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In this manuscript the thermal effect of melt infiltration into the base of the continental lithosphere is studied focusing 

on the thermal disequilibrium between melt and ambient rock. While thermal disequilibrium in porous flow is well 

studied in more technical literature, only a few papers quantitatively addressed this effect in the recent geoscience 

literature. Therefore this paper is timely and new. It is shown that indeed thermal disequilibrium may be important 

under certain circumstances near the lithosphere asthenosphere boundary explaining some observational data. Useful 

timescales and length scales are provided and are applied to observations. I recommend publication after some revision. 

Major points  

1.) A major problem seems to be the neglect of conductive heat flux, i.e. the diffusion terms which are missing in eqs. 

1 and 2. This is an assumption which stems from the old Schuman paper (1929), and is subsequently applied, e.g. by 

Spiga and Spiga (1981). Spiga and Spiga (1981) keep the diffusion term in their non-dimensionalized equations (but 

neglect it later) which reads in the notation of Roy: 
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where the primes denote non-dimensional quantities. This term and a similar term for the solid temperature needs to 

be added to the right hand sides of equations B1 and B2. Given some temperature variations with a certain non-

dimensional wavelength 𝜆′ one can actually check the magnitude of this term with respect to a) the advective term 
𝜕𝑇𝑓′

𝜕𝑥′
 

or b) the heat exchange term 𝑇𝑓
′ − 𝑇𝑠′ in eq. (B1). Typically 𝜆′ is of the order 10 to 20 according to Figure A2 or A4 or 

shorter at earlier times. Decomposing the temperature into Fourier series we may insert typical temperature modes 

𝑇𝑓
′ = 𝑇𝑓0

′ 𝑠𝑖𝑛
2𝜋𝑥′

𝜆′  into eq. B1 with the added diffusion term, where 𝑇𝑓0
′  is the time-dependent amplitude of the Fourier 

mode. Evaluation of the resulting equation shows that neglect of the diffusive term with respect to a) the advection 

term or b) the heat exchange term requires 
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𝜆′ )
2

≪ 1     (2) 

Inserting minimum and maximum numbers of used parameters from Table A1 of the manuscript shows that conditions 

(2) are severely violated. Only for the most extreme parameter combinations of k = 10-5 W/(m3K) and 𝑣 = 100 mm/yr  

the left hand sides on (2) are of order 0.1, in all other parameter combinations they are larger and violate the conditions. 

One can also write 𝐶 in terms of Peclet numbers based on the length scale 𝑑:  
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where 𝜅𝑓 or 𝜅𝑒𝑓𝑓  is the thermal diffusivity of the fluid or the effective interfacial boundary layer, respectively. Both 

Peclet numbers are probably very similar and can be merged to a characteristic Peclet number Pe. Using the equations 

given in the paper the relations (2) can be rewritten as 

𝑃𝑒 ≫ √
𝐴(1−𝜙)

𝜙
(
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   (4) 

where A is a constant defined in the paper (2, 4, or 6) and n = 1 based on relation (2 a) or n = 2 for relation (2 b). From 

eq. (4) it follows that the neglect of the diffusion term is justified for Peclet numbers of order 1 to 10 and larger, while 

the Peclet numbers used in the paper are between 3 ∙ 10−6 to 0.3.  

Therefore I strongly recommend to include the diffusive term into the calculations of thermal non-equilibrium and 

rerun the models. Note that due to numerics you probably have some numerical diffusion in your model which may be 

of similar order as the neglected diffusion term. Thus, you should do some resolution tests. 

2.) The critical parameter is the heat transfer coefficient 𝑘. Already in Fig. 1 𝑘 is given as proportional to (1 − 𝜙)/𝑑2 

where 𝜙 is the porosity and 𝑑 is the channel distance. From the physics point of view it is proportional to (1 − 𝜙)/(𝑑 𝛿)  

where 𝛿 is the microscopical thermal boundary layer thickness at the solid-fluid interface (Schmeling et al., 2018). 

Only for long period thermal variations 𝛿 is of the order of 𝑑.  

