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Abstract

The Bohemian Massif exposes structures and metamorphic rocks remnant from the Variscan Orogeny
in Central Europe and is bordered by the Franconian Fault System (FFS) to the west. Across the FFS,
possible-presence-of-Variscan units and structures are buried by Permo-Mesozoic sedimentary rocks.
We integrate existing DEKORP 2D seismic reflection, well and surface geological data with the newly
acquired FRANKEN 2D seismic survey to investigate the possible westward continuation of Variscan
tectonostratigraphic units and structures, and their influence on latest to post-Variscan basin
development. Subsurface Permo-Mesozoic stratigraphy is obtained from available wells and are-tied
to seismic reflection profiles using a synthetic seismogram calculated from density and velocity logs.
Below the sedimentary cover, three main basement units are identified using seismic facies
descriptions that are compared with seismic reflection characteristics of exposed Variscan units east
of the FFS. Our results show that Upper-upper Paleozoic low-grade metasedimentary rocks and
possible Variscan nappes are-bounded and transported by Variscan shear zones te-ca. 65 km west of
the FFS. Basement seismic facies in the footwall of the Variscan shear zones are interpreted as
Saxethuringian-Cadomian basement_and overlaying Paleozoic sequences. We show that the location
of normal fault-bounded latest to post-Variscan Upper—late Carboniferous-Permian basins are
controlled by the geometry of underlying Variscan shear zones. Some of these Ypper—late
Carboniferous-Permian normal faults reactivated as steep reverse faults during the regional Ypper
Upper Cretaceous inversion. Our results also highlight that reverse reactivation of normal faults
gradually decreases west of the FFS.

1. Introduction

Variscan orogenic units and structures in central and western Europe are extensively studied from
disconnected exposed terranes in the Bohemian Massif, the Rheno-Hercynian Massif, the Black forest
and Vosges, the Armorican Massif and the Central Iberian Zone (Franke, 2000). Between exposed
Variscan units, younger sedimentary rocks obscure direct observation of possible lateral extension
and architecture of Variscan tectonostratigraphy and structures. In southern Germany, for instance,
Variscan units of the Bohemian Massif are correlated with exposed Variscan units in the Black Fforest
and Vosges, ca. 300 km apart from each other, causing uncertainties in the lateral continuation and
architecture of the Variscan tectonometamorphic Saxothuringian and Moldanubian zones, originally
defined by (Kossmat, 1927). Although a few wells provide local but valuable information about
basement rock types, only a few regional 2D seismic profiles (DEKORP 84-2s and 90-3B/MVE and
KTB84) image the Variscan units and structures below the sedimentary cover between the Bohemian

Edel and Weber, 1995; Meissner et al., 1987; Liischen et al., 1987).

The recently acquired FRANKEN 2D seismic survey is-coversing the Carboniferous-Permian Kraichgau
and Naab basins (Paul and Schréder, 2012; Sitting and Nitsch, 2012) and the overlying late Permian to
Triassic Franconian Basin (Freudenberger and Schwerd, 1996) in the western vicinity of Bohemian
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Massif in SE Germany (Fig. 1). The FRANKEN survey is tied to the DEKORP 3/MVE-90 profile creating a
grid of regional seismic reflection profiles imaging exposed and buried Saxothuringian units and
structures of the Variscan Orogeny across the Franconian Fault System (FFS, Fig. 1). In this study we
investigate the potential westward extension of Variscan tectonic units and structures and construct
a first order relationship between Variscan and post-Variscan structures and basin development. Four
new seismic profiles of the FRANKEN survey are interpreted utilizing subsurface and surface geological
data and are tied to the existing DEKORP-3/MVE-90 profile. Underneath the Permo-Mesozoic
sedimentary cover three main Basement Seismic Facies (BSF1-3) are identified, based on lateral and
vertical changes in reflection amplitude and connectivity. Comparing seismic reflection patterns
observed in exposed Variscan rocks of Bohemian Massif with reflection patterns along the FRANKEN
seismic profiles we show a W-SW continuation of Variscan shear zones and associated Variscan
allochthons. The control of Variscan shear zone geometry in strain localization and latest to post-
Variscan basin development and brittle fault interactions are discussed.

2. Geological setting
2.1. Variscan geodynamics and tectonic framework

The Bohemian Massif comprises remnants of the Upper Paleozoic collision of Laurussia and
Gondwana, known as Variscan Mountain Belt, and of the pre-Variscan basement in Central Europe
(Franke, 2000; Kroner et al., 2007). The Variscan Orogeny has resutted-inproduced a wide range of
metamorphic units, ranging from high-pressure and high-temperature metamorphic to low-grade
metasedimentary rocks, abundant granitic intrusives and crustal-scale shear zones and faults. From
north to south, the Variscides have traditionally been subdivided into three main tectonometamorphic
zones, the Rhenohercynian, Saxothuringian (including the Mid-German Crystalline High) and
Moldanubian (Kossmat, 1927; Franke, 2000; Kroner et al., 2007). Saxothuringian and Moldanubian
rocks are well exposed in the Bohemian Massif, but buried by PataeezeicPaleozoic and Mesozoic
sediments towards the west.

The Saxothuringian zone_and its westward extension, as the main area of interest, underwent three
main deformational phases during the Variscan Orogeny (Kroner et al., 2007 and references therein).
A first deformation phase (D1) developed before 340 Ma and records pervasive deformation during
the subduction and collision resulting in the development of recumbent folds and thrusts with top-to-

1974; Franke et al., 1992; Schwan, 1974). A second deformation phase (D2) developed due to the
exhumation and juxtaposition of High-pressure and Ultra high-pressure metamorphic rocks in the
upper crust and a ca. 45° stress-rotation_in principal subhorizontal compression direction to NNW-SSE
after 340 Ma_(Kroner and Goerz, 2010; Schonig et al., 2020; Hallas et al., 2021; Stephan et al., 2016).
The D2 deformation phase is manifested by dextral transpression of D1 structures and ductile

and Stein, 2000; Kroner and Goerz, 2010; Franke, 1989). A third deformation phase (D3) records latest
Variscan tectonics at ¥~320 Ma and is represented by the folding of synorogenic deposits during general
NW-SE to NNW-SSE shortening (Hahn et al., 2010). Latest stages of D3_and early post-Variscan is
dominated by a wrench tectonic phase and the collapse of thickened crust, resulting in the
development of dextral strike-slip faults initiating fault-bounded graben and half-graben basins in
Central Europe, including the study area in SE Germany (Schréder, 1987; Arthaud and Matte, 1977;
Krohe, 1996; Stephan et al., 2016; Peterek et al., 1996b; Ziegler, 1990; Eberts et al., 2021). Detailed
and comprehensive overviews of the geodynamic and tectonostratigraphic evolution of the

Mideuropean Variscides have been presented by (Linnemann and Romer, 2010; Franke et al., 2000).

During earliest post-Variscan development at <305 Ma, wide-spread intermontane Late
Carboniferous-Permian fault bounded graben and half-graben basins, such as the NE-SW trending
Saar-Nahe (Henk, 1993; Stollhofen, 1998; Boy et al., 2012) Saale (Ehling and Gebhardt, 2012),
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Kraichgau and Schramberg basins (Sitting and Nitsch, 2012) and NW-SE striking basins (e.g. Naab and
Thuringian Forest basins) are formed (Paul and Schréder, 2012; Litzner et al., 2012). Compared-tothe
Carbeniferous—tThe Rotliegend is characterized by widespread intrabasinal volcanism and
depositional areas became enlarged across the internal parts of the Variscan Belt, e.g. in Switzerland

Laversanne, 1978; McCann et al., 2006), Germany (Henk, 1993; Stollhofen, 1998; Boy et al., 2012;
Lutzner et al., 2012; Sitting and Nitsch, 2012; Paul and Schréder, 2012) and Iberia (e.g. (Cassinis et al.,
1995). In the study area, Carboniferous-Permian units are only exposed along the Franconian Fault
System (FFS, also known as Franconian Line), but are-have been drilled by several wells located farther
west, in the Kraichgau and Naab basins (Fig. 1, Table 1).

