abstract**

10 The Bohemian Massif exposes structures and metamorphic rocks remnant from the Variscan Orogeny
11 in Central Europe and is bordered by the Franconian Fault System (FFS) to the west. Across the FFS,
12 ~~possible presence of~~ Variscan units and structures are buried by Permo-Mesozoic sedimentary rocks.
13 We integrate existing DEKORP 2D seismic reflection, well and surface geological data with the newly
14 acquired FRANKEN 2D seismic survey to investigate the possible westward continuation of Variscan
15 tectonostratigraphic units and structures, and their influence on latest to post-Variscan basin
16 development. Subsurface Permo-Mesozoic stratigraphy is obtained from available wells and ~~are~~-tied
17 to seismic reflection profiles using a synthetic seismogram calculated from density and velocity logs.
18 Below the sedimentary cover, three main basement units are identified using seismic facies
19 descriptions that are compared with seismic reflection characteristics of exposed Variscan units east
20 of the FFS. Our results show that ~~Upper upper~~ Paleozoic low-grade metasedimentary rocks and
21 possible Variscan nappes ~~are~~-bounded and transported by Variscan shear zones ~~to~~-ca. 65 km west of
22 the FFS. Basement seismic facies in the footwall of the Variscan shear zones are interpreted as
23 Saxothuringian-Cadomian basement and overlying Paleozoic sequences. We show that the location
24 of normal fault-bounded latest to post-Variscan Upper-late Carboniferous-Permian basins are
25 controlled by the geometry of underlying Variscan shear zones. Some of these Upper-late
26 Carboniferous-Permian normal faults reactivated as steep reverse faults during the regional Upper
27 Upper Cretaceous inversion. Our results also highlight that reverse reactivation of normal faults
28 gradually decreases west of the FFS.

29 **1. Introduction**

30 Variscan orogenic units and structures in central and western Europe are extensively studied from
31 disconnected exposed terranes in the Bohemian Massif, the Rheno-Hercynian Massif, the Black forest
32 and Vosges, the Armorican Massif and the Central Iberian Zone (Franke, 2000). Between exposed
33 Variscan units, younger sedimentary rocks obscure direct observation of possible lateral extension
34 and architecture of Variscan tectonostratigraphy and structures. In southern Germany, for instance,
35 Variscan units of the Bohemian Massif are correlated with exposed Variscan units in the Black ~~E~~forest
36 and Vosges, ca. 300 km apart from each other, causing uncertainties in the lateral continuation and
37 architecture of the Variscan tectonometamorphic Saxothuringian and Moldanubian zones, originally
38 defined by (Kossmat, 1927). Although a few wells provide local but valuable information about
39 basement rock types, only a few regional 2D seismic profiles (DEKORP 84-2s and 90-3B/MVE and
40 KTB84) image the Variscan units and structures below the sedimentary cover between the Bohemian
41 Massif and Black Forest exposures (Franke et al., 2017; Behr and Heinrichs, 1987; Wever et al., 1990;
42 Edel and Weber, 1995; Meissner et al., 1987; Lüschen et al., 1987).

Field Code Changed

43 The recently acquired FRANKEN 2D seismic survey ~~is~~-covering the Carboniferous-Permian Kraichgau
44 and Naab basins (Paul and Schröder, 2012; Sittig and Nitsch, 2012) and the overlying late Permian to
45 Triassic Franconian Basin (Freudenberger and Schwerd, 1996) in the western vicinity of Bohemian

46 Massif in SE Germany (Fig. 1). The FRANKEN survey is tied to the DEKORP 3/MVE-90 profile creating a
47 grid of regional seismic reflection profiles imaging exposed and buried Saxothuringian units and
48 structures of the Variscan Orogeny across the Franconian Fault System (FFS, Fig. 1). In this study we
49 investigate the potential westward extension of Variscan tectonic units and structures and construct
50 a first order relationship between Variscan and post-Variscan structures and basin development. Four
51 new seismic profiles of the FRANKEN survey are interpreted utilizing subsurface and surface geological
52 data and are tied to the existing DEKORP-3/MVE-90 profile. Underneath the Permo-Mesozoic
53 sedimentary cover three main Basement Seismic Facies (BSF1-3) are identified, based on lateral and
54 vertical changes in reflection amplitude and connectivity. Comparing seismic reflection patterns
55 observed in exposed Variscan rocks of Bohemian Massif with reflection patterns along the FRANKEN
56 seismic profiles we show a W-SW continuation of Variscan shear zones and associated Variscan
57 allochthons. The control of Variscan shear zone geometry in strain localization and latest to post-
58 Variscan basin development and brittle fault interactions are discussed.

59 **2. Geological setting**

60 **2.1. Variscan geodynamics and tectonic framework**

61 The Bohemian Massif comprises remnants of the Upper Paleozoic collision of Laurussia and
62 Gondwana, known as Variscan Mountain Belt, and of the pre-Variscan basement in Central Europe
63 (Franke, 2000; Kroner et al., 2007). The Variscan Orogeny has ~~resulted in produced~~ a wide range of
64 metamorphic units, ranging from high-pressure and high-temperature metamorphic to low-grade
65 metasedimentary rocks, abundant granitic intrusives and crustal-scale shear zones and faults. From
66 north to south, the Variscides have traditionally been subdivided into three main tectonometamorphic
67 zones, the Rhenohercynian, Saxothuringian (including the Mid-German Crystalline High) and
68 Moldanubian (Kossmat, 1927; Franke, 2000; Kroner et al., 2007). Saxothuringian and Moldanubian
69 rocks are well exposed in the Bohemian Massif, but buried by ~~Palaeozoic~~Paleozoic and Mesozoic
70 sediments towards the west.

71 The Saxothuringian zone and its westward extension, as the main area of interest, underwent three
72 main deformational phases during the Variscan Orogeny (Kroner et al., 2007 and references therein).
73 A first deformation phase (D1) developed before 340 Ma and records pervasive deformation during
74 the subduction and collision resulting in the development of recumbent folds and thrusts with top-to-
75 the-southwest transport direction as evidenced by kinematic indicators (Kroner et al., 2007; Stettner,
76 1974; Franke et al., 1992; Schwan, 1974). A second deformation phase (D2) developed due to the
77 exhumation and juxtaposition of High-pressure and Ultra high-pressure metamorphic rocks in the
78 upper crust and a ca. 45° ~~stress~~-rotation in principal subhorizontal compression direction to NNW-SSE
79 after 340 Ma (Kroner and Goerz, 2010; Schönig et al., 2020; Hallas et al., 2021; Stephan et al., 2016).
80 The D2 deformation phase is manifested by dextral transpression of D1 structures and ductile
81 deformation with a generally top-to-the-northwest transport direction (Kroner et al., 2007; Franke
82 and Stein, 2000; Kroner and Goerz, 2010; Franke, 1989). A third deformation phase (D3) records latest
83 Variscan tectonics at ~320 Ma and is represented by the folding of synorogenic deposits during general
84 NW-SE to NNW-SSE shortening (Hahn et al., 2010). Latest stages of D3 and early post-Variscan is
85 dominated by a wrench tectonic phase and the collapse of thickened crust, resulting in the
86 development of dextral strike-slip faults initiating fault-bounded graben and half-graben basins in
87 Central Europe, including the study area in SE Germany (Schröder, 1987; Arthaud and Matte, 1977;
88 Krohe, 1996; Stephan et al., 2016; Peterek et al., 1996b; Ziegler, 1990; Eberts et al., 2021). Detailed
89 and comprehensive overviews of the geodynamic and tectonostratigraphic evolution of the
90 Mideuropean Variscides have been presented by (Linnemann and Romer, 2010; Franke et al., 2000).

91 During earliest post-Variscan development at <305 Ma, wide-spread intermontane Late
92 Carboniferous-Permian fault bounded graben and half-graben basins, such as the NE-SW trending
93 Saar-Nahe (Henk, 1993; Stollhofen, 1998; Boy et al., 2012) Saale (Ehling and Gebhardt, 2012),

Field Code Changed

Field Code Changed

Field Code Changed

94 Kraichgau and Schramberg basins (Sitting and Nitsch, 2012) and NW-SE striking basins (e.g. Naab and
95 Thuringian Forest basins) are formed (Paul and Schröder, 2012; Lützner et al., 2012). ~~Compared to the~~
96 ~~Carboniferous, the~~ The Rotliegend is characterized by widespread intrabasinal volcanism and
97 depositional areas became enlarged across the internal parts of the Variscan Belt, e.g. in Switzerland
98 (Matter et al., 1987), France (Chateauneuf and Farjanel, 1989; Cassinis et al., 1995; Engel et al., 1982;
99 Laversanne, 1978; McCann et al., 2006), Germany (Henk, 1993; Stollhofen, 1998; Boy et al., 2012;
100 Lützner et al., 2012; Sitting and Nitsch, 2012; Paul and Schröder, 2012) and Iberia (e.g. (Cassinis et al.,
101 1995). In the study area, Carboniferous-Permian units are only exposed along the Franconian Fault
102 System (FFS, also known as Franconian Line), but ~~are have been~~ drilled by several wells located farther
103 west, in the Kraichgau and Naab basins (Fig. 1, Table 1).

Field Code Changed

104 In general, the ~~top of~~ Saxothuringian basement units beneath the sedimentary cover show~~s~~ a smooth
105 topography with a gentle southward rise, including ~~topo~~-lows along the SW-NE axis Würzburg-
106 Rannungen and along the NW-SE axis Staffelstein-Obernsees, the latter subparallel to the FFS
107 (Gudden, 1981; Gudden and Schmid, 1985). Saxothuringian basement lithologies drilled by wells
108 Wolfersdorf and Mittelberg in the north, well Eltmann to the west and well Obernsees in the southeast
109 of the study area (Fig. 1 and Table 1) are Upper Devonian to ~~Lower~~ Carboniferous low- to medium-
110 grade metasedimentary rocks (Hahn et al., 2010; Stettner and Salger, 1985; Trusheim, 1964; Specht,
111 2018; Friedlein and Hahn, 2018).

112 2.2. Latest to ~~p~~ost-Variscan stratigraphic and structural architecture

113 Carboniferous-Permian units in the study area dominantly comprise ~~ef~~ clastic continental sediments
114 deposited in fault-bounded basins outcropping in the Schalkau, Stockheim, Ruggendorf, Wirsberg and
115 Weidenberg areas (Schröder, 1987). Thicknesses are highly variable, ranging from about 100 m to
116 >700 m in the Kraichgau Basin and from about 100 m up to >1400 m in the Naab Basin adjacent to the
117 FFS (Gudden, 1981; Paul and Schröder, 2012). ~~At~~ In Stockheim outcrop, well Wolfersdorf drilled into
118 726 m Rotliegend, excluding an unknown amount of eroded section (Fig. 1 and Table 1). In the center
119 of the study area, 109 m of Rotliegend ~~are were~~ encountered by well Mürsbach 1 (Gudden, 1981),
120 whereas wells Mürsbach 6 and Staffelstein 1 only ~~drilled penetrated~~ ca. 20 and 43 m ~~ef~~ into the upper
121 parts of the Rotliegend (Table 1). Well Eltmann, located in a basin marginal position, encountered only
122 3 m Rotliegend (Table 1, (Trusheim, 1964). Towards the SE of the study area well Obernsees
123 encountered 18.3 m of Rotliegend ~~overlying~~ ~~the~~ metasedimentary basement rocks (Table 1,
124 (Helmkampf, 2006; Ravidà et al., 2021). However, ca. 19 km NE of well Obernsees, well Lindau 1 drilled
125 250.25 m of Rotliegend strata without reaching the ~~ir~~-Rotliegend base (Fig. 1, Table 1) (Freudenberger
126 et al., 2006). Compared to the Rotliegend, ~~the~~ Zechstein ~~tends to be of more uniform~~ thicknesses ~~tend~~
127 ~~to be more uniform~~, mainly ~~comprised comprising~~ of clay- and sandstones, dolomites and thin layers
128 of anhydrite (Schuh, 1985). Drilled Zechstein thicknesses are 117 m in well Eltmann, 126 m in well
129 Mürsbach 1, and 107 m in well Staffelstein and 104.9 in well Obernsees (Table 1). Refraction seismic
130 surveys in the south of the study area (Nürnberg area) proved the existence of deep, fault-bounded
131 grabens, whereas the Rotliegend top is characterized by a peneplain beneath the Zechstein (Bader
132 and Bram, 2001; Buness and Bram, 2001). This suggests a regional unconformity between Rotliegend
133 and Zechstein and supports the separation between the Carboniferous-Permian (mainly Rotliegend)
134 Kraichgau Basin and the post-Rotliegend (mainly Mesozoic) Franconian Basin development ~~ef~~
135 (Freudenberger et al., 2006; Paul, 2006).

Field Code Changed

136 Triassic stratigraphy is divided into Lower to lowermost Middle Buntsandstein, the Middle
137 Triassic Muschelkalk and the uppermost Middle to Upper Triassic Keuper Groups (STD, 2016; Fig. 2).
138 Siliciclastic sandstones of the Buntsandstein Group are 572 m thick in well Staffelstein 1, 530.7 m in
139 well Mürsbach 6, and 510 m in well Eltmann, decreasing to 417.15 m in well Obernsees in the
140 southeast (Table 1, (Gudden, 1977; Emmert et al., 1985; Helmkampf, 2006). Buntsandstein units are

141 exposed in fault blocks between the FFS and the Eisfeld-Kulmbach fault in the eastern part of the study
142 area (Fig. 1). The Muschelkalk Group is dominated by carbonates, dolomites and few gypsum, 240 m
143 thick in well Staffelstein 1, 210.7 m in well Mürsbach 6, and 236 m in well Eltmann, decreasing
144 southeastward to 178 m in well Obernsees (Table 1, (Gudden, 1977; Emmert et al., 1985). Muschelkalk
145 units crop out along the FFS and the Eisfeld-Kulmbach fault and also west of well Eltmann (Fig. 1). The
146 Keuper Group consists mainly of sandstones that are 530.2 m thick in well Staffelstein 1, 532 m in well
147 Staffelstein 2, decreasing southeastward to 483 m in well Obernsees (Franz et al., 2014; Gudden, 1977;
148 Emmert et al., 1985). Keuper units are broadly exposed in the western and northwestern part of the
149 study area and in the fault block bounded by the Eisfeld-Kulmbach and Asslitz faults (Fig. 1). Jurassic
150 units preserved in the central and eastern parts of the study area, but eroded towards the west and
151 northwest (Fig. 1). Jurassic outcrops to the east are fault bounded and are limited to the footwall of
152 Eisfeld-Kulmbach, Asslitz and Lichtenfels reverse faults (Fig. 1). The Jurassic interval is 102 ~~to~~ 104 m
153 thick in wells Staffelstein 1 & 2 in the north and 140 m thick in well Obernsees in the SE (Table 1;
154 Meyer, 1985; Gudden, 1977). Cretaceous sedimentary rocks are preserved in the central and
155 southeastern parts of the study area (Fig. 1).