2.1) In Appendix C the heat transfer coefficient is discussed in more detail. There seems to be a confusion about the 

constant 𝐴 in the equation for the specific surface area 𝑎𝑠𝑓 ≈ 𝐴(1 − 𝜙)/𝑑 (note that you should use the symbol “≈” 

or “≅” as “approximately equal” and not “~”  as “proportionally” as you do correctly in the notation of 𝑘 in Fig. 1.). 

A back-of-envelope calculation results in 𝐴 = 2 for  planar channels, while for cylindrical tubes it is more complicated 

if written in terms of 𝑑 (the formula contains square roots of 𝜙). Instead, for cylindrical tubes it can be written as 𝑎𝑠𝑓 ≈

4𝜙/𝑑𝑓 where 𝑑𝑓 is the tube diameter. But correctly, it is 6 for spherical or other grains embedded in the fluid phase. 

In Chevalier and Schmeling (2022) we discuss some of these relations. 

2.2) In eq. C1 and C2 the minus sign should be replaced by a plus (Dixon and Cresswell, 1979, eq. 29; Stuke (1948), 

eq 57). For 𝛽 values of 10, 8, 6 are assumed for spherical matrix grains, cylinders or slabs, respectively. Adopting 

Dixon and Cresswell’s arguments means that short period effects (higher temporal modes as considered in Stuke, 1949) 

are neglected. This results from their assumption of taking Stuke’s (1949) heat transfer coefficient (eq. 57 in Stuke 

1949) with Φ =
1

𝛽
+ higher temporal orders but then neglecting these higher orders. With this assumption you get the 

effective conductance (your eq. C2). In my understanding, accounting for these higher orders is physically equivalent 

to taking the effective thermal conductivity 𝐶𝑒𝑓𝑓  and then defining the effective conductance by 𝐶𝑒𝑓𝑓/𝛿 where 𝛿is the 

microscopical thermal boundary layer thickness. By neglecting the short term higher orders one implicitly assumes 

that the thermal boundary layer thickness has reached the order of 𝑑. Only then the appropriate 𝑘 is given by 𝐶𝑒𝑓𝑓𝑎𝑠𝑓/𝑑. 

In other words, in your choice of 𝑘 you underestimate short term interfacial heat exchange. The problem with choosing 

𝛿 rather than 𝑑 in estimating the effective conductance is that 𝛿 is time-dependent, and theoretically includes the full 

thermal history of the two-phase flow. In Schmeling et al (2018) we studied this effect in detail and showed that 

choosing 𝛿 = 𝑑 describes the thermal non-equilibrium only for intermediate term evolutions, not short period thermal 

variations (e.g. Fig. 8 in that paper). For 𝛿 < 𝑑  the heat transfer coefficient 𝑘 will be larger than yours, so you probably 

overestimate thermal non-equilibrium for short term thermal variations. My recommendation: As it is quite common 

in literature to use the 𝛿 = 𝑑 assumption for simplicity you should keep this assumption and address and discuss this 

point.  

3.) You don’t say how you solve the equations. Please add a short section on the numerical method, grid resolution 

etc. 



4.) The Appendices D and E contain very interesting model results. In my opinion they should be moved to the main 

text. 

5) Discussion. In section i) you introduce the term “disequilibrium heating”. This term should more rigorously be 

defined. In this section (e.g. Line 208) you estimate the heat budget due to disequilibrium heating by multiplying the 

excess infiltration temperature Δ𝑇 by 𝑘 to get a volumetric heat generation rate. According to eq. (2) you should use 

the disequilibrium temperature difference 𝑇𝑓 − 𝑇𝑠 rather than Δ𝑇, to get an estimate of the contribution of 

disequilibrium heating. From your figures 2, A2 and A3  𝑇𝑓 − 𝑇𝑠 is of the order of 10-2 to 10-1 of  Δ𝑇. These temperature 

differences are also consistent with the estimates of the magnitude of thermal non-equilibrium by Chevalier and 

Schmeling (2022) for Peclet numbers of order 0.1. Thus the estimated LAB heat budget in line 208 should be one to 

two orders of magnitude smaller. Yet, the advective heat transport by infiltration flow in thermal equilibrium might be 

larger and would be nice to be estimated here. Perhaps these estimates do fit better to the estimates of the heat released 

by crystallization you estimate in line 222. 

