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Abstract. Analysis of new detrital apatite fission-track (AFT) ages from modern river sands, published bedrock and detrital
AFT ages, and bedrock apatite (U-Th)/He (AHe) ages from the Northern Apennines provide new insights into the spatial and
temporal pattern of erosion rates through time across the orogen. The pattern of time-averaged erosion rates derived from AHe
ages from the Ligurian side of the orogen illustrates slower erosion rates relative to AFT rates from the Ligurian side and
relative to AHe rates from the Adriatic side. These results are corroborated by an analysis of paired AFT and AHe
thermochronometer samples, which illustrate that erosion rates have generally increased through time on the Adriatic side, but
have decreased through time on the Ligurian side. Using an updated kinematic model of an asymmetric orogenic wedge, with
imposed erosion rates on the Ligurian side that are a factor of two slower relative to the Adriatic side, we demonstrate that
cooling ages and maximum burial depths are able to replicate the pattern of measured cooling ages across the orogen and
estimates of burial depth from vitrinite reflectance data. These results suggest that horizontal motion is an important component

of the overall rock motion in the wedge, and that the asymmetry of the orogen has existed for at least several million years.

1 Introduction

The Apennine mountains of Italy are an active orogen characterized by contemporaneous extensional and compressional
tectonics. In the Northern Apennines, these features are linked to rollback of the Adriatic slab beneath Eurasia, suggested to
be active since the Oligocene (Malinverno and Ryan, 1986). The interplay between extension and compression has affected
the overall tectonic evolution of the Northern Apennines and, in particular, its exhumational and topographic evolution. Low-

temperature bedrock and detrital thermochronology studies have constrained the timing and rates of exhumation at the orogen-

scale (e.g. Thomson et al., 2010; Malusa and Balestrieri, 2012), and at the regional scale along the extensional Ligurian side, [ Deleted: retrowedge (
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al., 2013; Zattin et al., 2002). Age-elevation profiles and multiple thermochronometers have revealed spatially variable

exhumation across and along strike of the orogen, and temporal variability in exhumation rates_(Thomson et al., 2010), { Deleted: (Thomson et al., 2010)

Although spatial variability is large, the overall pattern of exhumation is consistent with kinematic models of the Apennines




as an orogenic wedge with deformation driven by frontal accretion on the Adriatic margin, and erosion and extension across

the mountain belt (Thomson et al., 2010).,

In this paper we augment the thermochronometric data of the range with new detrital thermochronometric data from the

Ligurian side of the range to ensure the broadest possible sampling of the thermochronologic signal, recognizing that bedrock

35

sampling can miss local regions of anomalous exhumation rate, as was shown from detrital data on the Adriatic side of the

orogen (Malusa and Balestrieri, 2012). Published and new data are combined into an analysis of local and regional patterns of

exhumation rate, through thermal and kinematic modelling. We derive time-averaged erosion rates for individual samples

40 using two different methods for determining the relevant geothermal gradients. In addition, we calculate erosion rates through
time for paired AFT and AHe samples, to compare with results from age-elevation transects (Thomson et al., 2010) that

illustrate a change in erosion rates at 4 Ma. Our results suggest that the increase in exhumation is restricted to the Adriatic side h

of the orogen, and may have occurred later (~1-3 Ma), whereas exhumation rates decreased on the Ligurian side at ~1-5 Ma
|

Finally, to understand how this pattern of regional erosion rates relates to orogen-scale kinematics of the Northern Apennines
1

45 we propose an updated kinematic model that allows for crustal accretion from both frontal accretion and underplating, and

variable temperature at the base of the crust.
1

supplied largely by the Central Alps (Garzanti and Malusa, 2008; Malusa et al., 2016b) were deposited as turbidite sequences

into a series of northward-migrating foredeep basins (Macigno, Cervarola, and Marnoso-Arenacea Basins) (Fig. 1), which

| 55 that was thrust pver the Cenozoic foredeep deposits as a surficial nappe (Merla, 1952; Pini, 1999). Eocene-to-Pliocene basins
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formed on top of the Ligurian Unit (Epi-Ligurian Unit) (Ori and Friend, 1984; Cibin et al., 2001), which record discontinuous |

Deleted: While these findings have improved our understanding of
the evolution of the Northern Apennines, a comparison between
basement and detrital data and between exhumation patterns across
the primary drainage divide within the frame of an orogenic-scale
analysis kinematic model is lacking.

[ Deleted: ¢ ]
Deleted: In this paper, we aim aln this paper, we use the cooling

illustrating how the large-scale spatial pattern of theis
thermochronologic recordcooling history may reflect not only either
the locally or regionally controlled pattern of cooling and exhumation
and the interaction between exhumation locally controlled by reverse
or normal faults and their interaction with Earth surface processes,
and (2) how the cooling history of rocks that travel through the
orogen records the transition from compression to extension, which is
ultimately a reflection of the kinematics and geometry of the wedge,
and more broadly but also how in the Northern Apennines the
interplay between orogenic and subduction processes (slab
retreatollback), which influences the kinematic and geometry of the
orogenic wedge and controls the transition from compression to
extension, is recorded ultimately by the cooling history of the rocks
that transit through the orogen.). Towards this goal, first we first
compile all the available thermochronologic data in the Northern
Apennines, which include bedrock data on both sides of the orogen
and detrital data only onfrom the pro-wedge (Adriatic)Adriatic side
of the orogen. Second, given that the detrital data on the Adriatic side
of the orogen revealed a thermochronologic signal that was not
sampled by the bedrock data (Malusa’ and Balestrieri, 2012), we
complement the existing data with new detrital data on the retro-
wedge (Ligurian)Ligurian side to ensure the broadest possible
sampling of the thermochronologic signal, since the detrital data on
the Adriatic side of the orogen revealed a thermochronologic signal
that was not sampled by the bedrock data (Malusa and Balestrieri,
2012). Third, we use an updated analysis method that derives long-
term erosion rates from cooling ages. We derive time-averaged
erosion rates for individual samples, using two different methods for
constraining the initial and final geothermal gradients. We
additionally calculate erosion rates through time for existing paired
AFT and AHe samples, to compare with results from age-elevation
transects (Thomson et al., 2010) that illustrate a change in erosion
rates at 4 Ma and were interpreted to reflect an orogen-wide increase
in erosion at this time. Our results suggest that the increase in
exhumation is restricted to the Adriatic side of the orogen, and may
have occurred later (~1-3 Ma), whereas exhumation rates decreased

on the Ligurian side at ~1-5 Ma. Finally, tTo understand how this

pattern of regional erosion rates relates to orogen-scale kinem{ | 1]