156 The structural architecture of the eastern study area is characterized by ten to hundreds of kilometer
157 long NW-SE striking multi-segmented reverse faults (e.g. Eisfeld-Kulmbach and Asslitz faults), whereas
158 towards the west only normal faults (e.g. Bamberg ~~F~~fault, Kissingen-Haßfurt fault zone) are developed
159 (Fig. 1). The NW-SE striking Franconian Fault System (FFS) is the dominant structural feature,
160 representing the tectonic contact between the western Bohemian Massif to the east and the ~~L~~ate
161 Permian to Mesozoic Franconian Basin to the west (Fig. 1). The FFS initiated most likely during latest
162 Variscan tectonics and ~~has been~~was reactivated at least during Early Triassic and Cretaceous times
163 (Carlé, 1955; Freyberg, 1969; Peterek et al., 1997; Wagner et al., 1997). ~~FFS's~~ The total amount of
164 hangingwall uplift ~~on the FFA~~ is estimated ~~at~~ ca. 5500 m, as evidenced by titanite and apatite fission-
165 track ages, the sericite K-Ar ages of fault rocks and the sedimentary strata adjacent to the fault
166 (Wemmer, 1991; Wagner et al., 1997; Peterek et al., 1997). Sub-parallel to and ca. 9 km SW of the FFS,
167 the NE dipping Eisfeld-Kulmbach Fault mainly exposes Lower and Middle Triassic units on its
168 hangingwall side (Fig. 1). In the SE and the central footwall of the Eisfeld-Kulmbach Fault, Upper Triassic
169 and Lower Jurassic units ~~are~~ crop out, while laterally to the NW ~~Middle and Lower and Middle~~ Triassic
170 and some Permian units (Schalkau outcrop) are exposed (Fig. 1). Farther SW in the footwall of Eisfeld-
171 Kulmbach Fault, the Asslitz Fault can be traced over ca. 50 km, exposing Upper Triassic units in its
172 hanging wall (Fig. 1). The ~~most westward~~westernmost major reverse fault is the Lichtenfels Fault,
173 mapped over ca. 16 km at the surface (Fig. 1).

174 West and southwest of the Lichtenfels Fault, the structural architecture of the study area is dominated
175 by NW-SE normal faults such as the Staffelstein and Bamberg faults and the prominent Kissingen-
176 Haßfurt ~~and Heustreu~~ fault zones (Fig. 1). Studies of regional upper crustal paleostress patterns reveal
177 ~~constant~~multiple changes in stress field orientations since the Palaeozoic comprising normal faulting
178 and both, extensional and compressional strike-slip faulting implying multiple fault reactivation events
179 (Peterek et al., 1996a; Peterek et al., 1997; Bergerat and Geyssant, 1982; Coubal et al., 2015;
180 Navabpour et al., 2017; Köhler et al. submitted; Eynatten et al., 2021).

181 3. Data and methods

182 3.1. FRANKEN seismic reflection acquisition and recording parameters

183 The FRANKEN 2D seismic survey ~~is~~ comprised of four seismic lines, with a total line length of 230.8
184 km. The survey area is situated in northern Bavaria, SE Germany covering an area of approximately 90
185 km x 45 km (Fig. 1). The FRANKEN seismic survey was designed to cross deep wells and image the
186 upper crustal levels in northern Bavaria. Together with existing DEKORP, KTB and OPFZ it constitutes

Field Code Changed

Field Code Changed

187 a grid of 2D seismic reflection profiles, crossing major structural elements. FRANKEN-1801 and 1803
188 lines are striking NW-SE perpendicular to FRANKEN-1802 and 1804 profiles (Fig. 1). Profile FRANKEN-
189 1803 links to the DEKOP-3/MVE-90 profile in the NW and to the OPFZ-9301 profile towards the SE
190 (Fig. 1). FRANKEN-1802 and 1804 strike NE-SW and are perpendicular to the major fault zones. Table
191 2 summarizes acquisition and processing parameters of the FRANKEN seismic survey.

192 **3.2 Seismic interpretation methods**

193 In this study we integrate information from 9 deep wells (1100-1600 m) and surface geology to
194 interpret the newly acquired FRANKEN seismic reflection survey in SE Germany. Available wells are
195 mainly located in the center and the western part of the study area (Fig. 1 and Table 1). Seismic-well
196 tie and time-depth relationships are established using sonic velocity and density logs of the Mürsbach
197 1 well (Gudden, 1971). The calculated synthetic seismogram is correlated with the real seismic traces
198 at the well location and enabled us to transfer geological, in particular stratigraphic information from
199 the well to the intersected seismic profiles (Fig. 2). Horizon interpretation started from the profile
200 FRANKEN-1802 at the well Mürsbach-1 location where the best seismic-well tie has been established.
201 Interpretation of stratigraphic markers was then extended from the profile FRANKEN-1802 to other
202 intersecting profiles. In the sedimentary cover, seismo-stratigraphic facies and seismic characters are
203 defined, based on the lateral and vertical changes in seismic amplitudes, reflectivity and coherency.
204 Observed formation tops in wells in combination with defined seismo-stratigraphic facies are used in
205 the seismic horizon interpretation especially where there is no well available. Below the sedimentary
206 cover three main seismic facies are identified and are used to characterize and interpret basement
207 units.

208 **3.3 Seismo-stratigraphic facies**

209 Characteristic seismic signatures of stratigraphic intervals drilled by wells and observed in the
210 FRANKEN survey are first described for the Permo-Mesozoic interval. Upper Mesozoic-Cretaceous
211 units are only locally preserved in the study area and are not drilled by any of the deep wells,
212 restricting the interpretation of the Jurassic-Cretaceous boundary and the description of their seismic
213 signature. Jurassic strata show a medium amplitude and semi-continuous reflections (Fig. 3A). The
214 Jurassic-Triassic-Jurassic boundary is marked by the appearance of slightly higher amplitudes and
215 rather continuous reflections in the Triassic compared to the overlying Jurassic interval (Fig. 3A). This
216 boundary is correlated with the Staffelstein and Obernsees wells along profiles FRANKEN-1802 and
217 1803 respectively.

218 Upper Triassic Keuper units generally show continuous and medium to high amplitude reflections of
219 alternating sandstones, siltstones and some gypsumiferous units (Fig. 3B). Only the shallow marine
220 dolomites (Grabfeld Fm.) at the base of the Keuper Group (Haunschild, 1985; Gudden, 1981) are
221 characterized by high amplitudes and continuous pairs of reflections acting as regional marker
222 reflection along all profiles (Fig. 3B). Middle Triassic Muschelkalk units are comprised of lime-, marl-,
223 and dolostones, that are recorded by two distinct seismic facies in the study area, 1 a semi-continuous
224 and medium amplitude reflection with ca. 50 ms (TWT) thickness on top and 2 continuous and high
225 amplitude reflections at the bottom (Fig. 3C). The sandstone-dominated Buntsandstein Group is
226 characterized by semi-continuous and rather medium energy amplitudes that show gradually
227 increasing show slightly higher energy and continuity of reflections towards the top (Fig. 3D). A
228 continuous and very high amplitude reflection defines the Permian-Triassic boundary between the
229 Buntsandstein and the underlying Zechstein Group (Fig. 3D). The latter shows ca. 25-30 ms (TWT) of
230 continuous and high amplitude reflections which are correlated to an anhydrite and dolomite bearing
231 interval in the upper part of the Zechstein (Gudden, 1977; Schuh, 1985; Gudden and Schmid, 1985).

232 Below the Zechstein high amplitude reflections, semi-continuous and medium amplitude reflections
233 of the Rotliegend occur (Fig. 3E). These reflections represent the upper parts of the Rotliegend and
234 gradually become less reflective-distinct and discontinuous with depth with some reflections being
235 only locally present and laterally becoming less reflective-andpronouncedto partly transparent (Fig.
236 3E, 4A & B). The boundary between the sedimentary cover and the underlying pre-Permian low- to
237 medium-grade metasedimentary rocks (hereafter considered as basement rocks) is drilled by wells
238 Wolfersdorf and Mittelberg in the north, well-Eltmann to the west and the well-Obernsees to the
239 southeast and is not particularly reflective in the seismic survey (Table 1 and Fig. 4A & B). However, at
240 some locations semi-continuous and low energy reflections of the Rotliegend can be distinguished
241 from discontinuous but slightly higher energy reflections below. When is identified, such changes in
242 reflection patters is interpreted as the , interpreted as a transitional zone between
243 boundary between sedimentary cover and underlying metasedimentary rocks (Fig. 4A & B).

244 **3.4 Basement seismic facies**

245 Basement units below the sedimentary cover comprise three seismic facies, based on observed
246 differences in reflectivity, frequency and continuity of reflections.

247 **3.4.1 Basement Seismic Facies 1 (BSF1)**

248 Basement Seismic Facies 1 (BSF1), consists of discontinuous, low amplitude and low frequency
249 reflections that become transparent at some locations (Figs. 4A & B). Higher amplitude and semi-
250 continuous reflections of the Rotliegend progressively transform grade into BSF1 without a seismically
251 detectable boundary (Fig. 4B). The thicknesses of BSF1 units generally thin decrease westward and
252 reach 2.5 s TWT at their deepest position. BSF1 is sampled by well Eltmann where 94 m of (?Devonian)
253 quartzites and metasedimentary rocks are described (Trusheim, 1964), whereas well Obernsees cored
254 48.3 m of ?late Paleozoic metasedimentary rocks (Table 1, (Trusheim, 1964; Stettner and Salger,
255 1985). Farther north well Mittelberg drilled into 100.5 m of Upper Devonian-Lower Carboniferous
256 rocks below the Rotliegend (Table 1, (Friedlein and Hahn, 2018; Hahn et al., 2010). These Upper
257 Devonian-Lower Carboniferous rocks (Gleitsch Formation) are interpreted as syn-Variscan inner shelf
258 facies sedimentary rocks (Thuringian facies), low grade metamorphosed during the Variscan Orogeny
259 (Hahn et al., 2010; Kröner et al., 2007). Albeit Although well Mittelberg is not tied to seismic profiles
260 it additionally confirms the presence of low grade metasedimentary rocks below the Rotliegend.

261 In the FFS_s hangingwall, Münchberg nappe units (Variscan allochthon) are transected by the
262 DEKORP85-4N and DEKORP-3/MVE-90 seismic profiles (Figs. 1 and 5, (Hirschmann, 1996; Heinrichs et
263 al., 1994)). Münchberg nappe units are surrounded by low grade metasedimentary rocks of outer shelf
264 facies (Bavarian facies) and inner shelf facies (Thuringian facies, as described by Gümbel, 1879;
265 Linnemann et al., 2010; Heuse et al., 2010). Exposed nappe units and low grade metasedimentary
266 rocks show discontinuous to semi-continuous and low amplitude reflections, similar to BSF1 of the
267 FRANKEN survey in the FFS footwall (Fig. 5). Similar low amplitude and low frequency reflections of
268 BSF1 are also observed at the NW end of the DEKORP85-4N profile (Fig. 5A & B). There, these
269 reflections are associated with low-grade Lower Carboniferous Flysch-Flysch deposits (inner and outer
270 shelf facies) exposed at the surface (DEKORP Research Group, 1994a). Based on seismic facies
271 description and in the lack-absence of well information, differentiation between allochthons, flysch
272 sedimentary rocks, inner and outer shelf facies is ambiguous. BSF1 is therefore interpreted as the W-
273 S western to southwestern extension of low-grade inner and outer shelf facies, low-grade Lower
274 Carboniferous flysch sedimentary rocks and possible Variscan allochthons (DEKORP Research Group,
275 1994b). Correlating with exposed basement units E-NE of the FFS, these units are interpreted to
276 represent the W-SW extension of the Ziegenrück-Teuschnitz Syncline of the Saxothuringian zone.

Field Code Changed

277 **3.4.2 Basement Seismic Facies 2 (BSF2)**

278 High amplitude, continuous and dipping reflection packages are bounding BSF1 at depth and are
279 defined as Basement Seismic Facies 2 (BSF2, Fig. 4A, C and 5). BSF2 reflections are not drilled by wells
280 within the survey area. However, similar reflections observed along reprocessed DEKORP85-4N and
281 DEKORP-3/MVE-90 profiles below BSF1 ~~are exposed at the surface and represent can be correlated~~
282 ~~with exposures of~~ highly sheared rocks including phyllites developed during Variscan tectonics (Fig. 5;
283 DEKORP and Orogenic Processes Working Group, 1999; Franke and Stein, 2000). We interpret BSF2
284 as Variscan detachment/shear zones translating and involving low-grade inner and outer shelf facies,
285 low-grade Lower Carboniferous flysch sedimentary rocks and Variscan nappes. BSF2 therefore
286 includes the upper parts of the Saxothuringian parautochthones (highly sheared parts of inner shelf
287 facies) and lower parts of allochthons ~~involved in Variscan tectonics~~. Similar intrabasement, high
288 amplitude and dipping reflections are interpreted as orogenic and postorogenic shear zones in the
289 Norwegian Caledonides (Phillips et al., 2016; Fazlikhani et al., 2017; Wrona et al., 2020; Osagiede et
290 al., 2019), offshore Brazil (Strugale et al., 2021; Vasconcelos et al., 2019), offshore New Zealand
291 (Collanega et al., 2019; Phillips and McCaffrey, 2019), and in the South China Sea (Ye et al., 2020). High
292 amplitude and continuous reflections of BSF2 below the Münchberg nappe and across the FFS to the
293 west are therefore interpreted as the W-SW extension of a Variscan detachment/shear zone
294 transporting allochthonous nappes and underlying metasedimentary rocks W-SW, towards the
295 Franconian Basin area. BSF2 reflections generally get shallower from east to west and reach ~~to~~ the
296 base of the overlying sedimentary units.