In general, the top of Saxothuringian basement units beneath the sedimentary cover shows a smooth
topography with a gentle southward rise, including tepe—lows along the SW-NE axis Wirzburg-
Rannungen and along the NW-SE axis Staffelstein-Obernsees, the latter subparallel to the FFS
(Gudden, 1981; Gudden and Schmid, 1985). Saxothuringian basement lithologies drilled by wells
Wolfersdorf and Mittelberg in the north, well Eltmann to the west and well Obernsees in the southeast
of the study area (Fig. 1 and Table 1) are Upper Devonian to [tower Carboniferous low- to medium-
grade metasedimentary rocks (Hahn et al., 2010; Stettner and Salger, 1985; Trusheim, 1964; Specht,
2018; Friedlein and Hahn, 2018).

2.2, Latest to pRost-Variscan stratigraphic and structural architecture

Carboniferous-Permian units in the study area dominantly comprise ef-clastic continental sediments
deposited in fault--bounded basins outcropping in the Schalkau, Stockheim, Rugendorf, Wirsberg and
Weidenberg areas (Schroder, 1987). Thicknesses are highly variable, ranging from about 100 m to
>700 m in the Kraichgau Basin and from about 100 m up to >1400 m in the Naab Basin adjacent to the
FFS (Gudden, 1981; Paul and Schroder, 2012). AtIn Stockheim outcrop, well Wolfersdorf drilled into
726 m Rotliegend, excluding an unknown amount of eroded section (Fig. 1 and Table 1). In the center
of the study area, 109 m of Rotliegend are-were encountered by well Mirsbach 1 (Gudden, 1981),
whereas wells Miirsbach 6 and Staffelstein 1 only érilled-penetrated ca. 20 and 43 m efinto the upper
parts of the Rotliegend (Table 1). Well Eltmann, located in a basin marginal position, encountered only
3 m Rotliegend (Table 1, (Trusheim, 1964). Towards the SE of the study area well Obernsees
encountered 18.3 m of Rotliegend overlaying the—metasedimentary basement rocks (Table 1,
[{Helmkampf, 2006; Ravida et al., 2021). However, ca. 19 km NE of well Obernsees, well Lindau 1 drilled
250.25 m of Rotliegend strata without reaching their-Retliegend- base (Fig. 1, Table 1;; (Freudenberger
etal., 2006). Compared to the Rotliegend, the Zechstein tends to be of more uniform thicknesses tend
to-be-mere-uniferm;,-mainly eemprised-comprising of clay- and sandstones, dolomites and thin layers
of anhydrite (Schuh, 1985). Drilled Zechstein thicknesses are 117 m in well Eltmann, 126 m in well
Mirsbach 1, and 107 m in well Staffelstein and 104.9 in well Obernsees (Table 1). Refraction seismic
surveys in the south of the study area (Nurnberg area) proved the existence of deep, fault-bounded
grabens, whereas the Rotliegend top is characterized by a peneplain beneath the Zechstein (Bader
and Bram, 2001; Buness and Bram, 2001). This suggests a regional disconformity between Rotliegend
and Zechstein and supports the separation between the Carboniferous-Permian (mainly Rotliegend)

Kraichgau Basin and the post-Rotliegend (mainly Mesozoic) Franconian Basin development {ef:
(Freudenberger et al., 2006; Paul, 2006).

Triassic stratigraphy is divided into Lower to lowermost Middle Triassic Buntsandstein, the Middle
Triassic Muschelkalk and the uppermost Middle to Upper Triassic Keuper Groups (STD, 2016};; Fig. 2).
Siliciclastic sandstones of the Buntsandstein Group are 572 m thick in well Staffelstein 1, 530.7 m in
well Mirsbach 6, and 510 m in well Eltmann, decreasing to 417.15 m in well Obernsees in the
southeast (Table 1, (Gudden, 1977; Emmert et al., 1985; Helmkampf, 2006). Buntsandstein units are
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exposed in fault blocks between the FFS and the Eisfeld-Kulmbach fault in the eastern part of the study
area (Fig. 1). The Muschelkalk Group is dominated by carbonates, dolomites and few gypsum, 240 m
thick in well Staffelstein 1, 210.7 m in well Mirsbach 6, and 236 m in well Eltmann, decreasing
southeastward to 178 m in well Obernsees (Table 1, (Gudden, 1977; Emmert et al., 1985). Muschelkalk
units crop out along the FFS and the Eisfeld-Kulmbach fault and also west of well Eltmann (Fig. 1). The
Keuper Group consists mainly of sandstones that are 530.2 m thick in well Staffelstein 1, 532 m in well
Staffelstein 2, decreasing southeastward to 483 min well Obernsees (Franz et al., 2014; Gudden, 1977;
Emmert et al., 1985). Keuper units are broadly exposed in the western and northwestern part of the
study area and in the fault block bounded by the Eisfeld-Kulmbach and Asslitz faults (Fig. 1). Jurassic
units preserved in the central and eastern parts of the study area, but eroded towards the west and
northwest (Fig. 1). Jurassic outcrops to the east are fault bounded and are limited to the footwall of
Eisfeld-Kulmbach, Asslitz and Lichtenfels reverse faults (Fig. 1). The Jurassic interval is 102 to -104 m
thick in wells Staffelstein 1 & 2 in the north and 140 m thick in well Obernsees in the SE (Table 1;;
{Meyer, 1985; Gudden, 1977). Cretaceous sedimentary rocks are preserved in the central and
southeastern parts of the study area (Fig. 1).

The structural architecture of the eastern study area is characterized by ten to hundreds of kilometer
long NW-SE striking multi-segmented reverse faults (e.g. Eisfeld-Kulmbach and Asslitz faults), whereas
towards the west only normal faults (e.g. Bamberg Ffault, Kissingen-HaRfurt fault zone) are developed
(Fig. 1). The NW-SE_striking Franconian Fault System (FFS) is the dominant structural feature,
representing the tectonic contact between the western Bohemian Massif to the east and the [tate
Permian to Mesozoic Franconian Basin to the west (Fig. 1). The FFS initiated most likely during latest
Variscan tectonics and has-beenwas reactivated at least during Early Triassic and Cretaceous times
hangingwall uplift on the FFA is estimated at ca. 5500 m, as evidenced by titanite and apatite fission-
track ages, the sericite K-Ar ages of fault rocks and the sedimentary strata adjacent to the fault
(Wemmer, 1991; Wagner et al., 1997; Peterek et al., 1997). Sub-parallel to and ca. 9 km SW of the FFS,
the NE dipping Eisfeld-Kulmbach Fault mainly exposes Lower and Middle Triassic units on its
hangingwall side (Fig.1). In the SE and the central footwall of the Eisfeld-Kulmbach Fault, Upper Triassic
and Lower Jurassic units are-crop out, while laterally to the NW Midéle-and-Lower and Middle Triassic
and some Permian units (Schalkau outcrop) are exposed (Fig.1). Farther SW in the footwall of Eisfeld-
Kulmbach Fault, the Asslitz Fault can be traced over ca. 50 km, exposing Upper Triassic units in its
hanging wall (Fig. 1). The mest-westwardwesternmost major reverse fault is the Lichtenfels Fault,
mapped over ca. 16 km at the surface (Fig. 1).

West and southwest of the Lichtenfels Fault, the structural architecture of the study area is dominated
by NW-SE normal faults such as the Staffelstein and Bamberg faults and the prominent Kissingen-
HaRfurt and-Heustreu-fault zones (Fig. 1). Studies of regional upper crustal paleostress patterns reveal
eonstant-multiple changes in stress field orientations since the Palaeozoic comprising normal faulting
and both, extensional and compressional strike-slip faulting implying multiple fault reactivation events
(Peterek et al., 1996a; Peterek et al., 1997; Bergerat and Geyssant, 1982; Coubal et al., 2015;
Navabpour et al., 2017; Kohler et al. submitted;Eyratten-etak2021).