Deleted: Structural

Deleted: at ~30 Ma

{ Deleted: (Lustrino et al., 2009)
\ \\\[ Deleted: 1

“\ { Deleted: cventually

.| Deleted: and thrust

1y

\ | Deleted: Tertiary

Deleted: upon

\

\| Deleted: Tertiary

(
ol
i
(
(

Deleted: denudational

o 0 U 0 L




165

170

175

180

AT ¢ [ ] Piocene -Recent sediments
2 ~ [ GpiguyiarOligocene to liocene wedge-top
deposits.

A
S e

larnoso Arenacea Unit - early to late Miocene
rbidites

- Modino-Cervarola Units - Late Oligocene to

mid-Miocene turbidites

aci%na Unit- Late Oligocene to early Miocene

rbidites

- Ligurian Unit - Allochthonous Jurassic to early
Cenozoic deepwater sedimentary mélange and

V77 ophioltes
(/] Tiscan metamorphic rocks i

Figure 1 Simplified geologic map of the Northern Apennines and locations of published (<10 Ma) bedrock AFT ples (di ds)
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Fellin et al., 2007; Thomson et al., 2010; Ventura et al., 2001; Zattin et al., 2002), and new detrital cooling ages, and topography

plotted along (a) Mt. Gottero, (b) Mt. Cimone, (c) Bologna, and (d) Val D’Arno swath profiles. Profile locations are shown in Fig.
samples |

outside of swath profile line and were projected onto the line. (Middle Row) Cooling ages corrected for topography for bedrock AFT

(red diamonds), and AHe (blue triangles). Detrital AFT samples (yellow rectangles) were not corrected for topography. (Bottom
Row) Mean elevation (thick black line), and minimum and maximum elevation (light gray lines).
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Figure 3 (a) Location map for detrital samples. Detrital AFT samples from this study are illustrated as red di ds, and published
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Maximum burial depths of rock across the Northern Apennines are constrained most commonly from vitrinite reflectance data

(Fig. 2; Reutter et al., 1983; Ventura et al., 2001; Botti et al., 2004; Carlini et al., 2013), which is a proxy for burial temperatures

recorded by organic particles, and is expressed as Ro (%). Higher Ro values generally reflect higher burial temperatures,Ro

increases steadily from NE to SW in the Northern Apennines, with maximum Ro values near the Ligurian coastline, as shown

along the swath profiles in Fig. 2. This pattern of Ro values was interpreted to reflect NE-directed Miocene thrusting of the

strike of the orogen from NW to SE (Fig. 2), illustrating that maximum burial depths also decrease towards the SE. This pattern

was in turn interpreted to reflect the shape of the Ligurian Unit as a wedge that thinned towards the east (Zattin et al., 2002),

and thus resulted in shallower burial depths for the underlying Cenozoic Foredeep deposits.

2 Methods
2.1 Detrital AFT thermochronology

Bulk samples of modern sand were collected from six rivers on the Ligurian side of the Northern Apennines (Fig. 3a) and are
representative of the Macigno, Cervarola, Alpi Apuane, and Ligurian Units (Fig. 1). As some Ligurian catchments (Magra and
Serchio Rivers) contain basins with Pliocene sediments, additional samples were collected in tributaries above these basins to

avoid sampling the younger, post-orogenic sediments.

Samples were processed according to the external detector method for AFT dating, using standard methods. Bulk samples
were sieved and heavy minerals were separated using standard techniques, involving the use of the Wilfley table, heavy liquids,
and the Frantz magnetic separator. Apatites were mounted in epoxy and were subsequently polished to expose the internal

surfaces of the apatite grains. For each sample, we counted all countable grains, which specifically refers to any grains that

expose a section parallel to the C axis, independently of whether it has zero or more spontaneous tracks. Multiple mounts per
sample were produced to maximize the number of datable grains, and we aimed to date at least 100 grains per sample. However,
only 37, 87, and 77 apatites were countable in samples Limal (6), Bisenzio (7), and Pescia (8), respectively, whereas the high

number of countable apatites in samples Vara (1) and Magral (3) allowed us to date 150 grains in each sample.

detector and the zeta-calibration methods (Hurford and Green, 1983) with IUGS age standards (Durango and Fish Canyon
apatites) (Hurford, 1990). The analyses were subjected to the y? test (Galbraith, 1981) to assess whether the sample age

distributions were over-dispersed; a probability of less than 5% denotes mixed distributions.

We determined age populations for detrital samples based on dominant age peaks identified with the Binomfit program
(Brandon, 2002), which is well suited for AFT data with low spontaneous track density. In order to estimate the degree of
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resetting of the detrital age populations relative to the Apenninic orogenic event, we compared the detrital cooling ages with

2.2 Erosion rate analysis

We compiled ages from new and existing detrital AFT samples (23), bedrock AFT samples (139), AHe samples (135), and

2002; Balestrieri et al., 2003; Fellin et al., 2007; Thomson et al., 2010; Malusa and Balestrieri, 2012; Carlini et al., 2013). As
the Alpi Apuane have an erosional history different from the rest of the Northern Apennines (Balestrieri et al., 2003; Fellin et

although this is a simplification of diffusional daughter product loss that neglects effects associated with complex cooling
histories. For monotonic cooling histories, the measured age of the sample is represented by the time needed for a rock to move

from the closure depth to the surface (e.g. Reiners and Brandon, 2006).

for a lithospheric column subjected to a constant rate of erosion. Thermochronometric data required for the calculations include
the measured ages and kinetic parameters from which a closure temperature is calculated. In addition, the thermal initial

conditions and boundary conditions, as well as thermal parameters, must be specified for each sample site.