Field Code Changed

297 **3.4.3 Basement Seismic Facies 3 (BSF3)**

298 Basement Seismic Facies 3 (BSF3) is characterized by semi-continuous and medium-amplitude
299 reflections (Fig. 4A & D). BSF3 is bounded by BSF2 at the top and extends to the lower limit of the
300 dataset at 8 s TWT. BSF3 does not show any preferential dip direction and locally hosts some higher
301 amplitude, continuous and dipping reflections of BSF2. Such high amplitude reflections of BSF2 are
302 branching off the main BSF2 packages or are developed at deeper levels and are interpreted as
303 segments of major shear zones or locally developed shear zones ~~during the of~~ Variscan ~~origin~~ tectonics.
304 BSF3 is not drilled by wells, nevertheless considering the tectonostratigraphic position of BSF3 ~~being~~
305 below the Variscan detachment/shear zones (BSF2), BSF3 is interpreted to represent ~~the lower parts~~
306 ~~of inner shelf facies (not involved in Variscan tectonics) and crystalline Cadomian basement rocks~~
307 ~~(Cadomian basement) and overlaying Paleozoic inner shelf facies not involved in Variscan tectonics of~~
308 ~~the Saxothuringian zone.~~

Field Code Changed

Field Code Changed

309 **4 Seismic reflection Interpretation of the FRANKEN seismic survey**

310 Described seismic facies in the sedimentary cover and underlying basement units and well information
311 are utilized [in this chapter](#) to interpret the FRANKEN seismic profiles.

312 **4.1 Profile FRANKEN-1801**

313 Profile FRANKEN-1801 is 47.9 km long and extends NW-SE from south of Bamberg to the NW of
314 Haßfurt (Fig. 1). At the surface, mainly Keuper units are exposed (Fig. 1). Thicknesses of remnant
315 Keuper units progressively decrease to the W-NW and at the northwestern edge of profile FRANKEN-
316 1801, Muschelkalk units are exposed at the surface in the footwall of a segment of the Kissingen-
317 Haßfurt Fault Zone (Fig. 6). This fault zone is mapped over ca. 60 km with ca. 7-10 km width, sub-
318 parallel to the NW-SE striking FRANKEN-1801 profile (Fig. 1). Some segments of the Kissingen-Haßfurt
319 Fault Zone are oblique and are imaged by the FRANKEN-1801 profile. Muschelkalk and Buntsandstein
320 units are fairly tabular with no major lateral thickness changes (Fig. 6). Most of the interpreted faults

321 (seismic scale) are normal faults, while major reverse faults are sub-parallel [to the profile](#) and are not
322 imaged in [profile](#) FRANKEN-1801.

323 Below the Buntsandstein, Permian deposits including 114 m Zechstein and 3 m Rotliegend [are-have](#)
324 [been](#) drilled by well Eltmann, 2230 m to the NE of profile FRANKEN-1801 (Fig. 6) (Trusheim, 1964).
325 Semi-[continuous](#)[continues](#) and medium-amplitude reflections below the Zechstein are interpreted as
326 Rotliegend deposits (Fig. 6). As the Rotliegend base is not particularly reflective in the seismic
327 reflection data, it is difficult to interpret the top basement-[boundary](#). Towards the NW in the center
328 of the FRANKEN-1801 profile, BSF1 reflections (Paleozoic metasedimentary rocks and Variscan
329 nappes) are present below the Permian rocks and are underlain by a Variscan shear zone (BSF2, Fig.
330 6). From the SE, the Variscan shear zone shallows to the NW and reaches ca. 700 ms TWT at the center
331 of the profile (Fig. 6).

332 4.2 Profile FRANKEN-1802

333 Profile FRANKEN-1802 extends NE-SW with 47.7 km length (Fig. 1). This profile is at a high angle to the
334 prominent NW-SE faults, and therefore provides a good subsurface image of these structures (Fig. 7).
335 Profile FRANKEN-1802 is tied to the well Eltmann and [is in the vicinity of](#)[runs close to](#) wells Mürsbach
336 6 (630 m to the S), Staffelstein 1 (1235 m, to the SE) and Staffelstein 2 (890 m, to the SE). Profile
337 FRANKEN-1802 is used as the reference profile for the seismo-stratigraphic interpretation (Fig. 7).
338 Jurassic rocks are preserved in the footwall of the Mürsbach and Lichtenfels reverse faults drilled with
339 104 m thickness by well Staffelstein 2 (Table 1; (Gudden, 1977). Keuper strata are exposed in the
340 hanging wall of the Lichtenfels Fault at the [NE-northeastern](#) edge of profile FRANKEN-1802 (Fig. 7).
341 Keuper is drilled with 532 m in thickness by well Staffelstein 2. Towards the SW the Keuper is
342 increasingly eroded and only 178.6 m are preserved at the location of well Eltmann (Fig. 7 and Table
343 1, (Gudden, 1977; Trusheim, 1964). Muschelkalk and Buntsandstein sedimentary rocks are tabular and
344 regionally dip to the E-NE (Fig. 7). The Zechstein is penetrated by wells Eltmann, Mürsbach 1 and 6,
345 and Staffelstein 1 and is 103-121 m thick (Table 1; (Gudden, 1985). Below the Zechstein units,
346 Rotliegend is drilled by wells Eltmann, Mürsbach 1 and 6 and Staffelstein 1 without reaching the
347 underlying basement, [except in well Eltmann \(Table 1\)](#). Medium-amplitude and semi-continuous
348 reflections, characteristic of the Rotliegend in the study area, are also locally observed, suggesting the
349 presence of Rotliegend laterally away from wells (Fig. 7). Rotliegend units are wedge shape and are
350 tilted to the E-NE, onlapping to deep sited W-SW dipping normal faults in the footwall of the Mürsbach
351 and Lichtenfels reverse faults (Fig. 7). Interpreted W-SW dipping normal faults appear to be crosscut
352 by [the](#) oppositely dipping (E-NE) Lichtenfels and Mürsbach reverse faults in Buntsandstein units (Fig.
353 7). [Clockwise](#) E-NE block rotation in the hangingwall of these normal faults created local half-grabens
354 observed exclusively in the Rotliegend section (Fig. 7). In the hanging wall of a normal fault located in
355 the footwall of Lichtenfels Fault, the thickness of the Permian section is > [310-330](#) ms, TWT (ca. [580](#)
356 [640](#) m) thinning W-SW to ca. [85-120](#) ms, TWT (ca. [2440](#) m) in the hangingwall of the Mürsbach Fault
357 (Fig. 7). The [seismic](#) interpretation of lateral thickness changes in the Permian is in good accordance
358 with 142.3 m minimum thickness of Permian drilled in well Mürsbach 6 (Table 1). The thickness of the
359 Permian section in the hanging wall of Bamberg Fault is > 200 ms, TWT (ca. [360-390](#) m) decreasing to
360 the W-SW down to 3 m, drilled by well Eltmann (Fig. 7).

361 Sedimentary units in the hanging wall of [the](#) Lichtenfels Fault are uplifted and gently folded where the
362 entire Jurassic and the upper parts of the Upper Triassic Keuper Group are eroded (Fig. 7). In the
363 footwall of [the](#) Lichtenfels Fault sedimentary units are folded by a normal drag fold, creating a local
364 synform structure (also known as Hollfeld Syncline) where Jurassic rocks are preserved (Fig. 7). The
365 NW-SE striking Lichtenfels Fault is laterally and vertically segmented and is exposed at the surface over
366 ca. 16 km length (Fig. 1). In profile FRANKEN-1802, the Lichtenfels Fault has 135 ms TWT (ca. [230-260](#)

367 m) throw, measured at the top of the Buntsandstein (Fig. 7). The Mürsbach Fault strikes NNW-SSE
368 over ca. 5 km and it has been imaged by the Mürsbach seismic survey along three short (<4 km) 2D
369 seismic sections (Unpublished internal report, Flemm, H., Körner, H.-J., Dostmann, H., and Lemcke, k.
370 1967). The Mürsbach Fault shows ca. 65 ms TWT (ca. 100–120 m) throw measured at the
371 Buntsandstein top. Both, Muschelkalk and Keuper units are folded, creating a local anticline in the
372 hangingwall of the Mürsbach Fault. Upper parts of the Keuper and younger units are eroded on the
373 hangingwall side while in the immediate footwall some of the Jurassic units are still preserved (Fig. 7).
374 E-NE dipping normal faults interpreted in the SW part of the profile FRANKEN-1802 are subparallel to
375 the SE extension of the Kissingen-Haßfurt Fault Zone (Fig. 7).

376 ~~At~~In the well Eltmann ~~location~~-94 m of ?Devonian metasedimentary rocks are drilled below the
377 sedimentary cover and correlated with BSF1 (Fig. 7, ~~7~~ (Trusheim, 1964). Identified BSF1 units are ca.
378 800 ms TWT (ca. 1400–1560 m) thick in the NE of the seismic section, decreasing to 94 m towards the
379 SW at the location of well Eltmann. BSF2 reflections show a concave up geometry below the
380 Lichtenfels and Mürsbach faults and ~~reach~~extend to ~~the~~ shallower depth towards the west (Fig. 7). In
381 the center of the profile some high amplitude reflections of BSF2 branch off from the main reflection
382 package and extend into the deeper parts of the crust (Fig. 7).

383 4.3 Profile FRANKEN-1803

384 This profile is subparallel to the profile FRANKEN-1801 and strikes NW-SE over 71.8 km length (Fig. 1).
385 Well Obernsees is located 945 m SW of this profile and drilled into ~~the~~ 140 m of Jurassic, the entire
386 Triassic succession and 55104.97 m of Upper-Upper Permian Zechstein units (Table 1 and Fig. 8, ~~4~~
387 (Helmkampf, 2006) Gudden and Schmid, 1985). Jurassic units are preserved at the surface, except in
388 the SE and NW parts of profile 1803, indicating a gentle synformal geometry with ~~thickest~~thickest parts of
389 remnant Jurassic units ~~thickest~~ in the center of the profile (Fig. 8). Triassic intervals show subparallel
390 boundaries with only minor lateral thickness changes. At well Obernsees, the Rotliegend is only 18.3
391 m thick overlying metasedimentary rocks of possibly ~~late~~ Paleozoic age (Stettner and Salger, 1985;
392 Ravidà et al., 2021). The reduced thickness of Rotliegend units in well Obernsees is related to a local
393 basement high in the footwall of an E-SE-dipping normal fault (Fig. 8). In the hanging wall of this
394 normal fault and to ~~its~~the NWSE, medium amplitude and semi-continuous reflections below the top
395 Zechstein horizon are interpreted as Rotliegend (Fig. 8, (Stettner and Salger, 1985; Schuh, 1985).
396 Permian units are underlain by Paleozoic metasedimentary rocks and Variscan nappes (BSF1 units, Fig.
397 8). BSF2 reflections are sub-horizontal (between 2000–2500 ms, TWT) ~~along the profile FRANKEN-1803~~
398 and gradually get shallower to the NW to reach to ca. 1200 ms TWT. From the SE to the center of the
399 profile, BSF2 reflections become less reflective-pronounced and appear to be segmented, into a
400 steeper and a sub-horizontal segment (Fig. 8). Farther NW, BSF2 reflections reach to shallower depth
401 and are also imaged by the perpendicular FRANKEN-1802 and 1804 profiles. Lateral segmentation and
402 changes in the reflectivity of the BSF2 might be related to the 3D geometry of an interpreted
403 detachment/shear zone (Fig. 8).

Field Code Changed

404 4.4 Profile FRANKEN-1804

405 This profile strikes NE-SW over 63.3 km length, subparallel to the profile FRANKEN-1802 (Fig. 9).
406 Jurassic units are preserved in the NE and the central part of the profile. To the SW however, Jurassic
407 units are eroded and Keuper sandstones are exposed at the surface (Fig. 9). Geometries of Triassic
408 units are fairly tabular, generally with shallow dips to the NE-E, but with variable dip angles between
409 fault blocks. High amplitude and continuous reflections below the Triassic units are interpreted as
410 Zechstein and are correlated with similar reflection packages in perpendicular profiles FRANKEN-1801
411 and 1803. Semi-continuous and medium amplitude reflections beneath the Zechstein are interpreted

412 as Rotliegend that locally onlaps to the hanging wall of deep-seated W to SW dipping normal faults
413 (Fig. 9). In general, Permian units are wedge shaped in the hanging walls of normal faults and are
414 thinning laterally. Paleozoic metasedimentary units and Variscan nappes (BSF1) underlay underlie the
415 Permian and are ca. 1400 ms TWT (ca. 3000-2700 m) thick in the center of the profile but thin laterally.
416 Variscan shear zone (BSF2) underlying Paleozoic metasedimentary units and Variscan nappes are
417 concave-shaped in the NE and reach to shallower depth towards the SW-southwestern edge of the
418 profile FRANKEN-1804 (Fig. 9). In the center of the profile, BSF2 reflections are observed at greater
419 depth up to about 3000 ms TWT and are slightly less reflective. Saxothuringian-Cadomian basement
420 and possible lower parts of inner shelf facies not involved in Variscan tectonics (BSF3) characterize the
421 deeper parts of the profile FRANKEN-1804 (Fig. 9).