3. Data and methods
3.1. FRANKEN seismic reflection acquisition and recording parameters

The FRANKEN 2D seismic survey is-compriseds of four seismic lines, with a total line length of 230.8
km. The survey area is situated in northern Bavaria, SE Germany covering an area of approximately 90
km x 45 km (Fig. 1). The FRANKEN seismic survey was designed to cross deep wells and image the
upper crustal levels in northern Bavaria. Together with existing DEKORP, KTB and OPFZ it constitutes
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a grid of 2D seismic reflection profiles, crossing major structural elements. FRANKEN-1801 and 1803
lines are striking NW-SE perpendicular to FRANKEN-1802 and 1804 profiles (Fig. 1). Profile FRANKEN-
1803 links to the DEKORP-3/MVE-90 profile in the NW and to the OPFZ-9301 profile towards the SE
(Fig. 1). FRANKEN-1802 and 1804 strike NE-SW and are perpendicular to the major fault zones. Table
2 summarizes acquisition and processing parameters of the FRANKEN seismic survey.

3.2 Seismic interpretation methods

In this study we integrate information from 9 deep wells (1100-1600 m) and surface geology to
interpret the newly acquired FRANKEN seismic reflection survey in SE Germany. Available wells are
mainly located in the center and the western part of the study area (Fig. 1 and Table 1). Seismic-well
tie and time-depth relationships are established using sonic velocity and density logs of the Miirsbach
1 well (Gudden, 1971). The calculated synthetic seismogram is correlated with the real seismic traces
at the well location and enabled us to transfer geological, in particular stratigraphic information from
the well to the intersected seismic profiles (Fig. 2). Horizon interpretation started from the profile
FRANKEN-1802 at the well Miirsbach-1 location where the best seismic-well tie has been established.
Interpretation of stratigraphic markers was then extended from the profile FRANKEN-1802 to other
intersecting profiles. In the sedimentary cover, seismo-stratigraphic facies and seismic characters are
defined, based on the lateral and vertical changes in seismic amplitudes, reflectivity and coherency.
Observed formation tops in wells in combination with defined seismo-stratigraphic facies are used in
the seismic horizon interpretation especially where there is no well available. Below the sedimentary
cover three main seismic facies are identified and are used to characterize and interpret basement
units.

33 Seismo-stratigraphic facies

Characteristic seismic signatures of stratigraphic intervals drilled by wells and observed in the
FRANKEN survey are first described for the Permo-Mesozoic interval. Upper Mesozoic-Cretaceous
units are only locally preserved in the study area and are not drilled by any of the deep wells,
restricting the interpretation of the Jurassic-Cretaceous boundary and the description of their seismic
signature. Jurassic strata show a medium amplitude and semi-continuous reflections (Fig. 3A). The
Jurassie-Triassic-Jurassic boundary is marked by the appearance of slightly higher amplitudes and
rather continuous reflections in the Triassic compared to the overlying Jurassic interval (Fig. 3A). This
boundary is correlated with the Staffelstein and Obernsees wells along profiles FRANKEN-1802 and
1803 respectively.

Upper Triassic Keuper units generally show continuous and medium to high amplitude reflections of
alternating sandstones, siltstones and some gypsiferous units (Fig. 3B). Only the shallow marine
dolomites (Grabfeld Fm.) at the base of the Keuper Group (Haunschild, 1985; Gudden, 1981) are
characterized by high amplitudes and continuous pairs of reflections acting as regional marker
reflection along all profiles (Fig. 3B). Middle Triassic Muschelkalk units are comprised of lime-, marl-,
and dolostones; that are recorded by two distinct seismic facies in the study area, 1) a semi-continuous
and medium amplitude reflection with ca. 50 ms_(TWT) thickness on top and 2) continuous and high
amplitude reflections at the bottom (Fig. 3C). The sandstone--dominated Buntsandstein Group is
characterized by semi-continuous and rather—medium energy amplitudes that show gradually
increasing shew-slightlyhigher-energy and continuity efreflections—towards the top (Fig. 3D). A
continuous and very high amplitude reflection defines the Permian-Triassic boundary between the
Buntsandstein and the underlying Zechstein Group (Fig.3D). The latter shows ca. 25-30 ms_(TWT) of
continuous and high amplitude reflections which are correlated to an anhydrite and dolomite bearing
interval in the upper part of the Zechstein (Gudden, 1977; Schuh, 1985; Gudden and Schmid, 1985).
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Below the Zechstein high amplitude reflections, semi-continuous and medium amplitude reflections
of the Rotliegend occur (Fig. 3E). These reflections represent the upper parts of the Rotliegend and
gradually become less refleetive-distinct and discontinuous with depth with some reflections being
only locally present and laterally becoming less reflective-anrdpronounced to partly transparent (Fig.
3E, 4A & B). The boundary between the sedimentary cover and the underlying pre-Permian low- to
medium--grade metasedimentary rocks (hereafter considered as basement_rocks) is drilled by wells
Wolfersdorf and Mittelberg in the north, wel-Eltmann to the west and the weH-Obernsees to the
southeast and is not particularly reflective in the seismic survey (Table 1 and Fig. 4A & B). However, at
some locations semi-continuous and low energy reflections of the Rotliegend can be distinguished
from discontinuous but slightly higher energy reflections below. When is identified, such changes in
reflection patters is interpreted as the -interpreted-as-a-transitional-zone-betweenboundary between

sedimentary cover and underlying metasedimentary rocks (Fig. 4A & B).

3.4 Basement seismic facies

Basement units below the sedimentary cover comprise three seismic facies, based on observed
differences in reflectivity, frequency and continuity of reflections.

3.4.1 Basement Seismic Facies 1 (BSF1)

Basement Seismic Facies 1 (BSF1); consists of discontinuous, low amplitude and low frequency
reflections that become transparent at some locations (Figs. 4A & B). Higher amplitude and semi-
continuous reflections of the Rotliegend progressively transferm-grade into BSF1 without a seismically
detectable boundary (Fig. 4B). The thicknesses of BSF1 units generally thin-decrease westward and
reach 2.5 s TWT at their deepest position. BSF1 is sampled by well Eltmann where 94 m of (?Devonian)
quartzites and metasedimentary rocks are described (Trusheim, 1964), whereas well Obernsees cored
48.3 m of ?Llate Paleozoic metasedimentary rocks (Table 1, {Frusheim—1964;-Stettner and Salger,
1985). Farther north well Mittelberg drilled into 100.5 m of Upper Devonian-Lower Carboniferous
rocks below the Rotliegend (Table 1, (Friedlein and Hahn, 2018; Hahn et al., 2010). These Upper
Devonian-Lower Carboniferous rocks (Gleitsch Formation) are interpreted as syn-Variscan inner shelf
facies sedimentary rocks (Thuringian facies), low grade metamorphosed during the Variscan Orogeny
(Hahn et al., 2010; Kroner et al., 2007). Atbeit-Although well Mittelberg is not tied to seismic profiles
it additionally confirms the presence of low grade metasedimentary rocks below the Rotliegend.

In the FFS’s hangingwall, Miinchberg nappe units (Variscan allochthon) are transected by the
al., 1994)}. Miinchberg nappe units are surrounded by low grade metasedimentary rocks of outer shelf
facies (Bavarian facies) and inner shelf facies (Thuringian facies; } as-deseribed-by—{Glimbel, 1879;
Linnemann et al., 2010; Heuse et al., 2010). Exposed nappe units and low grade metasedimentary
rocks show discontinuous to semi-continuous and low amplitude reflections, similar to BSF1 of the
FRANKEN survey in the FFS footwall (Fig. 5). Similar low amplitude and low frequency reflections of
BSF1 are also observed at the NW end of the DEKORP85-4N profile (Fig. 5A & B). There, these
reflections are associated with low-grade Lower Carboniferous Elyseh-flysch deposits (inner and outer
shelf facies) exposed at the surface (DEKORP Research Group, 1994a). Based on seismic facies
description and in the taek-absence of well information, differentiation between allochthons, flysch
sedimentary rocks, inner and outer shelf facies is ambiguous. BSF1 is therefore interpreted as the W-
SWwestern to southwestern extension of low-grade inner and outer shelf facies, low-grade Lower
Carboniferous flysch sedimentary rocks and possible Variscan allochthons (DEKORP Research Group,
1994b). Correlating with exposed basement units E-NE of the FFS, these units are interpreted to
represent the W-SW extension of the Ziegenriick-Teuschnitz Syncline of the Saxothuringian zone.
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3.4.2 Basement Seismic Facies 2 (BSF2)