6) Line 258, 260. Here you speculate about rheological weakening due to disequilibrium heating. Again, assuming 100 

K as a possible temperature increase is a probably an overestimate given that the disequilibrium temperature difference 

𝑇𝑓 − 𝑇𝑠 is one to two orders of magnitude smaller than Δ𝑇. And: I have checked the activation energies and volumes 

of Hirth and Kohlstedt (2003) and I don’t get your factors of order 1/62. I get something like 1/20 at most for constant 

stress, and 1/3 for constant strain rate. Given the smaller temperature difference of order 10 K reduces this effect even 

more to a factor 1/1.3 or something like this, which is still worthwhile to mention. 

Minor points 

7.) Line 308: you may note here that 1/z is the dimensionless channel velocity (but see also comment 13). 

8.) Line 334. Are 𝜙𝑖𝑛 and 𝜙𝑜𝑢𝑡 identical to 𝜙𝑓and 𝜙𝑠, respectively? Then you should use same symbols. 

9.) Line 337. You choose 𝐴 and 𝛽 independently, but they are geometric parameters for spheres, tubes and spheres. 

Particularly 𝛽 is defined for solid spheres, cylinders and plates, while 𝐴 is defined for fluid tubes, etc. 

10) Line 340 to 345 or section 2:  Please specify the boundary conditions more rigorously, for both 𝑇𝑠 and 𝑇𝑓 at x = 0 

and at the other side of the domain. You should clearly state that 𝑇𝑠′ is also raised to 1 while you increase the influx 

temperature of  𝑇𝑓′ . 

11.) Line 363. Delete “migration” 

12.) Line 366 – 367 and line 143 – 149. The difference between the disequilibrium front velocity of Kuznetsov (1984) 

and your eq. 3 is puzzling and should be discussed. Is it due to different scaling? Although both, Kuznetsov’s and your 

eq. 3 are given as dimensional equations? Or is it an effect of using perturbation theory versus full solution of the 

PDE’s? Or is it a misprint in Kuznetsov? Anyway, how did you derive and justify eq. (3)? 

13.) Fig. A2c causes confusion. From the x-label or figure caption we have  

𝑥′𝑓𝑟𝑜𝑛𝑡 =  
1

𝑧
𝑡′.             (5) 

This implies that the disequilibrium front has the non-dimensional velocity 1/z.  But the fluid velocity may be written 

as 

𝑣𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =
𝑥𝑓

𝑡
           (6) 

where 𝑥𝑓 is the position of a fluid particle. If we substitute 𝑥𝑓 and 𝑡 using the non-dimensionalization rules one gets 



𝑣𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =
𝑥𝑓

′  𝑣𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑠

𝑡′  𝑘𝑓
=

𝑥𝑓
′   

𝑡′ 𝑣𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑧 = 𝑣′𝑐ℎ𝑎𝑛𝑛𝑒𝑙  𝑣𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑧      (7) 

with 𝑣′𝑐ℎ𝑎𝑛𝑛𝑒𝑙  as non-dimensional fluid velocity. After elimination of 𝑣𝑐ℎ𝑎𝑛𝑛𝑒𝑙  from both sides we have 

𝑣′𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 1/𝑧     (8) 

which is in contradiction to eq. (5). Can you help me (and potential readers)?  

14.) Line 383. Sentence strange, probably delete one of the “is” or insert “which” 

15.) Line 390 – 391. Which “blue lines”? Do you mean the dashed lines or the double arrows?  

16.) Line 391: “wavelength” probably to be replaced by “period” 

17.) Line 149. I don’t see the strong function of 𝑘 in Fig. A4. 

18.) Line 150 – 159. You clearly describe the exponential decay of disequilibrium. Could you elaborate a bit on the 

decay rate for the step function case?    

19.) Line 163: delete one of the parantheses “)” in the first tanh term 

20.) Conclusion: Here I suggest to repeat the meaning of the abbreviations CLM, TRZ again 
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