422 At the NE edge of the profile FRANKEN-1804, the Eisfeld-Kulmbach Fault accumulates ca. 660 ms TWT
423 (ca. 1300-1280 m) of throw, exposing Buntsandstein in its hangingwall (Fig. 9). Across the fault, Jurassic
424 units are preserved in the footwall and thin towards the SW where they are eroded in the hangingwall
425 of the Asslitz Fault (Fig. 9). The Asslitz Fault accumulates ca. 180-210 ms TWT (ca. 390-420 m) of throw
426 at the top of the Buntsandstein. Farther SW, the Lichtenfels Fault offsets Permian to Upper Triassic
427 units with ca. 90 ms TWT (ca. 150-170 m) of throw measured at the Muschelkalk top. In contrast to
428 profile FRANKEN-1802 located (ca. 9 km NW), along the profile FRANKEN-1804 Lichtenfels Fault does
429 not reach to the surface and dies out within the Keuper units. In the footwall of Lichtenfels Fault a W
430 to SW dipping normal fault creates a local half-graben where continuous and medium amplitude
431 reflections are onlapping and terminating against the fault (Fig. 9). Further SW, Bamberg Fault is a
432 major normal fault displacing the Triassic and Permian units with ca. 25-40 ms TWT (ca. 4580 m) offset
433 measured at top Muschelkalk. Bamberg Fault detaches into the underlying Variscan shear zone (BSF2)
434 at depth (Fig. 9). Farther north along the profile FRANKEN-1802, Bamberg fault is displaced by the
435 Mürsbach reverse fault (Fig. 7).

436 5 Discussion

437 5.1 Westward extension of the Saxothuringian zone

438 Exposed Variscan allochthons are tectonically placed above the Paleozoic outer shelf facies (Bavarian
439 facies) defined as fine grained and clay rich material preserved in the surrounding and below
440 Variscan nappe piles (Linnemann and Heuse, 2001; Franke and Stein, 2000). BSF1 units observed
441 beneath the sedimentary cover west of the FFS (Figs. 7 and 9) are interpreted as equivalents of
442 Paleozoic metasedimentary rocks and Variscan nappe units (e.g. Münchberg nappe, Fig. 10). BSF1
443 units are mapped as far as ca. 65 km west of the FFS and are thinning towards the NW along the NW-
444 SE striking profiles (Figs. 6 and 8) and towards the SW along the NE-SW Figs. 7 and 9 striking profiles
445 (Figs. 7 and 9), showing a general westward thinning of Variscan nappes and Paleozoic
446 metasedimentary rocks. Wells drilled in the Schwarzwald and Upper Rhein Graben areas (ca. 300 km
447 SW of the study area) show low-grade metasedimentary units (shales and phyllites) and volcanic rocks
448 below sedimentary cover, interpreted as SW extension of the Saxothuringian Zone (Franke et al.,
449 2017). Although seismic reflection and few well data confirm the presence of low- to very low-grade
450 metasedimentary rocks below the Permian to Jurassic sedimentary cover in the study area, to date no
451 well has probed the Variscan nappes west of the FFS yet. Seismic signatures of exposed Variscan
452 nappes and low grade metasedimentary rocks east of the FFS do not allow differentiation between
453 nappes and metasedimentary rocks. Similar observations have been made in the Caledonides of
454 western Norway (Fazlkhani et al., 2017; Lenhart et al., 2019). Differentiation of Paleozoic inner and
455 outer shelf facies is also beyond the resolution of available seismic reflection data. However, the
456 tectonostratigraphic position of Variscan nappes and metasedimentary rocks relative to basal shear
457 zones in exposed basement units east of the FFS (Heuse et al., 2010; Linnemann et al., 2010), highlights
458 supports the possible presence of Variscan nappes and underlying inner and outer shelf facies ca. 65
459 km west of FFS (Fig. 10).

Formatted: Line spacing: Multiple 1.08 li

Field Code Changed

Field Code Changed

Field Code Changed

460 In the exposed parts of the Saxothuringian zone east of FFS, kinematic indicators show a top-to-the
461 W-SW tectonic transport under NE-SW compression (Schwan, 1974). This deformation phase has been
462 described as "D1" deformation phase ~~before ca. 340 Ma, being and is~~ related to the subduction and
463 collision during the Variscan Orogeny ~~before ca. 340 Ma~~ (Kroner et al., 2007). For the assemblage of
464 the Variscan during the subduction and collision, a top-to-the NW tectonic transport under a NW-SE
465 compression has also been proposed (Franke and Stein, 2000). Observed regional westward
466 shallowing of mapped thrust shear zones west of FFS could ~~however have~~ been developed under both
467 proposed tectonic transport directions. ~~Seismic reflection data does not allow to define a preferred~~
468 ~~tectonic transport direction, however, based on the kinematic indicators observed and described in~~
469 ~~the exposed parts of the Saxothuringian Zone, we tend to prefer the W-SW transport direction.~~

Field Code Changed

470 5.2 Shear zone topography and strain localization during brittle deformation

471 A regional NW-SE dominated compressional ~~and~~ dextral transpressional phase ~~during at~~ ca. 340-330
472 Ma affected the Saxothuringian zone and most likely reactivated preexisting D1 shear zones including
473 the Münchberg Shear Zone, MSZ (Franke, 2000; Kroner et al., 2007). ~~Assuming a rather initial flat~~
474 ~~geometry for the basal detachment/shear zone at the time of initiation, the 340-330 Ma deformation~~
475 ~~phase dextral transpression in addition to NE-SW regional compression during the D1 deformation~~
476 ~~phase might also be responsible for the development of antiformal geometries observed along the~~
477 ~~mapped shear zone modifying the initial geometry of the D1 mapped shear zone by folding and~~
478 ~~bending (Figs. 7 and 9). Alternatively, the antiformal geometry of the basal detachment/shear zone~~
479 ~~could be initiated during the latest Carboniferous-Early Permian due to the normal fault development.~~
480 ~~In the latter case shear zones appear to be rotated and uplifted (together with entire footwall block)~~
481 ~~on the footwall side of normal faults; creating an antiformal shape of shear zones (Figs. 7 and 9).~~
482 ~~Although the majority of brittle faults are developed on top of the antiformal parts of the basal~~
483 ~~detachment/shear zone, Lichtenfels Fault and the buried normal fault in its footwall are developed on~~
484 ~~top of the rather flat geometry of the basal detachment/shear zone (Fig. 9). This observation rather~~
485 ~~negates the scenario at which the development of Latest Carboniferous-Permian normal faults is~~
486 ~~responsible mechanism for the modification of shear zone geometry. Hence, we interpret that the~~
487 ~~basal detachment/shear zone is folded due to latest Variscan tectonic events prior to the development~~
488 ~~of normal faults.~~

489 ~~Latest to post orogenic normal faults appear to be developed in wide range of vertical and lateral scale~~
490 ~~in response to the regional stress field. These normal faults propagate radially and create larger faults~~
491 ~~(e.g. Fazlikhani et al., 2021). However, only the ones that detach into the shear zone or preexisting~~
492 ~~thrust faults at depth further grow and potentially reactivate parts of the shear zone on their~~
493 ~~hangingwall side, while other normal faults become inactive (Figs. 7, 9 and 11b).~~

Formatted: Line spacing: single

494 ~~All the major reverse faults (Eisfeld-Kulmbach, Asslitz, Lichtenfels (northern portion) and Mürsbach~~
495 ~~faults) most likely developed in response to Cretaceous inversion event in central Europe (Kley and~~
496 ~~Voigt, 2008). concentrate around the antiformal parts of the shear zone. For example, along the~~
497 ~~FRANKEN-1802 profile, the Lichtenfels Fault developed on top of the folded portion of the underlying~~
498 ~~shear zone and it is exposed at the surface (Fig. 7). Whereas ca. 10 km farther south along the~~
499 ~~FRANKEN-1804 profile where the underlying shear zone show a rather flat geometry, the Lichtenfels~~
500 ~~Fault does not reach to the surface (Fig. 9). Similarly, the Mürsbach reverse fault in the footwall of the~~
501 ~~Bamberg normal fault (or a similar normal fault) developed on top of the folded portion of the shear~~
502 ~~zones and dies out laterally to the south where the shear zone is rather flat (Fig. 7 and 9). Our~~
503 ~~observations Some of the Latest Carboniferous-Permian normal faults detach into the shear zones~~
504 ~~at depth, and potentially reactivate parts of the shear zone on their hangingwall side (Figs. 6-9).~~
505 ~~demonstrate that antiformal geometry of shear zone seems to perturb the regional stress field and~~
506 ~~localize the strain around the antiformal portions of the shear zone facilitating lateral and vertical~~
507 ~~growth of preferentially located brittle faults (Fig. 12). Comparable strain localization and brittle~~
508 ~~reactivation of orogenic shear zones during initiation and activity of post-orogenic brittle faults has~~

509 been described from the post-Caledonian an tectonics in Scandinavia (Fazlikhani et al., 2017; Phillips
510 et al., 2016; Koehl et al., 2018; Wiest et al., 2020) and post-Variscan tectonics of the western Alps
511 (Festa et al., 2020; Ballèvre et al., 2018). Initiated topography of the shear zones, most likely created
512 during latest Variscan compressional tectonics, perturbs the regional stress field and localize the
513 strain, facilitating initiation of normal and thrust faults. All the major reverse faults (e.g. Eisfeld-
514 Kulmbach, Asslitz, Lichtenfels (northern portion) and Mürsbach faults) detach into the shear zone
515 where the shear zone shows an antiformal geometry. At the location of FRANKEN-1801 (Fig. 9), in the
516 footwall of the Bamberg normal fault, the underlying shear zone does not show antiformal geometry
517 and no reverse fault has been developed, while ca. 10 km farther north along profile FRANKEN-1802
518 where the shear zone has an antiformal geometry Mürsbach reverse fault has been developed in the
519 footwall of Bamberg fault (or another normal fault, Fig. 7). Presence or absence of antiformal
520 geometry of basal detachment/shear zone appears to influence the amount of upper crustal brittle
521 deformation (normal and reverse faults), showing the regional stress field perturbation and strain
522 localization facilitating brittle fault development. This observation highlights the importance of
523 preexisting shear zones geometry during brittle fault development in vertical section.

Field Code Changed

524 Presence or absence of antiformal G-geometry of the shear zone creating local ramp also appears to
525 influence the amount magnitude of fault offset in the study area. In the NE-northeastern part of the
526 profile FRANKEN-1802 profile where the Variscan shear zone shows developed antiformal geometry,
527 the Lichtenfels Fault accumulates shows ca. 180 ms TWT of throw at the top Muschelkalk horizon and
528 it is exposed at the surface. Along the profile FRANKEN-1804 profile, ca. 10 km farther south, where
529 the Variscan shear zone shows a rather flat geometry, the Lichtenfels Fault has only ca. 80-90 ms TWT
530 of throw and is a blind fault tipping out in the Keuper units. In addition, at the location of these
531 antiformal parts of the shear zone a-generally a higher amount of upper crustal brittle deformation
532 (normal and reverse faults) occurs (Figs. 7 and 9). -reflecting rather local fault concentration above
533 the antiformal parts of the underlying shear zone. It should be noted that towards the East, at the
534 margin of the Franconian Basin, the FFS as the major basin bounding fault system displaces the basal
535 detachment/shear zone, exposing Variscan basement units on in the hangingwall side. Comparing
536 reverse faults with few hundred meters of offset detaching into the shear zones with the FFS having
537 ca. 3 km of offset (Wagner et al., 1997) displacing the shear zone, shows that the large amount of
538 accumulative amount of fault offset can breakthrough and displace the underlying shear zone is an
539 important controlling factor in reactivation or displacement of the shear zone by brittle faults. The
540 amount of fault offset together with the previously shown mechanical/rheological properties of shear
541 zones and their map view orientation relative to the extensional/shortening direction are thus
542 important controlling factors in reactivation or displacement of the basal detachment/shear zone by
543 brittle faults (Daly et al., 1989; Ring, 1994; Peace et al., 2018; Heilman et al., 2019; Phillips et al., 2019).

Field Code Changed

544 5.3 Post Variscan Rotliegend basins in SE Germany and their regional context

545 The late stages of Variscan tectonics and post orogenic thermal relaxation during the late
546 Carboniferous and Early early Permian is are marked by the development of intermontane basins in
547 the internal parts of the Variscan belt (Arthaud and Matte, 1977; McCann et al., 2006). These
548 intermontane basins are mainly located in the hangingwall of normal faults in graben and half-graben
549 settings and therefore are relatively small (km to tens of km), deep and isolated basins accumulating
550 continental clastic sediments with rapid lateral thickness changes (McCann et al., 2006). Fault-
551 bounded Rotliegend basins in SE Germany are also interpreted to have developed in an extensional
552 and/or transtensional setting during the late Carboniferous and Permian times as evidenced by
553 rather abrupt lateral thickness and sedimentary facies changes across normal faults (Schröder, 1988,
554 1987; Peterek et al., 1996c; Leitz and Schröder, 1985; Arthaud and Matte, 1977; Dill, 1988; Müller,
555 1994; Peterek et al., 1997; McCann et al., 2006; Helmkampf et al., 1982). Rotliegend sedimentary rocks

Field Code Changed

Field Code Changed

556 in the study area are exposed in the footwall and hangingwall of the FFS from NW to SE in the
557 Stockheim, Rugendorf, Wirsberg and Weidenberg outcrops (Fig. 1). Well Wolfersdorf (Stockheim
558 outcrop) drilled 726 m of Rotliegend, while the upper parts of the section are eroded, suggesting that
559 originally even thicker Rotliegend sections (ca. 1000 m) were deposited (Herrmann, 1958; Dill, 1988;
560 Paul and Schröder, 2012). About 18 km west of well Wolfersdorf, well Mittelberg drilled only 41 m of
561 Rotliegend before reaching basement rocks (Friedlein and Hahn, 2018). Similar rapid thickness
562 changes of the Rotliegend units were also observed in the Weidenberg, Erbendorf, Weiden and
563 Schmidgaden areas, all originally interpreted as small, isolated fault-bounded basins, but now,
564 interpreted as individual exposures of one coherent depositional area, the NW-SE Naab Basin, where
565 the Rotliegend reaches up to 2800 m thickness (Paul and Schröder, 2012). The Naab Basin is bordered
566 by normal faults, some of which were reactivated as reverse faults or ~~are~~ cross cut by younger reverse
567 faults (Müller, 1994; Peterek et al., 1996b).