High amplitude, continuous and dipping reflection packages are bounding BSF1 at depth and are
defined as Basement Seismic Facies 2 (BSF2, Fig. 4A, C and 5). BSF2 reflections are not drilled by wells
within the survey area.; kHowever, similar reflections observed along reprocessed DEKORP85-4N and
DEKORP-3/MVE-90 profiles below BSF1 are-expesed-at-the-surfaceand-representcan be correlated
with exposures of highly sheared rocks including phyllites developed during Variscan tectonics (Fig. 5;;
ADEKORP and Orogenic Processes Working Group, 1999; Franke and Stein, 2000). We interpret BSF2_
as Variscan detachment/shear zones translating and involving low-grade inner and outer shelf facies,
low-grade Lower Carboniferous flysch sedimentary rocks and Variscan nappes. BSF2 therefore
includes the upper parts of the Saxothuringian parautochthones (highly sheared parts of inner shelf
facies) and lower parts of allochthons-irvelved—in—Variscan—tectonies. Similar intrabasement, high
amplitude and dipping reflections are interpreted as orogenic and postorogenic shear zones in the
Norwegian Caledonides (Phillips et al., 2016; Fazlikhani et al., 2017; Wrona et al., 2020; Osagiede et

amplitude and continuous reflections of BSF2 below the Miinchberg nappe and across the FFS to the
west are therefore interpreted as the W-SW extension of a Variscan detachment/shear zone
transporting allochtonous nappes and underlying metasedimentary rocks W-SW, towards the
Franconian Basin area. BSF2 reflections generally get shallower from east to west and reach te-the
base of the overlying sedimentary units.

3.4.3 Basement Seismic Facies 3 (BSF3)

Basement Seismic Facies 3 (BSF3) is characterized by semi-continuous and medium-amplitude
reflections (Fig. 4A & D). BSF3 is bounded by BSF2 at the top and extends to the lower limit of the
dataset at 8 s TWT. BSF3 does not show any preferential dip direction and locally hosts some higher
amplitude, continuous and dipping reflections of BSF2. Such high amplitude reflections of BSF2 are
branching off the main BSF2 packages or are developed at deeper levels and are interpreted as
segments of major shear zones or locally developed shear zones during-theof Variscan origin-teetenies.
BSF3 is not drilled by wells, nevertheless considering the tectonostratigraphic position of BSF3 being
below the Variscan detachment/shear zones (BSF2), BSF3 is interpreted to represent thelowerparts
of-innershelf facies{nrotinvelved-in-\ariscan-tectonies)and-erystatline-Cadomian basement_rocks
{Cademian-basement} and overlaying Paleozoic Inner shelf facies not involved in Variscan tectonics.ef

4 Seismic reflection Interpretation of the FRANKEN seismic survey

Described seismic facies in the sedimentary cover and underlying basement units and well information
are utilized in this chapter to interpret the FRANKEN seismic profiles.

4.1 Profile FRANKEN-1801

Profile FRANKEN-1801 is 47.9 km long and extends NW-SE from south of Bamberg to the NW of
HaRfurt (Fig. 1). At the surface, mainly Keuper units are exposed (Fig. 1). Thicknesses of remnant
Keuper units progressively decrease to the W-NW and at the northwestern edge of profile FRANKEN-
1801, Muschelkalk units are exposed at the surface in the footwall of a segment of the Kissingen-
HaRfurt Fault Zone (Fig. 6). This fault zone is mapped over ca. 60 km with ca. 7-10 km width, sub-
parallel to the NW-SE striking FRANKEN-1801 profile (Fig. 1). Some segments of the Kissingen-HaRfurt
Fault Zone are oblique and are imaged by the FRANKEN-1801 profile. Muschelkalk and Buntsandstein
units are fairly tabular with no major lateral thickness changes (Fig. 6). Most of the interpreted faults
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(seismic scale) are normal faults, while major reverse faults are sub-parallel to the profile and are not
imaged in prefile FRANKEN-1801.

Below the Buntsandstein, Permian deposits including 114 m Zechstein and 3 m Rotliegend are-have
been drilled by well Eltmann, 2230 m to the NE of profile FRANKEN-1801 (Fig. 6) (Trusheim, 1964).
Semi- continuouseentinves and medium-amplitude reflections below the Zechstein are interpreted as
Rotliegend deposits (Fig. 6). As the Rotliegend base is not particularly reflective in the seismic
reflection data, it is difficult to interpret the top basement-beundary. Towards the NW in the center
of the FRANKEN-1801 profile, BSF1 reflections (Paleozoic metasedimentary rocks and Variscan
nappes) are present below the Permian rocks and are underlain by a Variscan shear zone (BSF2, Fig.
6). From the SE, the Variscan shear zone shallows to the NW and reaches ca. 700 ms TWT at the center
of the profile (Fig. 6).

4.2 Profile FRANKEN-1802

Profile FRANKEN-1802 extends NE-SW with 47.7 km length (Fig. 1). This profile is at a high angle to the
prominent NW-SE faults, and therefore provides a good subsurface image of these structures (Fig. 7).
Profile FRANKEN-1802 is tied to the well Eltmann and is-inthe-vieinity-ofruns close to wells Mursbach
6 (630 m to the S), Staffelstein 1 (1235 m, to the SE) and Staffelstein 2 (890 m, to the SE). Profile
FRANKEN-1802 is used as the reference profile for the seismo-stratigraphic interpretation (Fig. 7).
Jurassic rocks are preserved in the footwall of the Mirsbach and Lichtenfels reverse faults drilled with
104 m thickness by well Staffelstein 2 (Table 1; (Gudden, 1977). Keuper strata are exposed in the
hanging wall of the Lichtenfels Fault at the NE-northeastern edge of profile FRANKEN-1802 (Fig. 7).
Keuper is drilled with 532 m in thickness by well Staffelstein 2. Towards the SW the Keuper is
increasingly eroded and only 178.6 m are preserved at the location of well Eltmann (Fig. 7 and Table
1, (Gudden, 1977; Trusheim, 1964). Muschelkalk and Buntsandstein sedimentary rocks are tabular and
regionally dip to the E-NE (Fig. 7). The Zechstein is penetrated by wells Eltmann, Mirsbach 1 and 6,
and Staffelstein 1 and is 103-121 m thick (Table 1; (Gudden, 1985). Below the Zechstein units,
Rotliegend is drilled by wells Eltmann, Mirsbach 1 and 6 and Staffelstein 1 without reaching the
underlying basement, except in well Eltmann (Table 1). Medium-amplitude and semi-continuous
reflections, characteristic of the Rotliegend in the study area, are also locally observed, suggesting the
presence of Rotliegend laterally away from wells (Fig. 7). Rotliegend units are wedge shape and are
tilted to the E-NE, onlapping to deep sited W-SW dipping normal faults in the footwall of the Miirsbach
and Lichtenfels reverse faults (Fig. 7). Interpreted W-SW dipping normal faults appear to be crosscut
by the oppositely dipping (E-NE) Lichtenfels and Mirsbach reverse faults in Buntsandstein units (Fig.
7). Eleekwise-E-NE block rotation in the hangingwall of these normal faults created local half-grabens
observed exclusively in the Rotliegend section (Fig. 7). In the hanging wall of a normal fault located in
the footwall of Lichtenfels Fault, the thickness of the Permian section is > 310-330 ms; TWT (ca. 580
640 m) thinning W-SW to ca. 85-120 ms; TWT (ca. 24340 m) in the hangingwall of the Mirsbach Fault
(Fig. 7). The seismie-interpretation of lateral thickness changes in the Permian is in good accordance
with 142.3 m minimum thickness of Permian drilled in well Mirsbach 6 (Table 1). The thickness of the
Permian section in the hanging wall of Bamberg Fault is > 200 ms; TWT (ca. 366-390 m) decreasing to
the W-SW down to 3 m, drilled by well Eltmann (Fig. 7).