For the kinetic parameters for AHe, we assumed grain sizes of 45 um, given that sizes of dated grains are not reported by
previous studies, and that a grain size of 60 um is larger than the mean size of detrital apatites that are typically dated in the
sample elevation, given as an elevation above a regional mean (h); surface temperature (Ts); and either an initial geothermal
gradient (Go) or the final geothermal gradient (Gr). Only one estimate of the geothermal gradient is needed, but we took fwo
given a lapse rate of 5°C /km. For the base temperature, we used a modern surface temperature of 13.8°C, which represents
the calculated yearly average for an elevation of 53 m at Bologna from 1813-2004 (NOAA Global Temperature Summary of
the Year dataset).

Table 5 Definitions of thermal parameters used in the erosion rate analysis.
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Parameter |Description

Go 25 Initial geothermal gradient of 25°C/km (AGE2EDOT input)

Gy 5 Inferred final geothermal gradient (AGE2EDOT (output)

Gy heatflow  |INferred initial geothermal gradient (AGE2EDOT output)

Gy heatiiow _|Final geothermal gradient calculated from modern heat flow measurements (AGE2EDOT input)
h Sample elevation above the regional mean elevation

tau Thermochronometer cooling age

Transition time between AFT and AHe cooling intervals

Lirans

To Temperature at transition time t;

T Modern surface temperature

The geothermal gradient is the most important parameter incorporated into the erosion rate analysis and is also the largest
source of uncertainty. It can be specified either as a final geothermal gradient (Gy), which is the present geothermal gradient at
the surface, or as an initial geothermal gradient (Gy) that is assumed to be constant with depth at the onset of exhumation

(Willett and Brandon, 2013). We calculated and compared erosion rates derived using two approaches. In the first method, we

second method, we assumed that the present-day geothermal gradient (Gy) matches the geothermal gradient calculated from
geothermal heat flow measurements. We converted the heat flow measurements to a Gr (Gg heatiow) using a spatially constant

thermal conductivity value for sandstone (2 W/mK). Heat flow values were extracted from contour maps that interpolate

the entire study area, whereas the Pauselli et al. (2019) map covers the area south of 44.5°N and includes only the Bisenzio
River (Fig. 3) within the study area. Because the heat flow map of della Vedova et al. (2001) is based on fewer geothermal
well measurements relative to the Pauselli et al. (2019) map, we consider the della Vedova et al. (2001) interpolation to have
higher uncertainties. Thus, where the Pauselli et al. (2019) map was available, a heat flow value was selected from this map.

Otherwise, a heat flow value was selected from the della Vedova et al. (2001) map.

The modelling procedure described above was applied to all ages, assuming that erosion initiated over the entire region at 10
Ma. The resulting erosion rate applies from the onset of exhumation at 10 Ma to the present and reflects the time-averaged
erosion rate that is constrained to pass through the closure temperature at the cooling age and with a cooling rate commensurate
with the average erosion rate. Thus, this method is limited to a single, average erosion rate. However, changes in exhumation
rates through time in the Northern Apennines are supported by several lines of evidence, particularly by age-elevation transects

(AETs). In fact, AETs from the existing literature illustrate differences along the age-elevation slope for a single

Thomson et al., 2010).
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It is possible to use AGE2EDOT in an incremental manner, allowing us to use paired thermochronometers analyzed from a
single sample. In this case, the temporal range of exhumation is bracketed by the AFT and AHe ages, with independent erosion
rates determined from each age, thus resolving two time intervals (Willett et al., 2021). In principle, this violates the assumption
of a constant rate of cooling implicit to the use of the closure age concept, but provided that the transition between erosion rate
intervals is not close to either age, the error will be small. We analyzed 30 available paired ages to detect temporal changes in
erosion rate. For the paired ages analysis, the exhumation path is divided into two segments: the first segment extends from
the onset of exhumation to a specified transition time (tirans) after cooling through the AFT system, and the second segment
extends from this transition time to the present, thus passing through the AHe age in this second interval (Fig. 4). We derive
an erosion rate for each of these time-segments by analyzing each segment with AGE2EDOT, linking the two solutions at tians.
The solutions are matched by noting the depth and temperature of the sample at tins, based on the erosion rate in the second
interval, and using this and the geothermal gradient at ti.ns as the boundary conditions for calculations of the first interval (Fig.

4).

The difference in age between some of our paired ages is less than 1 Ma, but larger than 0.5 Ma, so we set the transition at 0.5
Ma before the AHe closure for all samples (i.e. the AHe cooling age plus 0.5 Ma), in order to allow the onset of advection to
precede the AHe closure (Fig. 4). Calculation of the erosion rate over the second interval requires the modern surface
temperature (Ts); the sample elevation above the regional mean (h); the AHe cooling age (tau); the final geothermal gradient
as derived from heat-flow measurements (Gr neaifiow); and the length of the time interval (tians), calculated as the AHe age plus

0.5 Ma. The erosion rate is then solved from these data and the kinetic parameters.

tirans, We simply reduce the age by tuans, and reduce the elevation by the amount of exhumation that occurred during the second
interval. We take the initial geothermal gradient obtained from the model for the second interval as the final condition for the

first interval.
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The kinematic model approximates the Northern Apennines as a doubly tapering, asymmetric wedge, given the geometric
parameters illustrated in Fig. 5. The Adriatic and Ligurian sides of the orogen are defined as the accreting prowedge and non-
accreting retrowedge of the orogen, respectively (e.g. Willett et al., 2001). The geometry of the wedge is defined by surface
and basal angles for the prowedge (o and Bp) and retrowedge (ar and Br). The lengths of the prowedge (Lp) and retrowedge
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Material is accreted to the wedge through thrusts slices in the upper plate (frontal accretion) or is offscraped from the
subducting plate at depth (underplating). Material motion is constrained by balancing frontal and rearward fluxes, underplating,
and erosion. We prescribe a compressional prowedge and an extensional retrowedge, where horizontal velocities decrease
along the prowedge and increase along the retrowedge as a function of distance. The vertical rock velocity is also variable with

depth, and is defined as the sum of the erosion rate and a component of crustal thickening driven by accretion.