Field Code Changed

568 In addition to exposures along the FFS, several wells in the western parts of the study area (e.g.
569 Staffelstein 1, Mürsbach 1 & 6, and Eltmann) also encountered Rotliegend that relates to the SW-NE
570 Kraichgau Basin (Table 1, Fig. 1) of which the NW-SE Naab Basin is considered ~~as~~ a basin compartment
571 (Paul, 2006). Among these wells, only Eltmann and Mittelberg reached the Rotliegend base showing a
572 general westward thinning of Rotliegend units from the FFS (Table 1). This corresponds to the pattern
573 of isopach maps, showing a gradual thickening of Rotliegend units to reach maximum thicknesses of
574 ca. 2000 m in the easternmost parts of the Kraichgau Basin (Sitting and Nitsch, 2012).

575 Rotliegend basin architecture in the Variscan Internides, with the Saar-Nahe, Kraichgau and
576 Schramberg basins as prominent examples, is characterized by 10-100 km wide and long basins
577 bordered by normal faults, rather related to ~~the~~ extensional forces than the collapse of overthickened
578 crust during the orogeny (Henk, 1997). In comparison, post-Caledonian Devonian basins in western
579 Norway developed as supra-detachment basins that are bounded by brittle normal faults reactivating
580 pre-existing Caledonian thrusts (Fossen, 2010; Fazlikhani et al., 2017; Wiest et al., 2020; Lenhart et al.,
581 2019; Séranne and Séguert, 1987; Osmundsen and Andersen, 2001). Post-Caledonian
582 supradetachment basins in western Norway accumulate >26 km thick of Devonian units that is almost
583 three times more than the true depth of the basin (Vetti and Fossen, 2012; Séranne and Séguert,
584 1987). In the northern North Sea and its western margin onshore Scotland and Shetland, and offshore
585 East Shetland Platform, post-Caledonian Devonian basins are interpreted as normal fault bounded
586 half-graben basins that in some cases detach onto Caledonian thrust/shear zones (Coward et al., 1989;
587 Platt and Cartwright, 1998; Fazlikhani et al., 2017; Norton et al., 1987; Séranne, 1992; Patruno et al.,
588 2019; Phillips et al., 2019; Fazlikhani et al., 2021).

Field Code Changed

Field Code Changed

589 The Range of post-orogenic basin architecture observed in Caledonian and Variscan orogenies
590 highlights the importance of preexisting orogenic thrust/shear zones. Comparison of post-Caledonian
591 basins with post-Variscan basins shows that in the Caledonian cases pre-existing detachment/shear
592 zone play a more important role in basin development and architecture than in the post-Variscan
593 basins, as observed in the study area. Normal faults bounding post-Variscan basins appear not to
594 reactivate entire Variscan thrust/shear zones except for the Saar-Nahe Basin (Henk, 1993). Observed
595 variations in post-orogenic basin architecture might be related to the differences in the exposed level
596 of the basement. Exposed Devonian basins of western Norway show deeper levels of crust in ~~compare~~
597 comparison to Devonian basins in the western margin of the North Sea rift. It should be noted that
598 the post-orogenic extension direction relative to the orientation of the orogenic structures in addition
599 to the amount and duration of the post-orogenic extension ~~might~~ also influence basin architecture.

600

601 5.4 Brittle fault development and relative age relationships

602 Post-Variscan extensional phases resulted in the development of normal faults bounding Rotliegend
603 half-graben and graben basins observed across the Variscan belt (Peterek et al., 1997; Arthaud and
604 Matte, 1977; McCann et al., 2006; Schröder, 1987; Müller, 1994; Stephenson et al., 2003). Mapped
605 seismic scale normal faults in the study area can be divided into three main groups, based on their
606 stratigraphic position: I) normal faults developed at shallower depth which terminate in the ~~lower~~
607 ~~Lower~~ Triassic or ~~Upper~~~~upper~~ Permian (Zechstein) intervals (Figs. 6-9). II) normal faults developed in
608 the deeper parts of the stratigraphy displacing Permian units and continuing into the pre-Permian
609 units with their upper tip terminating in ~~Uppermost~~~~uppermost~~ Permian (Zechstein) or ~~Lowermost~~
610 Triassic units (e.g. normal faults in the footwall of Lichtenfels and Asslitz reverse faults, Figs. 6-9). III)
611 small groups of normal faults which displace the entire stratigraphy and die out into the pre-Permian
612 units (Figs. 6 and 9).

613 The first group of normal faults which developed in the Triassic ~~units~~ only, do not show
614 synsedimentary activity detectable in seismic profiles and are interpreted to most likely originate from
615 sedimentary loading and differential compaction during a regional tectonic quiescence in Triassic and
616 Jurassic times (Peterek et al., 1997; Fazlkhani et al., 2021; Fazlkhani and Back, 2015). The second
617 group of normal faults, displacing mainly the Permian succession, is interpreted to have developed
618 during post-orogenic extension in latest Carboniferous-Permian (Stephanian/Rotliegend) time. This
619 second group of normal faults shows widespread evidence of synsedimentary activity and ~~is~~-bounding
620 Permian half graben and graben basins (buried and exposed) in southern Germany. In the majority of
621 cases the first and second groups of normal faults are not vertically ~~hard~~-linked. This observation can
622 be explained by the presence of fine grained marine and in some places evaporitic Zechstein units,
623 acting as a semi-ductile ~~to~~-ductile layer accommodating strain. However, in few instances the
624 Zechstein, together with Triassic units ~~are~~~~is~~ displaced by the third group of normal faults (Figs 6 and
625 9). It should be noted that with the available dataset it is not clear whether the third group of normal
626 faults is the result of an upsection growth of Permian faults, downsection growth of the Triassic-
627 Jurassic faults or whether they developed due to the downsection growth of Triassic –Jurassic faults
628 linking to and reactivating preexisting Permian faults.

629 In addition to normal faults, the major km-long NW-SE striking Eisfeld-Kulmbach, Asslitz, Lichtenfels
630 and Mürsbach reverse faults are located west of the FFS, displacing and folding the Permian to Jurassic
631 sedimentary cover. Reverse faults are better developed in the eastern part of the study area and on
632 top of the antiformal parts of the Variscan shear zones while towards the west, normal faults ~~are~~
633 ~~dominating~~~~dominate~~. Observed reverse faults are developed mainly in the footwalls of Permian
634 normal faults and dip to the E-NE (Figs. 6-9). Reverse faults cut through the upper portion of Permian
635 normal faults, translating Permo-Mesozoic units to the W-SW. Farther north of the study area in the
636 Thuringian Basin and northern Germany, similar reverse faults are related to the Cretaceous inversion
637 event (Kley and Voigt, 2008; Navabpour et al., 2017). Therefore, it appears that the youngest
638 generation of seismic-scale brittle faults are the reverse faults. However, whether reverse faults only
639 initiated during the Cretaceous inversion and younger events or rather are reverse reactivated east
640 dipping Permian normal faults is still unclear and needs further investigation.

641 6 Conclusion

642 In this study we combine existing 2D seismic reflection profiles, well data and surface geological
643 information to interpret the recently acquired 2D FRANKEN seismic survey in SE Germany. Three
644 Basement Seismic Facies (BSF1-3) are described below the Permian-Mesozoic sedimentary cover that
645 are interpreted as Variscan units and structures. We investigate ~~the~~ possible westward continuation
646 of Variscan units and structures and discuss the influence of Variscan structures in latest to post-
647 Variscan basin development. We show that:

Field Code Changed

Formatted: Line spacing: single

Field Code Changed

648 • Variscan units and structures extend to ~65 km west of the FFS ~~that are covered by~~
 649 beneath sedimentary rocks of the Kraichgau/Franconian Basin.

650 • Low-grade metasedimentary rocks and possible nappe units (BSF1) in the hanging wall of
 651 Variscan shear zones are wedge shaped and thin out towards the W-SW.

652 • Variscan ~~relative~~ autochthons occupy ~~the~~ footwalls of shear zones.

653 • Shear zones show local syn- and antiformal geometries and reach to the base of ~~the~~ Permian-
 654 Mesozoic sedimentary cover towards the W-SW.

655 • ~~The~~ Geometry of shear zones control the location at which major Permian normal faults have
 656 developed.

657 • Permian normal faults dip ~~to~~ in various ~~orientations~~directions, creating Rotliegend graben and
 658 half-graben basins. Observed Rotliegend half-graben basins in the east are interpreted as the
 659 NW continuation of the Naab Basin. Towards the west, ~~observed~~interpreted Rotliegend units
 660 are associated to the Kraichgau Basin.

661 • ~~The~~ H thickness of Triassic sedimentary rocks is fairly constant, highlighting a regional tectonic
 662 quiescence in the study area.

663 • Some of the Permian normal faults are cross cut by oppositely dipping reverse faults most
 664 likely during the regional Cretaceous inversion event ~~that~~ occurred in Central Europe. ~~Some~~
 665 of ~~R~~ reverse faults are interpreted as reactivated preexisting Permian normal faults, while
 666 ~~others might have been developed during the Cretaceous inversion event.~~

667 • ~~Reverse~~ reactivated normal faults are located~~restricted~~ to the eastern parts of the study area
 668 where preexisting Variscan shear zone show syn- and antiformal geometries.⁴

669 We document westward continuation of Variscan shear zones away from the Bohemian Massif for the
 670 first time and show how the geometry of shear zones localize the strain and influence the
 671 development of latest to post-orogenic faults and basins.

672

673 Data availability

674 ~~DEKOPR seismic data are available via GFZ (Deutsche GeoForschungsZentrum) Potsdam. Utilized well~~
 675 ~~data can be accessed through the Geological Survey of Bavaria (Bayerisches Landesamt für Umwelt -~~
 676 ~~LfU). FRANKEN seismic data are acquired for the ongoing Geothermal Alliance Bavaria (GAB) research~~
 677 ~~project and are not publically available yet.~~

678

679 Author contributions

680 ~~Hamed Fazlikhani integrated utilized datasets, interpreted seismic reflection and prepared the~~
 681 ~~manuscript. Wolfgang Bauer planned and managed the seismic data acquisition and with Harald~~
 682 ~~Stollhofen acquired the financial support and contributed to the reviewing, improvement and the~~
 683 ~~discussion of the presented results.~~

684

685 Competing interests

686 ~~The authors declare that they have no conflict of interest.~~

687

688 Acknowledgment

- Formatted: Font: Not Bold
- Formatted: Font: Not Bold, English (United States)
- Formatted: Font: Not Bold
- Formatted: Line spacing: single

689 This contribution is part of the Geothermal Alliance Bavaria (GAB) project funded by the Bavarian State
690 Ministry of Education and Cultural Affairs, Science and Art to the Friedrich-Alexander-University
691 Erlangen-Nuremberg (FAU), The Technical University of Munich (TUM) and the University of Bayreuth.
692 We would like to thank the Bayerisches Landesamt für Umwelt (LfU) for providing well data and fruitful
693 discussions. Schlumberger is thanked for providing academic licenses for Petrel and supporting the
694 "3D ~~subsurface~~-Lab" at the Friedrich-Alexander-University Erlangen-Nuremberg. Authors would like
695 to thank members of the GAB project for the discussions increasing the quality of this contribution.
696 Topical editor Virginia Toy, reviewers Jonas Kley, Uwe Kroner and anonymous referee and community
697 comment of Jean-Baptiste Koehl are thanked for their comments which greatly improved the quality
698 of our manuscript.

699

700 References

701 Arthaud, F. and Matte, P.: Late Paleozoic strike-slip faulting in southern Europe and northern Africa:
702 Result of a right-lateral shear zone between the Appalachians and the Urals, *GSA Bulletin*, 88,
703 1305–1320, [https://doi.org/10.1130/0016-7606\(1977\)88<1305:LPSFIS>2.0.CO;2](https://doi.org/10.1130/0016-7606(1977)88<1305:LPSFIS>2.0.CO;2), 1977.

704 Bader, K. and Bram, K. (Eds.): *Der mittelfränkische Gebirgsrücken südlich Nürnberg*, Schweizerbart
705 Science Publishers, Stuttgart, Germany, 2001. Formatted: German (Germany)

706 Ballèvre, M., Manzotti, P., and Dal Piaz, G. V.: Pre-Alpine (Variscan) Inheritance: A Key for the
707 Location of the Future Valaisan Basin (Western Alps), *Tectonics*, 37, 786–817,
708 <https://doi.org/10.1002/2017TC004633>, 2018.

709 Behr, H. J. and Heinrichs, T.: Geological interpretation of DEKORP 2-S: A deep seismic reflection
710 profile across the Saxothuringian and possible implications for the Late Variscan structural
711 evolution of Central Europe, *Tectonophysics*, 142, 173–202, [https://doi.org/10.1016/0040-1951\(87\)90122-3](https://doi.org/10.1016/0040-1951(87)90122-3), available at:
712 <https://www.sciencedirect.com/science/article/pii/0040195187901223>, 1987.

713 Bergerat, F. and Geysant, J.: Tectonique cassante et champ de contraintes tertiaire en avant des
714 Alpes orientales: le Jura souabe, *Geologische Rundschau*, 71, 537–548, 1982.

715 Boy, J. A., Haneke, J., Kowalczyk, G., Lorenz, V., Schindler, T., Stollhofen, H., and Thum, H.: Rotliegend
716 im Saar-Nahe-Becken, am Taunus-Südrand und im nördlichen Oberrheingraben, in:
717 *Innervariscische Becken*, edited by: Lützner, H., Schweizerbart Science Publishers, Stuttgart,
718 Germany, 254–377, 2012. Formatted: German (Germany)

719 Buness, H.-A. and Bram, K.: Die Muschelkalkoberfläche und die permische Peneplam in
720 Mittelfranken abgeleitet aus seismischen Messungen, in: *Der mittelfränkische Gebirgsrücken*
721 südlich Nürnberg, edited by: Bader, K. and Bram, K., Schweizerbart Science Publishers, Stuttgart,
722 Germany, 35–59, 2001.