Sedimentary units in the hanging wall of the Lichtenfels Fault are uplifted and gently folded where the
entire Jurassic and the upper parts of the Upper Triassic Keuper Group are eroded (Fig. 7). In the
footwall of the Lichtenfels Fault sedimentary units are folded by a normal drag fold, creating a local
synform structure (also known as Hollfeld Syncline) where Jurassic rocks are preserved (Fig. 7). The
NW-SE striking Lichtenfels Fault is laterally and vertically segmented and is exposed at the surface over
ca. 16 km length (Fig. 1). In profile FRANKEN-1802, the Lichtenfels Fault has 135 ms TWT (ca. 236-260

8



367
368
369
370
371
372
373
374
375

376
377
378
379
380
381
382

383

384
385
386
387
388
389
390

391
392
393
394
395
396

397
398

399
400

la01

402
403

404

405
406
407
408
409
410
411

m) throw, measured at the top of the Buntsandstein (Fig. 7). The Mirsbach Fault strikes NNW-SSE
over ca. 5 km and it has been imaged by the Mirsbach seismic survey along three short (<4 km) 2D
seismic sections (Unpublished internal report, Flemm, H., Kérner, H.-J., Dostmann, H., and Lemcke, k.
19671). The Mursbach Fault shows ca. 65 ms TWT (ca. 466-120 m) throw measured at the
Buntsandstein top. Both, Muschelkalk and Keuper units are folded, creating a local anticline in the
hangingwall of the Mirsbach Fault. Upper parts of the Keuper and younger units are eroded on the
hangingwall side while in the immediate footwall some of the Jurassic units are still preserved (Fig. 7).
E-NE dipping normal faults interpreted in the SW part of the profile FRANKEN-1802 are subparallel to
the SE extension of the Kissingen-HaRfurt Fault Zone (Fig. 7).

AtIn the well Eltmann lecation-94 m of ?Devonian metasedimentary rocks are drilled below the
sedimentary cover and correlated with BSF1 (Fig. 7;; {Trusheim, 1964). Identified BSF1 units are ca.
800 ms TWT (ca. 3408-1560 m) thick in the NE of the seismic section, decreasing to 94 m towards the
SW at the location of well Eltmann. BSF2 reflections show a concave up geometry below the
Lichtenfels and Miirsbach faults and reaeh-extend to the-shallower depth towards the west (Fig. 7). In
the center of the profile some high amplitude reflections of BSF2 branch off from the main reflection
package and extend into the deeper parts of the crust (Fig. 7).

4.3 Profile FRANKEN-1803

This profile is subparallel to the profile FRANKEN-1801 and strikes NW-SE over 71.8 km length (Fig. 1).
Well Obernsees is located 945 m SW of this profile and drilled into the-140 m of Jurassic, the entire
Triassic succession and 55104.97 m of Upper-upper Permian Zechstein units (Table 1 and Fig. 8,
(Helmkampf, 2006)Gudden-and-Sehmid;—1985). Jurassic units are preserved at the surface, except in
the SE and NW parts of profile 1803, indicating a gentle synformal geometry with thickest-parts—of
remnant Jurassic units thickest in the center of the profile (Fig. 8). Triassic intervals show subparallel
boundaries with only minor lateral thickness changes. At well Obernsees, the Rotliegend is only 18.3
Ravida et al., 2021). The reduced thickness of Rotliegend units in well Obernsees is related to a local
basement high in the footwall of an E-SE--dipping normal fault (Fig. 8). In the hanging wall of this
normal fault and to is-the N\W.SE, medium amplitude and semi-continuous reflections below the top
Zechstein horizon are interpreted as Rotliegend (Fig. 8, (Stettner and Salger, 1985; Schuh, 1985).
Permian units are underlain by Paleozoic metasedimentary rocks and Variscan nappes (BSF1 units, Fig.
8). BSF2 reflections are sub-horizontal (between 2000-2500 ms, TWT) alengtheprofile FRANKEN-1803
and gradually get shallower to the NW to reach to ca. 1200 ms TWT. From the SE to the center of the
profile, BSF2 reflections become less refleetive-pronounced and appear to be segmented, into a
steeper and a sub-horizontal segment (Fig. 8). Farther NW, BSF2 reflections reach to shallower depth
and are also imaged by the perpendicular FRANKEN-1802 and 1804 profiles. Lateral segmentation and
changes in the reflectivity of the BSF2 might be related to the 3D geometry of an interpreted
detachment/shear zone (Fig. 8).

4.4 Profile FRANKEN-1804

This profile strikes NE-SW over 63.3 km length, subparallel to the profile FRANKEN-1802 (Fig. 9).
Jurassic units are preserved in the NE and the central part of the profile. To the SW however, Jurassic
units are eroded and Keuper sandstones are exposed at the surface (Fig. 9). Geometries of Triassic
units are fairly tabular, generally with shallow dips to the NE-E, but with variable dip angles between
fault blocks. High amplitude and continuous reflections below the Triassic units are interpreted as
Zechstein and are correlated with similar reflection packages in perpendicular profiles FRANKEN-1801
and 1803. Semi-continuous and medium amplitude reflections beneath the Zechstein are interpreted
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412 as Rotliegend that locally onlaps to the hanging wall of deep--seaited W_to-SW dipping normal faults
413 (Fig. 9). In general, Permian units are wedge shaped in the hanging_walls of normal faults and are
414  thinaing laterally. Paleozoic metasedimentary units and Variscan nappes (BSF1) uaderlay-underlie the
415 Permian and are ca. 1400 ms TWT (ca. 38666-2700 m) thick in the center of the profile but thin laterally.
416  Variscan shear zone (BSF2) underlying Paleozoic metasedimentary units and Variscan nappes are
|417 concave--shaped in the NE and reach to shallower depth towards the SW-southwestern edge of the
418 profile FRANKEN-1804 (Fig. 9). In the center of the profile, BSF2 reflections are observed at greater
419 depth up to about 3000 ms TWT and are slightly less reflective. Saxethuringian-Cadomian basement
420  and pessibletewerparts of inner shelf facies not involved in Variscan tectonics (BSF3) characterize the
421  deeper parts of the profile FRANKEN-1804 (Fig. 9).

422 At the NE edge of the profile FRANKEN-1804, the Eisfeld-Kulmbach Fault accumulates ca. 660 ms TWT<+ - - {Formatted: Line spacing: Multiple 1.08 li
423 (ca.13066-1280 m) of throw, exposing Buntsandstein in its hangingwall (Fig. 9). Across the fault, Jurassic
424 units are preserved in the footwall and thin towards the SW where they are eroded in the hangingwall
|425 of the Asslitz Fault (Fig. 9). The Asslitz fFault accumulates ca. 488210 ms TWT (ca. 398-420 m) of throw
426  at the top of the Buntsandstein. Farther SW, the Lichtenfels Fault offsets Permian to Upper Triassic
427 units with ca. 90 ms TWT (ca. 458-170 m) of throw measured at the Muschelkalk top. In contrast to
428 profile FRANKEN-1802 lecated-(ca. 9 km NW), along the profile FRANKEN-1804 Lichtenfels Fault does
429  not reach to the surface and dies out within the Keuper units. In the footwall of Lichtenfels Fault a W
430  to-SW dipping normal fault creates a local half-graben where continuous and medium amplitude
431 reflections are onlapping and terminating against the fault (Fig. 9). Further SW, Bamberg Fault is a
432 major normal fault displacing the Triassic and Permian units with ca. 25-40 ms TWT (ca. 4580 m) offset
433  measured at top Muschelkalk. Bamberg Fault detaches into the underlying Variscan shear zone (BSF2)
434 at depth (Fig. 9). Farther north along the profile FRANKEN-1802, Bamberg fault is displaced by the
435  Miursbach reverse fault (Fig. 7).