The velocities in the model are defined as follows: plate subduction velocity (Vp), prowedge underplating velocity (Up),
prowedge erosional velocity (ep), and retrowedge erosional velocity (er). The plate subduction velocity, or convergence rate,
for the Northern Apennines is suggested to be driven entirely by slab rollback, so we used estimates of slab rollback to
(Faccenna et al., 2014; Rosenbaum and Piana Agostinetti, 2015), so we run the model using these minimum and maximum

values as end-member scenarios. We also vary the spatial pattern of erosion rates in the model using two model assumptions:

s

Figure 5 Kinematic model of the Northern Apennines as an orogenic wedge with internal deformation driven by frontal and basal
accretion and surface erosion. Mass is balanced to maintain a steady size, and internal deformation is calculated to be
with boundary conditions.

3 Results
3.1 Detrital AFT cooling ages

New detrital AFT (8) sample ages are given in Fig. 3b and Tables 6-7. Central ages vary from 5.4 £ 0.6 Mato 10.5 £ 0.7 Ma,
and single grain ages show a wide range of values from 5.1 to 145.3 Ma. All samples except Limal show at least two distinct

age populations, with minimum age peaks between 5.1 and 8 Ma. All minimum age peaks are younger than the stratigraphic
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of Magral. This site contains Plio-Pleistocene deposits exposed in its catchment that are younger than the minimum age peak,

440  but these are locally derived sediments, and the sedimentary bedrock has stratigraphic ages older than the young peak.

In the five southern samples (Serchio, Limal, Lima2, Pescia and Bisenzio), the youngest peaks represent the largest age
populations and are similar to the sample central ages. The three northern samples (Vara, Magral, Magra2) show two common
age populations at 5-6 Ma and at 12—13 Ma and have central ages older than the minimum peak ages, due to a large proportion

445  of older grains.

Table 6 Central Ages and AFT dataset details.

AFT AFT
Num. Central Central Age
Mount  of Ps Pi Pp age agelo P(x2) disp
Sample Sampling Site Lat Long Num. Grains (x10°em?) Ns (x10°ecm®) Ni  (x10°cm?) (Ma) (Ma) (%) (%)
Vara Piana Battolla ~ 44.1950° 9.8569° 1 74 113 283 30.7 7672 14.80+0.00
10.53 0.74 0 49
Vara Piana Battolla  44.1950° 9.8569° 2 76 1.83 432 39.0 9212 15.10+0.01
Magra2 Pontremoli 44.3873° 9.8868° 1 31 0.94 117 34,5 4285 14.30+0.03 6.94 06 0 50
Magra2 _ Pontremoli  44.3873° 9.8868° 2 69 117 220 418 7878 14.80%0.03 )
Magral Isola 44.1867° 9.9258° 1 127 0.95 642 339 22978 16.20+0.03
7.81 0.45 0 27
Magral Isola 44,1867° 9.9258° 2 23 0.67 72 30.9 3342 15.90+0.03
Serchio  Piazza al Serchio  44.1920° 10.3016° A 72 1.36 359 37.2 9834 12.80+0.03 208 051 0 18
Serchio  Piazza al Serchio  44.1920° 10.3016° 2 28 0.96 78 34.6 2801 13.30+0.03 ) ’
Lima2 Cutigliano 44.0907° 10.7596° 1 62 1.00 237 43.1 10202 15.00+0.03
6.63 0.46 0 29
Lima2 Cutigliano 44.0907° 10.7596° 2 38 1.15 152 41.8 5527 14.20+0.04
Limal Borgoa Mozzano 43.9993° 10.5540° 1 31 0.75 97 359 4616 14.50+0.03 5.41 0.59 89 0
Bisenzio Vaiano 43.9277° 11.1258° 1 87 1.02 215 41.2 8992 14.84+0.03 7.09 0.71 0 57
i i 43. ° X ° . 42.4 .80 £ 0.
Pescia Pietrabuona 3.9294° 10.6933 1 33 1.43 209 2 6192 13.80:0.03 8.95 0.60 0 37
Pescia Pietrabuona 43.9294° 10.6933° 2 44 0.29 242 3.5 6644 13.90+0.03

Ps: spontaneous track density
pi: Induced track density in external detector
Pp : induced track density in external detector adjacent to dosimeter glass

Age disp: Age Dispersion

450 Table 7 Peak Ages with standard error and size of major peaks (%).
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sample Sampling Site Peak Age (Ma) £ 16 and size of major peaks

Vara Piana Battolla | 5.9 | /11 [ 35%) | 13 | %09 |(65%)| 1453 |*573 a1z | (1%)
Magra2 Pontremoli 52|05 | (79%) | 13.4| %18 |(21%)

Magral Isola 5.1 s (28%) | 8.2 %07 (60%)| 12.3 % 6a (12%)
Serchio Piazza al serchio | 7.5 | %05 | (93%) | 18.3| ™% 66 | (6%) | 99.2 [P%/7aa| (299)
Lima2 Cutigliano 61| 04 |(93% | 17.4] %50 | 7%

Limal Borgo a Mozzano | 5.4 +0'6/-0.6 {100%)

Bisenzio Vaiano 53 +O'5/_0,5 (90%) | 29.4 +7'5/75,0 (10%)

Pescia Pietrabuona | 8.0 |05 | 92%) | 245 | % a7 | (7%) | 1001 |78% a6 | (2%)

3.2 Geothermal gradients and erosion rates

We report initial geothermal gradients (Go) and final geothermal gradients (Gy) using the two approaches described in the
methods. Given a Go = 25 °C/km common to all samples, Gr »s ranges from 27.4 to 55.2 °C/km for AHe samples (Table 8)
and ranges from 31.2 to 49.7 °C/km for AFT samples (Table 9). Using the second method based on modern heat flow
measurements, Go heatiow for AHe samples ranges from 9.3 to 42.2 °C/km (Table 8) and ranges from 12.4 to 38.0 °C/km for
AFT samples (Table 9). Relative to the Gy 25, Gr neaifiow derived from Pauselli et al. (2019) are consistently lower, where all
samples lie left of the 1:1 trendline for AHe samples (Fig. 6¢) and all but one lie left of the 1:1 trendline for AFT samples (Fig.
6b). In contrast, Gr neafiow derived from della Vedova et al. (2001) are highly variable, although the majority lie to the right of
the 1:1 line for both AHe (Fig. 6¢) and AFT (Fig. 6b) samples, indicating that these values are higher relative to Gy 2s.