723 Carlé, W.: Bau und Entwicklung der Südwestdeutschen Großscholle, *Beihefte zum Geologischen*
724 *Jahrbuch*, 1955.

725 Cassinis, G., Toutin-Morin, N., and Virgili, C.: A General Outline of the Permian Continental Basins in
726 Southwestern Europe, in: *The Permian of Northern Pangea.: Volume 2: Sedimentary Basins and*
727 *Economic Resources*, edited by: Scholle, P., Peryt, t. M., and Ulmer-Scholle, D. S., Springer, Berlin,
728 137–157, 1995.

729 Chateauneuf, J. J. and Farjanel, G.: *Synthèse Géologique des Bassins Permiens Français*, 128th ed.,
730 1989.

731 Collanega, L., Siuda, K., A.-L. Jackson, C., Bell, R. E., Coleman, A. J., Lenhart, A., Magee, C., and Breda,
732 A.: Normal fault growth influenced by basement fabrics: The importance of preferential
733 nucleation from pre-existing structures, *Basin Res*, 31, 659–687,
734 <https://doi.org/10.1111/bre.12327>, 2019.

736 Coubal, M., Málek, J., Adamovič, J., and Štěpančíková, P.: Late Cretaceous and Cenozoic dynamics of
737 the Bohemian Massif inferred from the paleostress history of the Lusatian Fault Belt, *Journal of*
738 *Geodynamics*, 87, 26–49, <https://doi.org/10.1016/j.jog.2015.02.006>, 2015.

739 Coward, M. P., Enfield, M. A., and Fischer, M. W.: Devonian basins of Northern Scotland: extension
740 and inversion related to Late Caledonian — Variscan tectonics, *Geological Society, London, Special Publications*, 44, 275, <https://doi.org/10.1144/GSL.SP.1989.044.01.16>, 1989.

741 Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in Africa: the influence of
742 reactivated steep basement shear zones, *Geological Society, London, Special Publications*, 44, 309–334, <https://doi.org/10.1144/GSL.SP.1989.044.01.17>, 1989.

743 DEKOPR and Orogenic Processes Working Group: Structure of the Saxonian Granulites: Geological
744 and geophysical constraints on the exhumation of high-pressure/high-temperature rocks in the
745 mid-European Variscan belt, *Tectonics*, 18, 756–773, <https://doi.org/10.1029/1999TC900030>,
746 1999.

747 DEKOPR Research Group: Crustal structure of the Saxothuringian Zone: Results of the deep seismic
748 profile MVE-90(East), *Zeitschrift für Geologische Wissenschaften*, 22, 647–769, available at:
749 <http://www.zgw-online.de/en/>, 1994a.

750 DEKOPR Research Group: DEKOPR 3/MVE 90(West) - preliminary geological interpretation of a deep
751 near-vertical reflection profile between the Rhenish and Bohemian Massifs, Germany, *Zeitschrift
752 für Geologische Wissenschaften*, 22, 771–801, 1994b.

753 Dill, H.: *Sedimentpetrographie des Stockheimer Rotliegendbeckens, Nordostbayern*, Schweizerbart
754 Science Publishers, Stuttgart, Germany, 1988.

755 Eberts, A., Fazlkhani, H., Bauer, W., Stollhofen, H., Wall, H. de, and Gabriel, G.: Late to post-Variscan
756 basement segmentation and differential exhumation along the SW Bohemian Massif, central
757 Europe, *Solid Earth*, 12, 2277–2301, <https://doi.org/10.5194/se-12-2277-2021>, available at:
758 <https://se.copernicus.org/articles/12/2277/2021/>, 2021.

759 Edel, J. B. and Weber, K.: Cadomian terranes, wrench faulting and thrusting in the central Europe
760 Variscides: geophysical and geological evidence, *Geologische Rundschau*, 84, 412–432,
761 <https://doi.org/10.1007/BF00260450>, 1995.

762 Ehling, B.-C. and Gebhardt, U.: Rotliegend im Saale-Becken, in: *Innervariscische Becken*, edited by:
763 Lützner, H., Schweizerbart Science Publishers, Stuttgart, Germany, 504–516, 2012.

764 Emmert, U., Gudden, H., Haunschmid, H., Meyer, R. K. F., Schmid, H., Schuh, H., and Stettner, G.:
765 *Bohrgut-Beschreibung der Forschungsbohrung Obernsees*, *Geologica Bavarica*, 88, 23–47, 1985.

766 Engel, W., Feist, R., and Franke, W.: Le Carbonifère anté-Stéphanien de la Montagne Noire: rapports
767 entre mise en place des nappes et sédimentation., *Bulletin du BRGM*, 1, 341–389, 1982.

768 Eynatten, H. von, Kley, J., Dunkl, I., Hoffmann, V. E., and Simon, A.: Late Cretaceous to Paleogene
769 exhumation in central Europe — localized inversion vs. large-scale domal uplift, *Solid Earth*, 12,
770 935–958, <https://doi.org/10.5194/se-12-935-2021>, available at:
771 <https://se.copernicus.org/articles/12/935/2021/>, 2021.

772 Fazlkhani, H. and Back, S.: The influence of differential sedimentary loading and compaction on the
773 development of a deltaic rollover, *Marine and Petroleum Geology*, 59, 136–149,
774 <https://doi.org/10.1016/j.marpetgeo.2014.08.005>, 2015.

775 Fazlkhani, H., Aagotnes, S. S., Refvem, M. A., Hamilton-Wright, J., Bell, R. E., Fossen, H., Gawthorpe,
776 R. L., Jackson, C. A.-L., and Røtevatn, A.: Strain migration during multiphase extension, Stord
777 Basin, northern North Sea rift, *Basin Res*, 33, 1474–1496, <https://doi.org/10.1111/bre.12522>,
778 2021.

779 Fazlkhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., and Bell, R. E.: Basement structure and its
780 influence on the structural configuration of the northern North Sea rift, *Tectonics*, 36, 1151–
781 1177, <https://doi.org/10.1002/2017TC004514>, 2017.

782

783

Formatted: German (Germany)

Formatted: German (Germany)

784 Festa, A., Balestro, G., Borghi, A., Caroli, S. de, and Succo, A.: The role of structural inheritance in
785 continental break-up and exhumation of Alpine Tethyan mantle (Canavese Zone, Western Alps),
786 *Geoscience Frontiers*, 11, 167–188, <https://doi.org/10.1016/j.gsf.2018.11.007>, available at:
787 <http://www.sciencedirect.com/science/article/pii/S1674987118302470>, 2020.

788 Fossen, H.: Extensional tectonics in the North Atlantic Caledonides: a regional view, *Geological*
789 Society, London, Special Publications, 335, 767, <https://doi.org/10.1144/SP335.31>, 2010.

790 Franke, W.: The mid-European segment of the Variscides: tectonostratigraphic units, terrane
791 boundaries and plate tectonic evolution, in: *Orogenic Processes: Quantification and Modelling in*
792 the Variscan Belt, edited by: Franke, W., Haak, V., Oncken, O., and Tanner, D. C., 35,
793 <https://doi.org/10.1144/GSL.SP.2000.179.01.05>, 2000.

794 Franke, W. and Stein, E.: Exhumation of high-grade rocks in the Saxo-Thuringian Belt: Geological
795 constraints and geodynamic concepts, in: *Orogenic Processes: Quantification and Modelling in*
796 the Variscan Belt, <https://doi.org/10.1144/GSL.SP.2000.179.01.20>, 2000.

797 Franke, W., Behrmann, J., and Moehrmann, H.: Zur Deformationsgeschichte des Kristallins im
798 Münchberger Deckenstapel, KTB Report, 92-4, 225–240, 1992.

799 Franke, W.: Tectonostratigraphic units in the Variscan belt of central Europe, in: *Terranes in the*
800 *Circum-Atlantic Paleozoic Orogens*, edited by: Dallmeyer, R. D., Geological Society of America, 0,
801 <https://doi.org/10.1130/SPE230-p67>, 1989.

802 Franke, W., Cocks, L. R. M., and Torsvik, T. H.: The Palaeozoic Variscan oceans revisited, *Gondwana*
803 *Research*, 48, 257–284, <https://doi.org/10.1016/j.gr.2017.03.005>, 2017.

804 Franke, W., Haak, V., Oncken, O., and Tanner, D. C. (Eds.): *Orogenic Processes: Quantification and*
805 *Modelling in the Variscan Belt*, 179, 2000.

806 Franz, M., Nowak, K., Berner, U., Heunisch, C., Bandel, K., Röhling, H.-G., and Wolfgramm, M.:
807 Eustatic control on epicontinental basins: The example of the Stuttgart Formation in the Central
808 European Basin (Middle Keuper, Late Triassic), *Global and Planetary Change*, 122, 305–329,
809 <https://doi.org/10.1016/j.gloplacha.2014.07.010>, available at:
810 <http://www.sciencedirect.com/science/article/pii/S092181811400143X>, 2014.

811 Freudenberger, W. and Schwerd, K.: *Erläuterungen zur Geologischen Karte von Bayern 1. Geol.*
812 :500000, Bayerisches Geologisches Landesamt, München, 1996.

813 Freudenberger, W., Herold, B., and Wagner, S.: *Bohrkern-Beschreibung und Stratigraphie der*
814 *Forschungsbohrungen Lindau 1 und Spitzzeichen 1*, *Geologica Bavaria*, 109, 15–26, 2006.

815 Freyberg, B. von: *Tektonische Karte der Fränkischen Alb und ihrer Umgebung*, Erlanger Geologische
816 *Abhandlungen*, 77, 1–81, 1969.

817 Friedlein, V. and Hahn, T.: *Mittelberg well description: Internal report*, Bayerisches Landesamt fuer
818 *Umwelt*, 2018.

819 Gudden, H.: *Der Untere Keuper in Bohrungen zwischen Eltmann und Rodach*, *Geologische Blätter*
820 von Nordost-Bayern, 31, 448–462, 1981.

821 Gudden, H.: *Die Thermal-Mineralwasser-Erschließungsbohrung Staffelstein 1975*, *Brunnenbau, Bau*
822 *von Wasserwerken und Rohrleitungsbau (bbr)*, 28, 85–92, 1977.

823 Gudden, H. and Schmid, H.: *Die Forschungsbohrung Obernsees—Konzeption, Durchführung und*
824 *Untersuchung der Metallführung*, *Geologica Bavaria*, 88, 5–21, 1985.

825 Gudden, H.: *Der Buntsandstein in der Forschungsbohrung Obernsees*, *Geologica Bavaria*, 88, 69–81,
826 1985.

827 Gudden, H.: *über die Struktur Mürsbach und ihre Eignung für behälterlose unterirdische*
828 *Gasspeicherung*, München, 1971.

829 Hahn, T., Kröner, U., and Mezer, P.: *Lower Carboniferous synorogenic sedimentation in the Saxo-*
830 *Thuringian Basin and the adjacent Allochthonous Domain*, in: *Pre-Mesozoic geology of Saxo-*

Formatted: German (Germany)

Formatted: German (Germany)

831 Thuringia: From the Cadomian active margin to the Variscan orogen, edited by: Linnemann, U.
832 and Romer, R. L., Schweizerbart, Stuttgart, 171–192, 2010.

833 Hallas, P., Pfänder, J. A., Kröner, U., and Sperner, B.: Microtectonic control of $40\text{Ar}/39\text{Ar}$ white mica
834 age distributions in metamorphic rocks (Erzgebirge, N-Bohemian Massif): Constraints from
835 combined step heating and multiple single grain total fusion experiments, *Geochimica et*
836 *Cosmochimica Acta*, 314, 178–208, <https://doi.org/10.1016/j.gca.2021.08.043>, available at:
837 <https://www.sciencedirect.com/science/article/pii/S0016703721005329>, 2021.

838 Haunschild, H.: Der Keuper in der Forschungsbohrung Obersees, *Geologica Bavaria*, 88, 103–130,
839 available at: https://www.lfu.bayern.de/geologie/geo_karten_schriften/schriften/index.htm,
840 1985.

841 Heilman, E., Kolawole, F., Atekwana, E. A., and Mayle, M.: Controls of Basement Fabric on the
842 Linkage of Rift Segments, *Tectonics*, 38, 1337–1366, <https://doi.org/10.1029/2018TC005362>,
843 2019.

844 Heinrichs, T., Giese, P., and Bankwitz, E.: DEKORP 3/MVE-90 (West) Preliminary geological
845 interpretation of a deep near-vertical reflection profile between the Rhenish and the Bohemian
846 Massifs, Germany, *Zeitschrift für Geologische Wissenschaften*, 22, 771–801, 1994.

847 Helmkampf, K. E.: Profilvergleich und sedimentologische Entwicklung im Umkreis der
848 Forschungsbohrungen Spitzelchen 1 und Lindau 1, *Geologica Bavaria*, 109, 63–94, 2006.

849 Helmkampf, K. E., Kuhlmann, J., and Kaiser, D.: Das Rotliegende im Bereich der Weidener Bucht, in:
850 *Geologica Bavaria* 83: Neue Tiefbohrungen in Bayern, edited by: Bayerisches Geologisches
851 Landesamt, Bayerisches Geologisches Landesamt, München, 167–186, 1982.

852 Henk, A.: Gravitational orogenic collapse vs plate-boundary stresses: a numerical modelling
853 approach to the Permo-Carboniferous evolution of Central Europe, *Geologische Rundschau*, 86,
854 39–55, <https://doi.org/10.1007/s005310050120>, 1997.

855 Henk, A.: Late orogenic Basin evolution in the Variscan internides: the Saar-Nahe Basin, southwest
856 Germany, *Tectonophysics*, 223, 273–290, [https://doi.org/10.1016/0040-1951\(93\)90141-6](https://doi.org/10.1016/0040-1951(93)90141-6),
857 available at: <https://www.sciencedirect.com/science/article/pii/0040195193901416>, 1993.

858 Herrmann, R.: Die stratigraphischen und tektonischen Verhältnisse des Stockheimer Beckens.,
859 *Geologie*, 7, 133–157, 1958.

860 Heuse, T., Blumenstengel, H., Elicki, O., Geyer, G., Hansch, W., Maletz, J., Sarmiento, G. N., and
861 Weyer, D.: Biostratigraphy - The faunal province of the southern margin of the Rheic Ocean, in:
862 Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian active margin to the Variscan
863 orogen, edited by: Linnemann, U. and Romer, R. L., Schweizerbart, Stuttgart, 99–170, 2010.