436 5 Discussion
437 5.1 Westward extension of the Saxothuringian zone

438 Exposed Variscan allochthons are tectonically placed above the Paleozoic outer shelf facies (Bavarian
|439 facies) defined as fine grained and clay rich material preserved in-the-surreundingaround and below

440  Variscan nappe piles (Linnemann and Heuse, 2001; Franke and Stein, 2000). BSF1 units observed | Field Code Changed

441 beneath the sedimentary cover west of the FFS (Figs. 7 and 9) are interpreted as equivalents of
|442 Paleozoic metasedimentary rocks and Variscan nappe units (e.g. Mlnchberg nappe, (Fig. 10). BSF1
443 units are mapped as far as ca. 65 km west of the FFS and are thinning towards the NW along the NW-
444 SE striking profiles (Figs. 6 and 8) and towards the SW along the NE-SW {Figs-7-and-9}striking profiles
445 Figs. 7 and 9), showing a general westward thinning of Variscan nappes and Paleozoic
446  metasedimentary rocks. Wells drilled in the Schwarzwald and Upper Rhein Graben areas (ca. 300 km
447  SW of the study area) show low-grade metasedimentary units (shales and phyllites) and volcanic rocks

448 below sedimentary cover, interpreted as SW extension of the Saxothuringian Zone (Franke et al., | Field Code Changed

AR S

449 2017). Although seismic reflection and few well data confirm the presence of low- to very low-grade
450 metasedimentary rocks below the Permian to Jurassic sedimentary cover in the study area, te-date-no
451  well has probed the Variscan nappes west of the FFS_yet. Seismic signatures of exposed Variscan
452  nappes and low grade metasedimentary rocks east of the FFS do not allow differentiation between
453 nappes and metasedimentary rocks. Similar observations have been made in the Caledonides of

454 western Norway (Fazlikhani et al., 2017; Lenhart et al., 2019). Differentiation of Paleozoic inner and | Field Code Changed

455 outer shelf facies is also beyond the resolution of available seismic reflection data. However, the
456  tectonostratigraphic position of Variscan nappes and metasedimentary rocks relative to basal shear
457 zones in exposed basement units east of the FFS (Heuse et al., 2010; Linnemann et al., 2010), kighlights
458 supports the possible presence of Variscan nappes and underlying inner and outer shelf facies ca. 65
459  km west of FFS (Fig. 10).



460  In the exposed parts of the Saxothuringian zone east of FFS, kinematic indicators show a top-to-the

461  W-SW tectonic transport under NE-SW compression (Schwan, 1974). This deformation phase hasbeen - [ Field Code Changed

462 described as “D1” deformation phase befereca-—340-Ma;beinrg-and is related to the subduction and
463 collision during the Variscan Orogeny before ca. 340 Ma (Kroner et al., 2007). For the assemblage of
464  the Variscan during the subduction and collision, a top-to-the NW tectonic transport under a NW-SE

465 compression has also been proposed (Franke and Stein, 2000). Observed regional westward —'[Field Code Changed

466  shallowing of mapped thrust shear zones west of FFS could heweverhave been developed under both
467 proposed tectonic transport directions. Seismic reflection data does not allow to define a preferred

468 tectonic transport direction, however, based on the kinematic indicators observed and described in - {Formatted: Font: 11 pt

469 the exposed parts of the Saxothuringian Zone, we tend to prefer the W-SW transport direction.

470 5.2 Shear zone topography and strain localization during brittle deformation

471  Aregional NW-SE dominated compressional and /dextral transpressional phase during-at ca. 340-330
472 Ma affected the Saxothuringian zone and most likely reactivated preexisting D1 shear zones including
473  the Minchberg Shear Zone, MSZ (Franke 2000; Kroner et aI 2007). Assuming-a-ratherinitial-flat
474 iath T i
475 phasedextral transpressmn in addltlon to NE- SW reglonal compressmn durmg the D1 deformation
476  phase might alse-be responsible for g

477 mapped—shear—zene—modlfymg the initial geometry of the D—l—magped shear zone by foldlng and
478
479
480
481
482
483
484
485
486
487
488

489 Latest to post orogenic normal faults appear to be developed in wide range of vertical and lateral scale+ - — {Formatted: Line spacing: single

490 in response to the regional stress field. These normal faults propagate radially and create larger faults

491  [(e.g. Fazlikhani et al., 2021). However, only the ones that detach into the shear zone or preexisting - '[Field Code Changed

492 thrust faults at depth further grow and potentially reactivate parts of the shear zone on their
493 hangingwall side, while other normal faults become inactive (Figs. 7, 9 and 11b).

494  All the major reverse faults (Eisfeld-Kulmbach, Asslitz, Lichtenfels (northern portion) and Miirsbach
495 faults) most likely developed in response to Cretaceous inversion event in central Europe (Kley and
496 Voigt, 2008)_concentrate around the antiformal parts of the shear zone. For example, along the
497 FRANKEN-1802 profile, the Lichtenfels Fault developed on top of the folded portion of the underlying
498  shear zone and it is exposed at the surface (Fig. 7). Whereas ca. 10 km farther south along the
499 FRANKEN-1804 profile where the underlying shear zone show a rather flat geometry, the Lichtenfels
500  Fault does not reach to the surface (Fig. 9). Similarly, the Mirsbach reverse fault in the footwall of the
501 Bamberg normal fault (or a similar normal fault) developed on top of the folded portion of the shear
502 zones and dies out laterally to the south where the shear zone is rather fIat (Fig. 7 and 9). Our
503 observations
504 g
505 demonstrate that antn‘ormal geometrv of shear zone seems to perturb the reglonal stress fleld and
506 localize the strain around the antiformal portions of the shear zone facilitating lateral and vertical
507 growth of preferentially located brittle faults (Fig. 12). Comparable strain localization and brittle
508 reactivation of orogenic shear zones during initiation and activity of post-orogenic brittle faults has
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been described from the post-Caledonian tectonics in Scandinaviades (Fazlikhani et al., 2017; Phillips

et al., 2016; Koehl et aI 2018; Wiest et al., 2020) and post-Variscan tectonics of the western Alps

Presence-orabsence-ofantiformalG-geometry of the-shear zone creating local ramp also appears to
influence the ameunt-magnitude of fault offset in the study area. In the NE-northeastern part of the
profile-FRANKEN-1802 profile where the Variscan shear zone showsdeveloped antiformal geometry,
the Lichtenfels Fault accumulatesshews ca. 180 ms TWT of throw at the top Muschelkalk horizon and
it is exposed at the surface. Along the prefile-FRANKEN-1804 profile, ca. 10 km farther south, where
the Variscan shear zone shows a rather flat geometry, the Lichtenfels Fault has only ca. 86-90 ms TWT
of throw and is a blind fault tipping out in the Keuper units. In addition, at the location of these
antiformal parts of the shear zone a-generally a_higher amount of upper crustal brittle deformation
(normal and reverse faults) occurs_(Figs. 7 and 9). reflectingratherlocal-faultconcentrationabove
the-antiformal-parts-of-the-underlying shearzene—It should be noted that towards the Eeast, at the

margin of the Franconian Basin, the FFS as the major basin bounding fault system displaces the basal
detachment/shear zone, exposing Variscan basement units ea-in the hangingwall side. Comparing
reverse faults with few hundred meters of offset detaching into the shear zones with the FFS having
ca. 3 km of offset (Wagner et al., 1997) displacing the shear zone, shows that the—large amount of

amount of fault offset together with the preV|oust shown mechanlcal/rheologlcal properties of shear
zones and their map—view—orientation relative to the extensional/shortening direction are thus
important controlling factors in reactivation or displacement of the basal detachment/shear zone by
brittle faults (Daly et al., 1989; Ring, 1994; Peace et al., 2018; Heilman et al., 2019; Phillips et al., 2019).