Erosion rates calculated using the two methods for estimating geothermal gradients also illustrate different trends for the della
Vedova et al. (2001) and Pauselli et al. (2019) heat flow estimates. Erosion rates derived from Gy »s plotted against erosion
rates derived from della Vedova et al. (2001) Gt heatfiow lie mostly on the 1:1 trendline for both AFT and AHe samples (Fig.
6¢,f) and are thus similar. In contrast, erosion rates calculated with Pauselli et al. (2019) Gy heanow are lower relative to erosion

rates derived from G 25, but always by a factor of less than two (Fig. 6¢,f).
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km/My on the Ligurian side. AHe erosion rates on the Adriatic side are more variable relative to the Ligurian side, particularly
in the southeast region of the field area (Fig. 7c—d). Similar to the bedrock AFT erosion rates, the highest AHe erosion rates

are found on the Adriatic side near the drainage divide and are lowest near the Ligurian coastline (top row, Fig. 8).

Calculated with Gr heatfiow, the pattern of erosion across the drainage divide is similar to the pattern for erosion rates calculated
with Gy 25 (middle row, Fig. 8). On the Adriatic side, erosion rates inverted from AFT bedrock and detrital ages vary between
0.34 and 1.63 km/My and between 0.88 and 1.44 km/My, respectively. On the Ligurian side, AFT bedrock erosion rates vary
between 0.26 and 1.28 km/My, and detrital AFT erosion rates vary between 0.34 and 0.78 km/My. Erosion rates derived from
AHe ages range from 0.17 to 1.92 km/My on the Adriatic side and from 0.10 to 1.02 km/My on the Ligurian side. Detrital
AFT erosion rates on the Adriatic side are higher relative to the Ligurian side, regardless of the method used for constraining
the geothermal gradient. However, calculated from Gg heatiow » detrital AFT erosion rates on the Adriatic side are up to a factor

of two higher than erosion rates calculated with Go 25 (Fig. 8).
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calculated with Gt heatnow uiddle row, a-d). The length of the detrital AFT boxes reflects the distance from the sample location to

the catchment headwaters where the erosion rate is valid. Swath profile locations are shown in Fig. 3a. In the Bologna swath profile,

one AHe sample could not be resolved for an erosion rate with Gt neatfiow,

3.3 Paired ages

Of the 30 paired samples analyzed here, erosion rates for two samples could not be resolved (Table 12), due to the similarity
in ages between the AFT and AHe thermochronometers (sample C16) or due to an AHe age that is older than the AFT age
(sample C22). Six paired samples are located on the Ligurian side of the orogen, and the remaining 22 samples are located on

the Adriatic side of the orogen (Fig. 9a).

Erosion rates from samples on the Adriatic side vary from ~0.3 to 5.2 km/My (Table 12). Twelve samples illustrate an increase
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through time is increasing, and blue circles indicates locations where the erosion rate through time is decreasing.

Table 12 Erosion rates and parameters for paired AFT-AHe thermochronometer samples.
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Mean

Sample Correcte  Mean Erosion Elevati Erosion

Elevatio dAge Elevati t; Gy Gy Rate D T on t Gy Gy Rate D, T

ID  Latitude Longitude M (kM) | method (Ma) on(km} (Ma) (°C/km) (°C/km} (km/My) (km)  (°C) |method (km) (Ma) (°C/km) (°C/km) (km/My) (km)  (°C)
® C11 44.00 10.81 0.95 AFT 3.19 064 339 3378 35.15 0.46 1.47 117.40 | AHe 067 661 3985 41.07 0.25 153 6196
E c23 44.02 10.93 0.88 AFT 0.43 069 523 6.34 36.79 5.09 2.19 138.26 | AHe 072 477 39.05 40.72 0.35 148  64.01
c c34 44.42 9.95 0.51 AFT 5.37 082 677 3014 32.02 027 147 11363 | AHe 085 323 3454 36.57 0.42 115 6411
g 52 44.01 11.50 0.36 AFT 197 059 607 11.42 20.78 159 3.13 12326 | AHe 066 393 2341 25.08 0.52 178 6235
g 03GBO7 | 44.12 10.06 0.68 AFT 230 036 440 2535 31.29 0.77 176 12235 | AHe 036 560 3435 35.84 0.34 173 62.86
03RE20 | 44.10 10.33 1.06 AFT 2.26 076 476 2427 31.01 0.82 184 12276 | AHe 081 524 33.98 35.72 0.37 174  63.04
1929 44.04 11.50 0.70 AFT 4.25 062 7.85 13.16 16.43 0.61 2.61 11470 | AHe 070 215 18.23 2272 161 266 67.83
50320-19 44.26 10.66 111 AFT 5.65 098 835 2582 27.17 0.16 0.89 108.66 | AHe 1.02 165 2822 35.41 170 196 7278
50320-14 44.26 10.66 111 AFT 2.66 098 7.66 24.38 30.40 0.53 1.40 11945 [ AHe 1.02 234 3204 36.54 0.96 177  69.28
AP52 43.91 11.72 0.57 AFT 2.68 080 758 9.81 16.26 121 326 11927 | AHe 0.84 242 1823 21.66 127 244  66.08
AP53 43.93 11.66 0.91 AFT 2.77 081 417 1630 20.55 1.02 2.84 119.53 | AHe 081 583 2420 25.47 0.39 2.09 6074
AP 54 43.96 1167 0.69 AFT 3.17 075 757 11.58 16.74 0.93 2.95 117.93 | AHe 081 243 18.68 22.33 131 252 66.51
AP 55 44,01 11.69 1.07 AFT 5.32 067 7.42 13.60 15.55 0.49 2.60 112.30 | AHe 072 258 17.52 2141 1.50 3.13 67.07
AP 57 44.00 1172 0.45 AFT 178 069 818 6.12 15.23 2.04 3.62 122.67 | AHe 075  1.82 16.93 21.92 1.93 255 68.58
APS 44.12 1143 0.40 AFT 2.03 067 813 7.33 15.42 1.66 3.38 12143 | AHe 067 187 17.12 22.00 184 252 6813
Cc1 44.11 11.00 0.50 AFT 2.58 079 588 2588 32.66 0.67 172 12130 | AHe 076 412 3525 36.82 0.32 116 6244
g c10 44.14 1119 0.61 AFT 2.61 068 871 12.44 17.76 0.75 197 117.30 | AHe 077 129 1898 28.02 2.92 231 7322
% C13 44.02 10.86 0.70 AFT 2.43 073 563 32.26 39.36 0.58 141 12214 | AHe 075 437 4197 43.76 0.30 117 6340
:E C16 44.06 10.91 0.63 AFT 0.81 NA NA NA NA NA NA AHe  0.91 NA NA NA NA NA NA
:3_ 17 44,07 10.92 0.63 AFT 1.60 082 670 2357 3711 1.08 172 126.83 | AHe 092 330 3953 41.55 037 103 64.26
c2 44.00 11.01 0.83 AFT 2.38 055 588 2832 3573 0.66 1.57 12259 | AHe 066 412 3826 40.39 0.42 152  65.06