864 Hirschmann, G.: KTB — The structure of a Variscan terrane boundary: seismic investigation — drilling
865 — models, *Tectonophysics*, 264, 327–339, [https://doi.org/10.1016/S0040-1951\(96\)00171-0](https://doi.org/10.1016/S0040-1951(96)00171-0),
866 available at: <https://www.sciencedirect.com/science/article/pii/S0040195196001710>, 1996.

867 Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-
868 Europe convergence, not Alpine collision, *Geology*, 36, 839–842,
869 <https://doi.org/10.1130/G24930A.1>, 2008.

870 Koehl, J.-B. P., Bergh, S. G., Henningsen, T., and Faleide, J. I.: Middle to Late Devonian–Carboniferous
871 collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW
872 Barents Sea, *Solid Earth*, 9, 341–372, <https://doi.org/10.5194/se-9-341-2018>, available at:
873 <https://www.solid-earth.net/9/341/2018/>, 2018.

874 Köhler, S., Duschl, F., Fazlikhani, H., Koehn, D., Stephan, T., and Stollhofen, H.: Reconstruction of
875 cyclic Mesozoic-Cenozoic stress development in SE Germany using fault-slip and stylolite
876 inversion, submitted to the *Geological Magazine*.

877 Kossmat, F.: Gliederung des varistischen Gebirgsbaues., *Abhandlungen des Sächsischen*
878 *Geologischen Landesamtes*, 1, 1–39, 1927.

Formatted: German (Germany)

Formatted: German (Germany)

Formatted: German (Germany)

Formatted: English (United States)

Formatted: German (Germany)

879 Krohe, A.: Variscan tectonics of central Europe: Postaccretionary intraplate deformation of weak
 880 continental lithosphere, *Tectonics*, 15, 1364–1388, <https://doi.org/10.1029/96TC01110>,
 881 available at: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030390295&doi=10.1029%2f96TC01110&partnerID=40&md5=a69bf89c67177c6a9a7d76d35a93ae5>, 1996.

884 Kroner, U., Hahn, T., Romer, R. L., and Linnemann, U.: The Variscan orogeny in the Saxo-Thuringian
 885 zone—Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust, in: *The Evolution of*
 886 *the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision*,
 887 edited by: Linnemann, U., Nance, R. D., Kraft, P., and Zulauf, G., Geological Society of America,
 888 119, [https://doi.org/10.1130/2007.2423\(06\)](https://doi.org/10.1130/2007.2423(06)), 2007.

889 Kroner, U. and Goerz, I.: Variscan assembling of the Allochthonous Domain of the Saxo-Thuringian
 890 Zone - a tectonic model, in: *Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian active*
 891 *margin to the Variscan orogen*, edited by: Linnemann, U. and Romer, R. L., Schweizerbart,
 892 Stuttgart, 271–286, 2010.

893 Lavernanne, J.: *Le Permian de Lodeve (Massif Central Francais). Evolution des depots Autuniens et*
 894 *exemples de mineralisations uranifères diagenétiques par circulation de solutions exogènes*,
 895 1978.

896 Leitz, F. and Schröder, B.: *Die Randfazies der Trias und Bruchschollenland südöstlich Bayreuth*
 897 *(Exkursion C am 11. und 12. April 1985)*, *Jahresberichte und Mitteilungen des Oberrheinischen*
 898 *Geologischen Vereins*, 67, 51–63, <https://doi.org/10.1127/jmogr/67/1985/51>, 1985.

899 Lenhart, A., Jackson, C. A.-L., Bell, R. E., Duffy, O. B., Gawthorpe, R. L., and Fossen, H.: Structural
 900 architecture and composition of crystalline basement offshore west Norway, *Lithosphere*, 11,
 901 273–293, <https://doi.org/10.1130/L668.1>, 2019.

902 Linnemann, U. and Romer, R. L. (Eds.): *Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian*
 903 *active margin to the Variscan orogen*, Schweizerbart, Stuttgart, 488 pp., 2010.

904 Linnemann, U. and Heuse, T.: The Ordovician of the Schwarzburg Anticline: Geotectonic setting,
 905 biostratigraphy and sequence stratigraphy (Saxo-Thuringian Terrane, Germany), *Zeitschrift der*
 906 *Deutschen Geologischen Gesellschaft*, 151, 471–491,
 907 <https://doi.org/10.1127/zdgg/151/2001/471>, 2001.

908 Linnemann, U., Hofmann, M., Romer, R. L., and Gerdés, A.: Transitional stages between the
 909 Cadomian and Variscan orogenies: Basin development and tectono-magmatic evolution of the
 910 southern margin of the Rheic Ocean in the Saxo-Thuringian Zone (North Gondwana shelf), in:
 911 *Pre-Mesozoic geology of Saxo-Thuringia: From the Cadomian active margin to the Variscan*
 912 *orogen*, edited by: Linnemann, U. and Romer, R. L., Schweizerbart, Stuttgart, 59–98, 2010.

913 Lüschen, E., Wenzel, F., Sandmeier, K.-J., Menges, D., Rühl, T., Stiller, M., Janoth, W., Keller, F.,
 914 Söllner, W., Thomas, R., Krohe, A., Stenger, R., Fuchs, K., Wilhelm, H., and Eisbacher, G.: Near-
 915 vertical and wide-angle seismic surveys in the Black Forest, SW Germany, *Journal of Geophysics*,
 916 62, 1–30, 1987.

917 Lützner, H., Andreas, D., Schneider, J. W., Voigt, S., and Werneburg, R.: *Stefan und Rotliegend im*
 918 *Türinger Wald und seiner Umgebung*, in: *Innervariscische Becken*, edited by: Lützner, H.,
 919 Schweizerbart Science Publishers, Stuttgart, Germany, 418–487, 2012.

920 Matter, A., Peters, T. J., Bläsi, H. R., and Ziegler, H. J.: *Sondierbohrung Riniken*, in: NAGRA
 921 *Technischer Bericht*, 1–214, 1987.

922 McCann, T., Pascal, C., Timmerman, M. J., Krzywiec, P., López-Gómez, J., Wetzel, L., Krawczyk, C. M.,
 923 Rieke, H., and Lamarche, J.: Post-Variscan (end Carboniferous-Early Permian) basin evolution in
 924 Western and Central Europe, *Geological Society, London, Memoirs*, 32, 355–388,
 925 <https://doi.org/10.1144/GSL.MEM.2006.032.01.22>, 2006.

Formatted: German (Germany)

Formatted: German (Germany)

926 Meissner, R., Wever, T., and Bittner, R.: Results of DEKORP 2-S and other reflection profiles through
927 the Variscides, *Geophys J Int*, 89, 319–324, <https://doi.org/10.1111/j.1365-246X.1987.tb04425.x>,
928 1987.

929 Müller, M.: *Neue Vorstellungen zur Entwicklung des Nordostbayerischen Permokarbon-Trogs*
930 aufgrund reflexionsseismischer Messungen in der Mittleren Oberpfalz, *Geologische Blätter von*
931 *Nordost-Bayern*, 44, 195–224, 1994.

932 Navabpour, P., Malz, A., Kley, J., Siegburg, M., Kasch, N., and Ustaszewski, K.: Intraplate brittle
933 deformation and states of paleostress constrained by fault kinematics in the central German
934 platform, *Tectonophysics*, 694, 146–163, <https://doi.org/10.1016/j.tecto.2016.11.033>, 2017.

935 Norton, M. G., McClay, K. R., and Way, N. A.: Tectonic evolution of Devonian basins in northern
936 Scotland and southern Norway, *NJG*, 67, 323–338, available at: <http://njg.geologi.no/vol-61-70/details/19/712-712>, 1987.

937 Osagiede, E. E., Røtevatn, A., Gauthorpe, R., Kristensen, T. B., Jackson, C. A.-L., and Marsh, N.: Pre-
938 existing intra-basement shear zones influence growth and geometry of non-colinear normal
939 faults, western Utsira High–Heimdal Terrace, North Sea, *Geol*, 103908,
940 <https://doi.org/10.1016/j.jsg.2019.103908>, available at:
941 <http://www.sciencedirect.com/science/article/pii/S0191814119301798>, 2019.

942 Osmundsen, P. T. and Andersen, T. B.: The middle Devonian basins of western Norway: sedimentary
943 response to large-scale transtensional tectonics?, *Tectonophysics*, 332, 51–68,
944 [https://doi.org/10.1016/S0040-1951\(00\)00249-3](https://doi.org/10.1016/S0040-1951(00)00249-3), available at:
945 <https://www.sciencedirect.com/science/article/pii/S0040195100002493>, 2001.

946 Patruno, S., Reid, W., Berndt, C., and Feuilleaubois, L.: Polyphase tectonic inversion and its role in
947 controlling hydrocarbon prospectivity in the Greater East Shetland Platform and Mid North Sea
948 High, UK, *Geological Society, London, Special Publications*, 471, 177,
949 <https://doi.org/10.1144/SP471.9>, 2019.

950 Paul, J.: *Rotliegend und unterer Zechstein der Forschungsbohrung Lindau 1 (NE-Bayern)*, *Geologica*
951 *Bavarica*, 109, 27–48, 2006.

952 Paul, J. and Schröder, B.: Rotliegend im Ostteil der Süddeutschen Scholle, in: *Innervariscische*
953 *Becken*, edited by: Lützner, H., *Schweizerbart Science Publishers*, Stuttgart, Germany, 697–706,
954 2012.

955 Peace, A., McCaffrey, K., Imber, J., van Hunen, J., Hobbs, R., and Wilson, R.: The role of pre-existing
956 structures during rifting, continental breakup and transform system development, *offshore West*
957 *Greenland, Basin Res*, 30, 373–394, <https://doi.org/10.1111/bre.12257>, 2018.

958 Peterek, A., Rauche, H., Schröder, B., Franzke, H.-J., Bankwitz, P., and Bankwitz, E.: The late-and post-
959 Variscan tectonic evolution of the Western Border fault zone of the Bohemian massif (WBZ),
960 *Geologische Rundschau*, 86, 191–202, <https://doi.org/10.1007/s005310050131>, available at:
961 <https://doi.org/10.1007/s005310050131>, 1997.

962 Peterek, A., Rauche, H., and Schröder, B.: Die strukturelle Entwicklung des E-Randes der
963 Süddeutschen Scholle in der Kreide, *Zeitschrift für Geologische Wissenschaften*, 24, 65–77,
964 1996a.

965 Peterek, A., Schröder, B., and Menzel, D.: Zur postvariszischen Krustenentwicklung des Naabgebirges
966 und seines Rahmens, *Zeitschrift für Geologische Wissenschaften*, 24, 293–304, 1996b.

967 Peterek, A., Schröder, B., and Menzel, D.: Zur postvariszischen Krustenentwicklung des Naabgebirges
968 und seines Rahmens, *Zeitschrift für Geologische Wissenschaften*, 24, 293–304, 1996c.

969 Phillips, T. B. and McCaffrey, K. J. W.: Terrane Boundary Reactivation, Barriers to Lateral Fault
970 Propagation and Reactivated Fabrics: Rifting Across the Median Batholith Zone, Great South
971 Basin, New Zealand, *Tectonics*, 38, 4027–4053, <https://doi.org/10.1029/2019TC005772>, 2019.

972

Formatted: German (Germany)

Formatted: German (Germany)

Formatted: German (Germany)

973 Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A.-L., Bell, R. E., Faleide, J. I.,
 974 and Røtevatn, A.: The Influence of Structural Inheritance and Multiphase Extension on Rift
 975 Development, the Northern North Sea, *Tectonics*, n/a, <https://doi.org/10.1029/2019TC005756>,
 976 2019.

977 Phillips, T. B., Jackson, C. A.-L., Bell, R. E., Duffy, O. B., and Fossen, H.: Reactivation of intrabasement
 978 structures during rifting: A case study from offshore southern Norway, *Journal of Structural
 979 Geology*, 91, 54–73, <https://doi.org/10.1016/j.jsg.2016.08.008>, 2016.

980 Platt, N. H. and Cartwright, J. A.: Structure of the East Shetland Platform, northern North Sea,
 981 *Petroleum Geoscience*, 4, 353, <https://doi.org/10.1144/petgeo.4.4.353>, 1998.

982 Ravidà, D. C. G., Caracciolo, L., Henares, S., Janßen, M., and Stollhofen, H.: Drainage and
 983 environmental evolution across the Permo-Triassic boundary in the south-east Germanic Basin
 984 (north-east Bavaria), *Sedimentology*, n/a, <https://doi.org/10.1111/sed.12913>, 2021.

985 Ring, U.: The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East
 986 African rift system), *Tectonics*, 13, 313–326, <https://doi.org/10.1029/93TC03188>, 1994.

987 Schönig, J., Eynatten, H. von, Meinhold, G., Lünsdorf, N. K., Willner, A. P., and Schulz, B.: Deep
 988 subduction of felsic rocks hosting UHP lenses in the central Saxonian Erzgebirge: Implications for
 989 UHP terrane exhumation, *Gondwana Research*, 87, 320–329,
 990 <https://doi.org/10.1016/j.gr.2020.06.020>, available at:
 991 <https://www.sciencedirect.com/science/article/pii/S1342937X20302136>, 2020.

992 Schröder, B.: Outline of the Permo-Carboniferous Basins at the Western Margin of the Bohemian
 993 Massif, *Zeitschrift für Geologische Wissenschaften*, 16, 993–1001, 1988.

994 Schröder, B.: Inversion tectonics along the Western margin of the Bohemian Massif, *Tectonophysics*,
 995 137, 93–100, [https://doi.org/10.1016/0040-1951\(87\)90316-7](https://doi.org/10.1016/0040-1951(87)90316-7), available at:
 996 <http://www.sciencedirect.com/science/article/pii/0040195187903167>, 1987.