5.3 Post Variscan Rotliegend basins in SE Germany and their regional context

The tlatest stages of Variscan tectonics and post orogenic thermal relaxation during the tlate
Carboniferous and Early-early Permian is-are marked by the development of intermontane basins in
the internal parts of the Variscan belt (Arthaud and Matte, 1977; McCann et al., 2006). These
intermontane basins are mainly located in the hangingwall of normal faults in graben and half-graben
settings and therefore are relatively small (km to tens of km), deep and isolated basins accumulating
continental clastic sediments with rapid lateral thickness changes (McCann et al., 2006). Fault-
bounded Rotliegend basins in SE Germany are also interpreted to have developed in an extensional
and/or transtensional setting during the-latest Carboniferous and Permian times as evidenced by
rather abrupt lateral thickness and sedimentary facies changes_across normal faults (Schroder, 1988,
1987; Peterek et al., 1996c; Leitz and Schroder, 1985; Arthaud and Matte, 1977; Dill, 1988; Midiller,
1994; Peterek et al., 1997; McCann et al., 2006; Helmkampf et al., 1982). Rotliegend sedimentary rocks
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in the study area are exposed in the footwall and hangingwall of the FFS from NW to SE in the
Stockheim, Rugendorf, Wirsberg and Weidenberg outcrops (Fig. 1). Well Wolfersdorf (Stockheim
outcrop) drilled 726 m of Rotliegend, while the upper parts of the section are eroded, suggesting that
Paul and Schroder, 2012). About 18 km west of well Wolfersdorf, well Mittelberg drilled only 41 m of
Rotliegend before reaching basement rocks (Friedlein and Hahn, 2018). Similar rapid thickness
changes of the Rotliegend units were also observed in the Weidenberg, Erbendorf, Weiden and
Schmidgaden areas, all originally interpreted as small, isolated fault-bounded basins, but now,
interpreted as individual exposures of one coherent depositional area, the NW-SE Naab Basin, where
the Rotliegend reaches up to 2800 m thickness (Paul and Schroder, 2012). The Naab Basin is bordered
by normal faults, some of which were reactivated as reverse faults or are-cross cut by younger reverse
faults (Maller, 1994; Peterek et al., 1996b).

In addition to exposures along the FFS, several wells in the western parts of the study area (e.g.
Staffelstein 1, Mursbach 1 & 6, and Eltmann) also encountered Rotliegend that relates to the SW-NE
Kraichgau Basin (Table 1, Fig. 1) of which the NW-SE Naab Basin is considered as-a basin compartment
(Paul, 2006). Among these wells, only Eltmann and Mittelberg reached the Rotliegend base showing a
general westward thinning of Rotliegend units from the FFS (Table 1). This corresponds to the pattern
of isopach maps, showing a gradual thickening of Rotliegend units to reach maximum thicknesses of
ca. 2000 m in the easternmost parts of the Kraichgau Basin (Sitting and Nitsch, 2012).

Rotliegend basin architecture in the Variscan Internides, with the Saar-Nahe, Kraichgau and
Schramberg basins as prominent examples, is characterized by 10-100 km wide and long basins
bordered by normal faults, rather related to the-extensional forces than the collapse of overthickened

2019; Séranne and Séguret, 1987; Osmundsen and Andersen, 2001). Post-Caledonian
supradetachment basins in western Norway accumulate >26 km thick of Devonian units that is almost
three times more than the true depth of the basin (Vetti and Fossen, 2012; Séranne and Séguret,
1987). In the northern North Sea and its western margin onshore Scotland and Shetland, and offshore
East Shetland Platform, post-Caledonian Devonian basins are interpreted as normal fault bounded
Platt and Cartwright, 1998; Fazlikhani et al., 2017; Norton et al., 1987; Séranne, 1992; Patruno et al.,
2019; Phillips et al., 2019; Fazlikhani et al., 2021).

The Rrange of post-orogenic basin architecture observed in Caledonian and Variscan orogenies
highlights the importance of preexisting orogenic thrust/shear zones. Comparison of post-Caledonian
basins with post-Variscan basins shows that in the Caledonian cases pre-existing detachment/shear
zone play a more important role in basin development and architecture than in the post-Variscan
basins, as observed in the study area. Normal faults bounding post-Variscan basins appear not to
reactivate entire Variscan thrust/shear zones except for the Saar-Nahe Basin (Henk, 1993). Observed
variations in post-orogenic basin architecture might be related to the differences in the exposed level
of the basement. Exposed Devonian basins of western Norway show deeper levels of crust in eempare
comparison to Devonian basins in the western margin of the North Sea rift. It should be noted that
the post-orogenic extension direction relative to the orientation of the orogenic structures in addition
to the amount and duration of the post-orogenic extension might-also influence basin architecture.
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601 5.4 Brittle fault development and relative age relationships

602 Post-Variscan extensional phases resulted in the development of normal faults bounding Rotliegend
603 half-graben and graben basins observed across the Variscan belt (Peterek et al., 1997; Arthaud and
604 Matte, 1977; McCann et al., 2006; Schroder, 1987; Miiller, 1994; Stephenson et al., 2003). Mapped
605  seismic scale normal faults in the study area can be divided into three main groups, based on their
‘606 stratigraphic position: 1) normal faults developed at shallower depth which terminate in the tewer
607  Lower Triassic or Ypperupper Permian (Zechstein) intervals (Figs. 6-9). Il) normal faults developed in
608  the deeper parts of the stratigraphy displacing Permian units and continuing into the pre-Permian
|609 units with their upper tip terminating in Yppermest-uppermost Permian (Zechstein) or [towermost
610  Triassic units (e.g. normal faults in the footwall of Lichtenfels and Asslitz reverse faults, Figs. 6-9). llI)
611 small groups of normal faults which displace the entire stratigraphy and die out into the pre-Permian
612  units (Figs. 6 and 9).

613  The first group of normal faults which developed in the Triassic units only, do not show
614  synsedimentary activity detectable in seismic profiles and are interpreted to most likely originate from
615 sedimentary loading and differential compaction during a regional tectonic quiescence in Triassic and

616 Jurassic times (Peterek et al., 1997; Fazlikhani et al., 2021; Fazlikhani and Back, 2015). The second (Field Code Changed

617  group of normal faults, displacing mainly the Permian succession, is interpreted to have developed
618  during post-orogenic extension in latest Carboniferous-Permian (Stephanian/Rotliegend) time. This
|619 second group of normal faults shows widespread evidence of synsedimentary activity and is-bounding
620 Permian half graben and graben basins (buried and exposed) in southern Germany. In the majority of
|621 cases the first and second groups of normal faults are not vertically hard-linked. This observation can
622  be explained by the presence of fine grained marine and in some places evaporitic Zechstein units,
623 acting as a semi-ductile_to/ductile layer accommodating strain. However, in few instances the
624  Zechstein, together with Triassic units are-is displaced by the third group of normal faults (Figs 6 and
625 9). It should be noted that with the available dataset it is not clear whether the third group of normal
626  faults is the result of an upsection growth of Permian faults, downsection growth of the Triassic-
627  Jurassic faults or whether they developed due to the downsection growth of Triassic —Jurassic faults
628 linking to and reactivating preexisting Permian faults.

|629 In addition to normal faults, the major km-long NW-SE striking Eisfeld-Kulmbach, Asslitz, Lichtenfels+ - - {Formatted: Line spacing: single

630  and Mirsbach reverse faults are located west of the FFS, displacing and folding the Permian to Jurassic
631  sedimentary cover. Reverse faults are better developed in the eastern part of the study area and on
632  top of the antiformal parts of the Variscan shear zones while towards the west, normal faults are
633  dominatingdominate. Observed reverse faults are developed mainly in the footwalls of Permian
634 normal faults and dip to the E-NE (Figs. 6-9). Reverse faults cut through the upper portion of Permian
635  normal faults, translating Permo-Mesozoic units to the W-SW. Farther north of the study area in the
636  Thuringian Basin and northern Germany, similar reverse faults are related to the Cretaceous inversion

637  event (Kley and Voigt, 2008; Navabpour et al., 2017). Therefore, it appears that the youngest | Field Code Changed
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638  generation of seismic-scale brittle faults are the reverse faults. However, whether reverse faults only
639 initiated during the Cretaceous inversion and younger events or rather are reverse reactivated east
640  dipping Permian normal faults is still unclear and needs further investigation.