c22 44.04 10.93 0.85 AFT 0.75 NA NA NA NA NA NA AHe 0.82 NA NA NA NA NA NA
c29 44.73 9.39 0.32 AFT 136 080 666 1337 27.72 175 238 12755 | AHe 077 334 3005 31.87 0.43 122 63.09
3 44.01 11.03 0.78 AFT 0.45 0.58 545 6.08 36.98 5.15 232 138.07 | AHe 071 455 39.29 40.93 0.34 138 63.95
ca 44.03 11.04 0.68 AFT 0.84 062 754 1177 33.02 229 1.93 13226 | AHe 075 246 34.89 38.48 0.74 145 6827
cs 44.05 11.04 0.61 AFT 1.56 068 586 21.50 34.80 1.23 192 126.81 | AHe 080 414 3754 39.10 0.32 117 63.09
c6 44.10 11.04 0.65 AFT 2.58 074 758 23.04 29.78 0.61 1.57 12027 | AHe 078 242 3158 35.10 0.80 154 68.05
c7 4411 11.04 0.63 AFT 2.85 074 745 24.02 30.05 0.54 1.53 119.02 | AHe 075 255 31.88 35.26 0.74 151 6735
c8 44.12 1121 0.70 AFT 3.81 068 7.61 22.86 26.72 0.42 160 116.20 | AHe 076 239 2851 3228 0.94 177 6829
Cc9 44.11 11.20 1.00 AFT 5.28 0.67 7.88 22.23 24.01 0.26 139 11175 [ AHe 074 212 25.51 30.82 1.40 2.27 7019

3.4 Kinematic model

The orogenic wedge model shows how the spatial pattern of exhumation rates relates to the polarity of accretion and the pattern
of horizontal and vertical motion. Figure 10 illustrates the predicted horizontal velocities, uplift rates, and material paths
through the wedge for the spatially constant erosion rate setup (SCR) and the spatially variable erosion rate setup (VER).
Horizontal velocities at the toes of the wedge are equal to the rate of slab rollback and decrease to a minimum at the drainage

divide between the prowedge and retrowedge (Fig. 10a). Extension in the retrowedge results in higher horizontal erosion rates

towards the Ligurian coast.

To this end, we adjust the slab rollback rate within the ucccplublc range for our field area (6—11 km/Ma), and the AHe erosion

rates within the range of values calculated from Gr peat fiow (0.17—1.9 km/My) (Table 8). Since ZHe samples are only reset near
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rates across the wedge. (c) Material motion paths (lines within wedge) and particle positions and paths, equally spaced in time (solid, 1
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erosion rate (SCR) and variable erosion rate (VER) model setups, respectively. (a) and (d) Predicted age of thermochronometers
with distance along the wedge. (b) and (e) Predicted maximum burial depths for each particle path. (c) and (f) Material paths in
upper 8 km of kinematic model. Colored lines illustrate closure depths for AHe, AFT, and ZHe thermochronometers.

4 Discussion

4.1 Detrital versus bedrock ages

Previous studies place the onset of exhumation between 8 and 14 Ma (Balestrieri et al., 1996; Ventura et al., 2001), so it is not

clear whether the 12—13 Ma old population in the Vara and Magra samples represent partially or completely reset cooling ages.

However, these ages are consistent with high-elevation samples west of the Vara catchment that record slow cooling prior to

8 Ma. The 8.2 Ma age peak is present in the Magral sample, which drains the extensional intermontane basin within the

catchment, but is absent in the Magra2 sample, which drains only small tributaries upstream of the basin (Fig. 3b). Thus, the
20
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flow measurements, a large source of uncertainty for the geothermal gradients and ultimately, the erosion rates. To address
this uncertainty, we took two approaches. First, we assumed that the initial geothermal gradient in the region was uniform and
all variations in the modern geothermal gradient are due to advection in response to erosion. Second, we constrained the
thermal model to be consistent with the modern heat flow measurements and inferred an initial geothermal gradient that was

spatially variable.