997 Schuh, H.: Der Zechstein in der Forschungsbohrung Obernsee, *Geologica Bavaria*, 88, 57–68, 1985.

998 Schwan, W.: Die sächsischen Zwischengebirge und Vergleiche mit der Münchberger Gneismasse und
 999 anderen analogen Kristallinvorkommen im Saxothuringikum, *Erlanger geologische
 1000 Abhandlungen*, Heft 99, Erlangen: s.n, 180 p. 11 leaves of plates, 1974.

1001 Scwan, W.: Die Sächsischen Zwischengebirge und Vergleiche mit der Münchberger Gneismasse und
 1002 anderen analogen Kristallinvorkommen im Saxothuringikum., *Erlanger geologische
 1003 Abhandlungen*, 99, 1974.

1004 Séranne, M.: Devonian extensional tectonics versus Carboniferous inversion in the northern
 1005 Orcadian basin, *Journal of the Geological Society*, 149, 27,
 1006 <https://doi.org/10.1144/gsjgs.149.1.0027>, 1992.

1007 Séranne, M. and Séguert, M.: The Devonian basins of western Norway: tectonics and kinematics of
 1008 an extending crust, *Geological Society, London, Special Publications*, 28, 537,
 1009 <https://doi.org/10.1144/GSL.SP.1987.028.01.35>, 1987.

1010 Sittig, E. and Nitsch, E.: Stefan und Rotliegend zwischen Odenwald und Alpenrand, in:
 1011 Innervariscische Becken, edited by: Lützner, H., Schweizerbart Science Publishers, Stuttgart,
 1012 Germany, 646–696, 2012.

1013 Specht, S.: Eltmann well description: Internal report, Bayerisches Landesamt fuer Umwelt, 2018.

1014 Stephan, T., Kröner, U., Hahn, T., Hallas, P., and Heuse, T.: Fold/cleavage relationships as indicator
 1015 for late Variscan sinistral transpression at the Rheno-Hercynian–Saxo-Thuringian boundary zone,
 1016 Central European Variscides, *Tectonophysics*, 681, 250–262,
 1017 <https://doi.org/10.1016/j.tecto.2016.03.005>, available at:
 1018 <http://www.sciencedirect.com/science/article/pii/S00401951600161X>, 2016.

1019 Stephenson, R. A., Narkiewicz, M., Dadlez, R., van Wees, J.-D., and Andriessen, P.: Tectonic
 1020 subsidence modelling of the Polish Basin in the light of new data on crustal structure and

Formatted: German (Germany)

Formatted: German (Germany)

1021 magnitude of inversion, *Sedimentary Geology*, 156, 59–70, [https://doi.org/10.1016/S0037-0738\(02\)00282-8](https://doi.org/10.1016/S0037-0738(02)00282-8), available at:
1022 <https://www.sciencedirect.com/science/article/pii/S0037073802002828>, 2003.
1023

1024 **Stettner, G.:** *Metamorphism and Tectonics in the Münchberg Mass and the Fichtelgebirge*,
1025 *Fortschritte der Mineralogie*, 52, 59–69, 1974.
1026 **Stettner, G. and Salger, M.:** *Das Schiefergebirge in der Forschungsbohrung Obernsees*, *Geologica
1027 Bavarica*, 88, 49–55, 1985.
1028 **Stollhofen, H.:** Facies architecture variations and seismogenic structures in the Carboniferous–
1029 Permian Saar–Nahe Basin (SW Germany): evidence for extension-related transfer fault activity,
1030 *Sedimentary Geology*, 119, 47–83, [https://doi.org/10.1016/S0037-0738\(98\)00040-2](https://doi.org/10.1016/S0037-0738(98)00040-2), available at:
1031 <https://www.sciencedirect.com/science/article/pii/S0037073898000402>, 1998.
1032 **Strugale, M., Da Schmitt, R. S., and Cartwright, J.:** Basement geology and its controls on the
1033 nucleation and growth of rift faults in the northern Campos Basin, offshore Brazil, *Basin Res*, n/a,
1034 <https://doi.org/10.1111/bre.12540>, 2021.
1035 **Trusheim, F.:** *Über den Untergrund Frankens; Ergebnisse von Tief Bohrungen in Franken und
1036 Nachbargebieten*, *Geologica Bavarica*, 54, 1–106, 1964.
1037 **Vasconcelos, D. L., Bezerra, F. H., Medeiros, W. E., Castro, D. L. de, Clausen, O. R., Vital, H., and
1038 Oliveira, R. G.:** Basement fabric controls rift nucleation and postrift basin inversion in the
1039 continental margin of NE Brazil, *Tectonophysics*, 751, 23–40,
1040 <https://doi.org/10.1016/j.tecto.2018.12.019>, 2019.
1041 **Vetti, V. V. and Fossen, H.:** Origin of contrasting Devonian supradetachment basin types in the
1042 Scandinavian Caledonides, *Geology*, 40, 571–574, <https://doi.org/10.1130/G32512.1>, 2012.
1043 **Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A., Schröder, B., Stöckhert, B.,
1044 Wemmer, K., Zulauf, G., Ahrendt, H., Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Lal, N., van den
1045 Haute, P., Vercoutere, C., and Welzel, B.:** Post-Variscan thermal and tectonic evolution of the KTB
1046 site and its surroundings, *J. Geophys. Res.*, 102, 18221–18232,
1047 <https://doi.org/10.1029/96JB02565>, 1997.
1048 **Wemmer, K.:** K-Ar-Altersdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden
1049 und duktilen Bereich–Beispiele aus der KTB -Vorbohrung (Oberpfalz) und dem Bereich der
1050 Insubrischen Linie (N-Italien)., *Göttinger Arbeiten Zur Geologie und Paläontologie*, 51, 1–61,
1051 1991.
1052 **Wever, T., Meissner, R., and Sadowiak, P.:** Deep reflection seismic data along the central part of the
1053 European Geotraverse in Germany: a review, *Tectonophysics*, 176, 87–101,
1054 [https://doi.org/10.1016/0040-1951\(90\)90260-F](https://doi.org/10.1016/0040-1951(90)90260-F), available at:
1055 <https://www.sciencedirect.com/science/article/pii/004019519090260F>, 1990.
1056 **Wiest, J. D., Wrona, T., Bauck, M. S., Fossen, H., Gawthorpe, R. L., Osmundsen, P. T., and Faleide, J. I.:**
1057 From Caledonian Collapse to North Sea Rift: The Extended History of a Metamorphic Core
1058 Complex, *Tectonics*, 39, e2020TC006178, <https://doi.org/10.1029/2020TC006178>, 2020.
1059 **Wrona, T., Fossen, H., Lecomte, I., Eide, C. H., and Gawthorpe, R. L.:** Seismic expression of shear
1060 zones: Insights from 2-D point-spread-function-based convolution modelling, *Geol*, 104121,
1061 <https://doi.org/10.1016/j.jsg.2020.104121>, available at:
1062 <https://www.sciencedirect.com/science/article/pii/S0191814119303037>, 2020.
1063 **Ye, Q., Mei, L., Shi, H., Du, J., Deng, P., Shu, Y., and Camanni, G.:** The Influence of Pre-existing
1064 Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern
1065 South China Sea Rifted Margin, *Tectonics*, 39, e2019TC005845,
1066 <https://doi.org/10.1029/2019TC005845>, 2020.
1067 **Ziegler, P. A.:** Tectonic and palaeogeographic development of the North Sea rift system, *Tectonic
1068 Evolution of North Sea Rifts*, 1–36, 1990.

Formatted: German (Germany)

Formatted: German (Germany)

Formatted: German (Germany)

1069

1070

1071 **Figure and Table caption**

1072

1073 **Figure 1:** Location of the study area in the Saxothuringian zone of Variscan orogeny. FRANKEN seismic
1074 survey is projected on geological map of the study area in dark red creating a grid of 2D seismic profiles
1075 with existing DEKORP profiles. Main Faults are shown as bold dark lines. Inset map shows exposed
1076 Variscan terranes in Central Europe. Yellow circles show deep wells in the study area. FRA: FRANKEN,
1077 MGCH: Mid German Crystalline High, FFS: Franconian Fault System and MN: Münchberg Nappe.

1078

1079 **Figure 2:** Velocity and density logs from well Mürsbach 1 utilized for synthetic seismogram generation.
1080 Seismic traces from FRANKEN-1802 are compared with generated synthetic seismogram. Velocity data
1081 are used to construct time-depth relationship and well-seismic ties. Depth to the formation tops are
1082 time converted and used as starting point for seismic interpretation.

1083

1084 **Figure 3:** Seismo-stratigraphic facies of observed Permian-Jurassic stratigraphy in the study area. A)
1085 Jurassic, B) Upper Triassic Keuper Group, c) Middle Triassic Muschelkalk Group, D) Lower Triassic
1086 Buntsandstein Group and D) Permian Zechstein and Rotliegend Groups.

1087

1088 **Figure 4:** Basement Seismic Facies (BSF) described along FRANKEN seismic survey. A) shows SE portion
1089 of FRANKEN-1804 below the Top Zechstein horizon. B) Low-amplitude and discontinuous reflections
1090 of BSF1 interpreted as Paleozoic metasedimentary rocks and Variscan nappe units. C) BSF2 shows
1091 high-amplitude, continuous and dipping reflection interpreted as Variscan shear zones. D) Medium-
1092 amplitude and semi-continuous reflections of BSF3 below Variscan shear zone related to the
1093 Cadomian Saxothuringian basement and Paleozoic Inner shelf facies not involved in Variscan tectonics.

1094

1095 **Figure 5:** Repossessed DEKORP-85 4N and DEKORP-3/MVE-90 profiles used to compare three
1096 Basement Seismic Facies (BSF1-3) described along FRANKEN seismic survey (see Fig. 1 for location).
1097 DEKORP profiles image exposed Variscan units along the western Bohemian Massif and are used as
1098 proxy for geological interpretation of BSFs. A) DEKORP-85 4N shows seismic signature of Paleozoic
1099 low-grade metasedimentary rocks (zoomed in B) and Münchberg Nappe (Variscan allochthon, zoomed
1100 in C) exposed at the surface and described as BSF1. D) DEKORP-3/MVE-90 images Münchberg nappe
1101 units east and Permian-Jurassic sedimentary cover west of Franconian Fault System (FFS). E) shows
1102 seismic signature of Variscan nappes (BSF1) and underlying shear zones (BSF2).

1103

1104 **Figure 6:** A) uninterpreted and B) interpreted FRANKEN-1801 profile. Horizon interpretation is tied to
1105 drilled wells in the study area. C) geo-seismic section in time (ms TWT), and D) depth converted profile
1106 with no vertical exaggeration. Intersecting profiles FRANKEN 1802 and 1804 are shown by black
1107 arrows. See Figure 1 for the profile location.

1108

1109 **Figure 7:** Profile FRANKEN-1802 strikes NE-SW, perpendicular to main structures. A) uninterpreted and
1110 B) interpreted seismic profile. FRANKEN-1802 is tied to well Eltmann, Mürsbach, Staffelstein 1 and 2.
1111 High-amplitude and continuous reflection of BSF2 interpreted as Variscan shear zones are at 2000-
1112 2500 ms TWT (5-6.5 km) in the NE and reach to the base of Permian sedimentary rocks to the SE. C)
1113 geo-seismic section in time with vertical exaggeration of 5. D) depth converted section with no vertical
1114 exaggeration. See Figure 1 for the profile location.

1115

1116 **Figure 8:** SE-NW striking FRANKEN-1803 profile, sub-parallel to the profile FRANKEN-1801. Horizon
1117 interpretation is tied to well Obernsees and intersection FRANKEN 1801 and 1804 profiles. A)
1118 uninterpreted and B) interpreted profile. C) geo-seismic section in time and D) depth converted
1119 section with not vertical exaggeration. Interpreted Variscan shear zones (BSF2) are at 2000-3000 ms
1120 (5-7 km) in the SE and reaches to ca. 2.5 km depth towards NW.

1121
1122
1123
1124
1125
1126

Figure 9: A) uninterpreted and B) interpreted profile FRANKEN-1804. Horizon interpretation along this profile is tied to intersection profiles FRANKEN 1801 and 1803. Note onlapping reflections in the hanging wall of SW-dipping normal faults creating Permian half-grabens. C) geo-seismic section in time and D) depth converted section with no vertical exaggeration. See Figure 1 for the profile location.

1127
1128
1129

Figure 10: Present day three-dimensional view of interpreted Variscan units and structures west of Franconian Fault System (FFS). Variscan shear zone shows syn and antiformal geometries shallowing and thinning toward the W-SW.

1130

Figure 11: Simplified and generic cartoons showing the relationships between orogenic structures and post-orogenic fault and basin development. note that shown general W-directed tectonic transport refers to the initial W-SW directed nappe stacking. At the latest orogenic and early post-orogenic period, normal faults develop in response to the regional stress field, some along sub-parallel to the preexisting orogenic structures as well as away from the orogenic structures. Some of the normal faults grow laterally and vertically detaching into the underlying shear zones and initiate graben and half-graben basins in their hanging wall side. Normal faults not detaching into preexisting shear zones abandon. Geometry of underlying shear zones may localize the strain and facilitate fault initiation. Initiated normal faults grow laterally and vertically and initiate graben and half graben basins in their hanging wall side. After a Triassic and Jurassic regional tectonic quiescence, Cretaceous inversion event in Central Europe selectively reactivate Permian normal faults as steep reverse faults, exposing older stratigraphy in the hinging-wall side and creating local syn and anticlines in the vicinity of reactivated faults.

1144
1145
1146
1147
1148

Figure 12: Cartoon showing the relationship between shear zone geometry and fault development. Dark red area in the center shows folded part of the shear zone, where Lichtenfels Fault portion detaches into and is exposed at the surface. Laterally to the SW, shear zone is rather flat and Lichtenfels fault does not detach into and it is not exposed at the surface.

1149
1150
1151

Table 1: Deep wells in the study area with formation tops used in seismic horizon interpretation of FRANKEN seismic survey. See figure 1 for well location.

1152

Table 2: Recording parameters of FRANKEN seismic survey.

1153
1154
1155
1156
1157

Formatted: Font: 11 pt, Not Italic

Formatted: Font: 11 pt, Not Italic

Formatted: Font: Not Bold

Formatted: Font: Not Bold