641 6 Conclusion

642 In this study we combine existing 2D seismic reflection profiles, well data and surface geological
643  information to interpret the recently acquired 2D FRANKEN seismic survey in SE Germany. Three
644 Basement Seismic Facies (BSF1-3) are described below the Permian-Mesozoic sedimentary cover that
645 are interpreted as Variscan units and structures. We investigate the possible westward continuation
646 of Variscan units and structures and discuss the influence of Variscan structures in latest to post-
647  Variscan basin development. We show that:
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e Variscan units and structures extend to ~65 km west of the FFS thatare-covered-bybeneath
sedimentary rocks of the Kraichgau/Franconian Basin.

e Low-grade metasedimentary rocks and possible nappe units (BSF1) in the hanging wall of
Variscan shear zones are wedge shaped and thin out towards the W-SW.

e Variscan relative-autochthons occupy the footwalls of shear zones.

e Shear zones show local syn- and antiformal geometries and reach to the base of the Permian-
Mesozoic sedimentary cover towards the W-SW.

e The Ggeometry of shear zones control the location at which major Permian normal faults have
developed.

e Permian normal faults dip te-in various erientatiensdirections, creating Rotliegend graben and
half-graben basins. Observed Rotligend half-graben basins in the east are interpreted as the
NW continuation of the Naab Basin. Towards the west, ebserved-interpreted Rotliegend_units
are associated to the Kraichgau Basin.

e The Fthickness of Triassic sedimentary rocks is fairly constant, highlighting a regional tectonic
quiescence in the study area.

e Some of the Permian normal faults are cross cut by oppositely dipping reverse faults most
likely during the regional Cretaceous inversion event that occurred in Central Europe. Some
of Rreverse faults are interpreted as reactivated preexisting Permian normal faults, while
others might have been developed during the Cretaceous inversion event.-

e Reverse reactivated normal faults are leeated-restricted to the eastern parts of the study area
where preexisting Variscan shear zone show syn- and antiformal geometries.y

We document westward continuation of Variscan shear zones away from the Bohemian Massif for the
first time and show how the geometry of shear zones localize the strain and influence the
development of latest to post-orogenic faults and basins.
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Figure and Table caption

Figure 1: Location of the study are in the Saxothuringian zone of Variscan orogeny. FRANKEN seismic
survey is projected on geological map of the study area in dark red creating a grid of 2D seismic profiles
with existing DEKORP profiles. Main Faults are shown as bold dark lines. Inset map shows exposed
Variscan terranes in Central Europe. Yellow circles show deep wells in the study area. FRA: FRANKEN,
MGCH: Mid German Crystalline High, FFS: Franconian Fault System and MN: Miinchberg Nappe.

Figure 2: Velocity and density logs from well Miirsbach 1 utilized for synthetic seismogram generation.
Seismic traces from FRANKEN-1802 are compared with generated synthetic seismogram. Velocity data
are used to construct time-depth relationship and well-seismic ties. Depth to the formation tops are
time converted and used as starting point for seismic interpretation.

Figure 3: Seismo-stratigraphic facies of observed Permian-Jurassic stratigraphy in the study area. A)
Jurassic, B) Upper Triassic Keuper Group, c) Middle Triassic Muschelkalk Group, D) Lower Triassic
Buntsandstein Group and D) Permian Zechstein and Rotliegend Groups.

Figure 4: Basement Seismic Facies (BSF) described along FRANKEN seismic survey. A) shows SE portion
of FRANKEN-1804 below the Top Zechstein horizon. B) Low-amplitude and discontinuous reflections
of BSF1 interpreted as Paleozoic metasedimentary rocks and Variscan nappe units. C) BSF2 shows
high-amplitude, continuous and dipping reflection interpreted as Variscan shear zones. D) Medium-
amplitude and semi-continuous reflections of BSF3 below Variscan shear zone related to the
Cadomian Saxethuringian-basement and Paleozoic Inner shelf facies not involved in Variscan tectonics.

Figure 5: Repossessed DEKORP-85 4N and DEKORP-3/MVE-90 profiles used to compare three
Basement Seismic Facies (BSF1-3) described along FRANKEN seismic survey (see Fig. 1 for location).
DEKORP profiles image exposed Variscan units along the western Bohemian Massif and are used as
proxy for geological interpretation of BSFs. A) DEKORP-85 4N shows seismic signature of Paleozoic
low-grade metasedimentary rocks (zoomed in B) and Miinchberg Nappe (Variscan allochthon, zoomed
in C) exposed at the surface and described as BSF1. D) DEKORP-3/MVE-90 images Muinchberg nappe
units east and Permian-Jurassic sedimentary cover west of Franconian Fault System (FFS). E) shows
seismic signature of Variscan nappes (BSF1) and underlying shear zones (BSF2).

Figure 6: A) uninterpreted and B) interpreted FRANKEN-1801 profile. Horizon interpretation is tied to
drilled wells in the study area. C) geo-seismic section in time (ms TWT), and D) depth converted profile
with no vertical exaggeration. Intersecting profiles FRANKEN 1802 and 1804 are shown by black
arrows. See Figure 1 for the profile location.

Figure 7: Profile FRNKEN-1802 strikes NE-SW, perpendicular to main structures. A) uninterpreted and
B) interpreted seismic profile. FRANKEN-1802 is tied to well Eltmann, Mirsbach, Staffelstein 1 and 2.
High-amplitude and continuous reflection of BSF2 interpreted as Variscan shear zones are at 2000-
2500 ms TWT (5-6.5 km) in the NE and reach to the base of Permian sedimentary rocks to the SE. C)
geo-seismic section in time with vertical exaggeration of 5. D) depth converted section with no vertical
exaggeration. See Figure 1 for the profile location.

Figure 8: SE-NW striking FRANKEN-1803 profile, sub-parallel to the profile FRANKEN-1801. Horizon
interpretation is tied to well Obernsees and intersection FRANKEN 1801 and 1804 profiles. A)
uninterpreted and B) interpreted profile. C) geo-seismic section in time and D) depth converted
section with not vertical exaggeration. Interpreted Variscan shear zones (BSF2) are at 2000-3000 ms
(5-7 km) in the SE and reaches to ca. 2.5 km depth towards NW.
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Figure 9: A) uninterpreted and B) interpreted profile FRANKEN-1804. Horizon interpretation along this
profile is tied to intersection profiles FRANKEN 1801 and 1803. Note onlapping reflections in the
hanging wall of SW-dipping normal faults creating Permian half-grabens. C) geo-seismic section in time
and D) depth converted section with no vertical exaggeration. See Figure 1 for the profile location.

Figure 10: Present day three-dimensional view of interpreted Variscan units and structures west of
Franconian Fault System (FFS). Variscan shear zone shows syn and antiformal geometries shallowing
and thinning toward the W-SW.

Figure 11: Simplified and generic cartoons showing the relationships between orogenic structures and
post-orogenic fault and basin development_(note that shown general W-directed tectonic transport

refers to the initial W-SW directed, nappe stacking). At the latest orogenic and early post-orogenic _ - {Formatted: Font: 11 pt, Not Italic

period, normal faults develop_in response to the regional stress fie‘Id, some -aleng-sub-parallel to the =~ ‘{Formatted: Font: 11 pt, Not Italic

preexisting orogenic structures-as—wel-as-away-from-the-eregenic-structures. Some of the normal
faults grow laterally and vertically detaching into the underlying shear zones_and initiate graben and
half-graben basins in their hanging wall side. Normal faults not detaching into preexisting shear zones

abandon.-Geemetry-of-underlyingshea enes—+na ocatzethe HA—aHE+a ate—ad AHHaHOA:

hanging-wal-side. After a Triassic and Jurassic regional tectonic quiescence, Cretaceous inversion
event in Central Europe selectively reactivate Permian normal faults as steep reverse faults, exposing
older stratigraphy in the hinging-wall side and creating local syn and anticlines in the vicinity of
reactivated faults.

Figure 12: Cartoon showing the relationship between shear zone geometry and fault development. - {Formatted: Font: Not Bold

Dark red area in the center shows folded part of the shear zone, where Lichtenfels Fault portion {Formatted' Font: Not Bold

detaches into and is exposed at the surface, Laterally to the SW, shear zone is rather flat and >~ F 4 Font Not Bord

Lichtenfels fault does not detach into and it is not exposed at the surface., TR \{ ormatted: Font: Not Bo

\\\i\ {Formatted: Font: Not Bold

Table 1: Deep wells in the study area with formation tops used in seismic horizon interpretation of \\\\ {Formatted: Font: Not Bold
. . . \

FRANKEN seism survey. See figure 1 for well location. ' {Formatted: Fornt Not Bod
\

Table 2: Recording parameters of FRNAKEN seismic survey. {Formatted: Font: Not Bold
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