The uncertainties in the modern heat flow measurements are evident in the erosion rate analysis, particularly when comparing
the range of Go heattow inferred from Gg heanow inputs that are calculated with heat flow measurements (Fig. 6a, d). However, it
is unclear whether the large range of Go_neatflow Values represents how the geothermal gradient may have varied in either space
or time at the onset of erosion. As the Northern Apennines evolved, sediments were accreted to the accretionary wedge shortly
after being deposited in a subsiding foreland basin, whose modern equivalents are the Po Plain and the Adriatic Sea. There,
modern heat flow values are generally low (< 50 mW m?) (della Vedova et al. 2001), although with significant spatial

variations (Pauselli et al., 2019), indicating that the present geothermal gradients in the foreland should be not higher than

The erosion rates resulting from these two analyses differ significantly: erosion rates from one analysis are a factor of two
different from the alternate analysis (Fig. 6). However, the two sets of results projected along swath profiles from SW to NE
show little difference in their spatial patterns across the main Apenninic divide (Fig. 8). The main differences are that the
erosion rates derived from G heatfiow Vary over a larger and higher range than those derived from Gy »s, and the maximum rates
are higher from G peafiow. In particular, the youngest detrital age populations give much larger rates on the Adriatic side than
on the Ligurian side with the analysis based on G neanow. These observations suggest that the erosion rates derived from Gg 25
may be more conservative estimates overall. However, the most important observation for the scope of this contribution
remains that the large-scale spatial pattern of erosion rates along the swath profile does not change with the employed analysis

method.

4.3 Erosion rate patterns

Bedrock cooling ages on the Ligurian side of the Northern Apennines generally vary between 4 and 10 Ma (Fig. 7a—b), with

only a few ages younger than 4 Ma. On the Adriatic side, bedrock cooling ages younger than 4 Ma are a large component of

on the Ligurian side are nearly all older than the youngest detrital AFT populations on the Adriatic side (Fig. 7a_and ¢).

Erosion rates derived from both bedrock and detrital thermochronometric ages suggest a difference between the Ligurian and

Adriatic sides that is valid at the regional scale, regardless of the method used for constraining the geothermal gradients. An
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exception to this general pattern may be the Alpi Apuane massif, which represents a structural culmination exposing a deep

section and where high exhumation rates from the latest Miocene to the present likely reflect post-orogenic processes of crustal

tend to be higher than erosion rates obtained from bedrock AHe ages (Fig. /f) reflecting a regional decrease in erosion rate.

This is particularly evident in the region east of the Alpi Apuane, at the main drainage divide north of Florence and in the Val )

d’Arno (Fig. 1 and 2). In contrast, on the Adriatic side, erosion rates derived from AHe ages (Fig. 7h) tend to be higher than

Paired thermochronometers on the same sample (as for instance, AFT and AHe) or age-elevation transects (AETS) also indicate

temporal changes in erosion rate. The majority of the paired age samples (12) from the Adriatic side illustrate an increase in

Valley extend farther south than the adjacent basins of the Serchio River and Bisenzio River, which flow to the Ligurian Sea
(Fig. 3a). Interestingly, the exhumation rates from the upper Reno River are similar to rates from the Serchio River, suggesting
that the upper Reno River presents an erosion rate signal akin to Ligurian Rivers, rather than to Adriatic Rivers, and are thus
resolving a consistent pattern of erosion rate in space, but not restricted to catchment boundaries. We also note that modern

erosion rates from cosmogenic nuclide concentrations in the upper Reno tributaries are at least a factor of three lower than

the Magra2 catchment area (Fig. 3a), all other samples consistently illustrate a decrease in erosion rate through time (Fig. 9¢).
Thus, the results from the paired thermochronometer ages on the Adriatic and Ligurian sides of the orogen confirm

the regional trends observed from the simple erosion rate analysis method.

The results from our paired ages analysis can also be discussed in the context of the AETs from Mt. Falterona, Mt. Cimone,
and Val d’Armo (see Fig. 1 for locations). Between 4 and 2 Ma, these AETs have previously been interpreted to reflect an
orogen-wide increase in exhumation and erosion rates, although there are notable differences between the results from the
profiles on the Adriatic side (Mt Falterona and Mt. Cimone) and on the Ligurian side (Val d’Arno) (Thomson et al., 2010).
The Mt. Falterona and Cimone AETs illustrate a two-fold increase in erosion rates between 4 and 5 Ma, from 0.29 + 0.1 km/My
to 0.58 + 0.23 km/My and from 0.22 + 0.09 km/My to 0.58 + 0.16 km/My, respectively (Thomson et al., 2010). Excluding the

samples from the upper Reno River Valley that illustrate a decrease in erosion rate through time, our paired ages analysis
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rates are higher than the average erosion rates calculated for the Mt. Falterona and Cimone AETs, although, given the high

uncertainties in our values, they are within the range of the AETs.

The results from the Val d’Arno AET are less straightforward, due to the fact that some samples illustrate a decrease in erosion
rate through time, while others illustrate an increase in erosion rate through time. When corrected for topographic and advection
effects, this AET shows a negative slope that was previously interpreted to reflect post-cooling tilting of the footwall block of
an extensional fault (Thomson et al., 2010). On the Ligurian side, cooling ages and erosion rates vary locally as a function of
elevation and of fault activity, and extensional faults can control differences in the exhumation pattern. However, in light of
our results from the simple analysis of erosion rates and the paired ages, this negative slope could also be interpreted as a
decrease in erosion rates, and thus would reflect a regional signal, rather than local tectonics. We infer that such regional scale-
differences must be controlled by first-order features of the Northern Apennines. In order to address the question of what could

control such differences, we compare two different kinematic models for the Northern Apennines orogenic wedge.

4.4 Kinematic model

The orogenic wedge kinematic models illustrate differences in cooling ages, maximum burial temperatures, and material
paths across the Northern Apennines, assuming simple continuum accretion and mass balance (Fig. 11). Using a spatially

constant erosion rate across the orogenic wedge (SCR) predicts that reset ages decrease from northeast to southwest and are

youngest on the retrowedge model boundary. While this pattern is consistent with observed ZHe ages that are reset only near _ — - Formatted: Not Highlight

retrowedge (Fig. 7a-d). In contrast, the variable erosion rate setup (VER) predicts minimum reset ages near the drainage 1, Formatted: Not Highlight

divide and maximum reset ages on the retrowedge, close to the model boundary.  The VER model does not predict any ZHe | Formatted: Not Highlight

* { Formatted: Not Highlight

~ | Deleted: The VER model is

ages, which are youngest near the drainage divide in the core of the Northern Apennines (Fig. 2).

. 1 Formatted: Not Highlight

1 Formatted: Not Highlight
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Vitrinite reflectance (VR) data provide an additional estimate for maximum paleotemperatures and burial depth and thus, an
additional calibration of the kinematic model. In the Northern Apennines, Ro values reach 5.1% at the Ligurian coastline
along the Mt. Gottero swath profile (Fig. 2a). With the exception of this profile, maximum VR values are generally within
the range of 1.5-2.5 % for the Mt. Cimone, Bologna, and Val d’Arno profiles (Fig. 2b-d). Maximum paleotemperatures from

VR are estimated at 200-,250°C in the core of the range and along the Ligurian coastline in the northwest (Fellin et al., _ - {: Deleted: -

2007), whereas paleotemperatures are 150-190°C in the Cervarola Unit (VR = 1.0-1.7%), and are 100-,110°C in the _ - | Deleted: -

Ligurian Unit (VR = 0.5-0.6%) (Ventura et al., 2001; Botti et al., 2004). Maximum paleotemperatures should correspond to
maximum burial depths; thus, we expect to find the maximum burial depths along the Ligurian coastline and near the

drainage divide in the Cervarola Unit. Both the SCR and VER models predict maximum burial depths near the Ligurian
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coastline, consistent with the trends observed in the Mt. Gottero and Val d’ Ao profile. Near the drainage divide on the

We can estimate maximum burial depths at the drainage divide, given the generalized relationship between Ro and burial
depth (Suggate, 1998), VR values, and a modern geothermal gradient. To estimate the modern geothermal gradient at the

drainage divide, we use G heatlow rates from the simple erosion analysis for AHe samples in the Cervarola Unit (Tables 1 and

kinematic model illustrate that the east to west particle trajectories, combined with lower erosion rates on the retrowedge by
a factor of 2, are consistent with the spatial pattern of cooling ages and maximum paleotemperatures estimated from both

vitrinite reflectance and thermochronometric data.

The particle paths in the VER kinematic model, combined with the lower erosion rates in the retrowedge, suggest an
explanation for the apparent decrease in erosion rates with time on the Ligurian side of the Apennines. As rocks are advected
from prowedge to retrowedge, the vertical component of their motion decreases (Fig. 10f). Particle paths where the AFT

cooling age is set in the prowedge, but where the AHe cooling age is set in the retrowedge, will record this change as a

temporal deceleration of cooling rate. However, rather than representing a change in surface erosion rate, the change in
cooling rate reflects the motion of the rock from the fast erosion rate prowedge into the low erosion rate retrowedge. The fact
that the decelerating sites are all found to the southwest, regardless of drainage basin (inset, Fig. 8¢) supports the idea that

this is a tectonically controlled spatial pattern.

The acceleration of exhumation observed in the prowedge is not explained by the kinematic model. The acceleration of

exhumation may be related to a change in the timing or rate of slab rollback, which has varied along strike and across the

orogen (Faccenna et al., 2014; Rosenbaum and Piana Agostinetti, 2015) and is a first-order tectonic control on exhumation

and erosion (Thomson et al., 2010). We allow for a range of rollback rates that are consistent with rates for the field area,

although the kinematic model is not able to resolve variability in rollback rates in either space or time. Alternatively, the, ~  _ -

apparent increase in exhumation rate might be explained by spatial changes in tectonic uplift and an associated increase in
erosion rate, although there is no strong evidence for this in the spatial pattern of ages or in the geomorphology, which
should show higher uplift rates in the range interior. In contrast, the highest uplift rates are more often observed at the
mountain front (Picotti and Pazzaglia, 2008). It is more likely that this is a true temporal increase in erosion rate, which
could be associated with an increase in accretionary flux as the mountain front advanced into the Alpine sediments of the
Adriatic foreland. The foreland basin fill thickened as Miocene alpine sediments filled the foredeep and again in the
Quaternary as glacial sediments filled the Po plain and parts of the Adriatic Sea. The increase in accretionary flux would lead

to an increase in wedge size and in erosion rate, processes that our kinematic model does not include. The increase in erosion
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rate could also be associated with a direct, externally-driven increase in surface erosion rate associated with Quaternary
climate change. Although the Apennines were not significantly affected by alpine glaciation, the cooling and strong cyclicity

of the Quaternary climate may have led to an increase in erosion rate through the efficiency of periglacial processes and

hillslope processes such as landsliding (Amorosi et al., 1996; Borgatti and Soldati, 2010; Simoni et al., 2013; Wegmannand - [ Field Code Changed

N ‘[ Formatted: Italian (Switzerland)
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5 Conclusion

We present evidence from multiple thermochronometers that the spatial and temporal pattern of erosion rates in the Northern

Apennines orogen differs at the regional scale. New detrital AFT cooling ages from the Ligurian side of the orogen are similar

to AFT bedrock cooling ages from the Ligurian side, illustrating that the detrital ages reflect a true exhumation signal across

the Northern Apennines. Time-averaged erosion rates from individual thermochronometers predict faster erosion rates derived

from AHe ages on the Adriatic side relative to the Ligurian side. These results are consistent with erosion rates derived from

paired AFT-AHe thermochronometer samples, which illustrate an increase in erosion rates through time on the Adriatic side,

- Deleted: across the orogen

depths, and modern uplift rates across the orogen, can be replicated with,a kinematic model for an asymmetric orogen that - '1, Deleted:

includes both frontal accretion and underplating modes of crustal accretion, a slab rollback rate of 10 km/My, and prowedge AN . | Deleted: is

erosion rates that are a factor of two higher than retrowedge erosion rates. This model suggests that that observed decelerations | Deleted: also consistent with

(D N N W

on the retrowedge are the result of the spatial advection of rock to the SW, although the observed acceleration of erosion rates
on the prowedge requires external forcing, either through an increase in accretionary flux or through more erosive conditions

linked to climate change.
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