
1 

 

Failure mode transition in Opalinus Clay: a hydro-mechanical and 

microstructural perspective  

Lisa Winhausen1, Kavan Khaledi1, Mohammadreza Jalali1, Janos L. Urai2, Florian Amann1,3 
1 Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Lochnerstraße 4-20, 52064 Aachen, 

Germany. 5 
2 Institute of Tectonics and Geodynamics, RWTH Aachen University, Lochnerstraße 4-20, 52064 Aachen, Germany. 
3 Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 

17, 52062 Aachen, Germany 

Correspondence to: Lisa Winhausen (winhausen@lih.rwth-aachen.de) 

 10 

 

Abstract. The way rocks deform under changing stress conditions can be described by different deformation modes, which is 

fundamental for understanding their rheology. For Opalinus Clay, which is considered as a potential host rock for nuclear 

waste, we investigate the failure mode as a function of applied effective stress in laboratory experiments. Therefore, we 

performed consolidated-undrained triaxial tests at different consolidation stresses in which samples were loaded parallel to 15 

bedding, and analysed the deformation structures using ion-beam polishing and electron microscopy. With increasing effective 

confining stress, the results show a transition from brittle-dominated to more ductile-dominated deformations, localising in 

distinct shear bands. Both effective stress paths and microstructural analysis indicate a tendency towards less dilation in the 

shear zones for higher effective stresses. Triaxial test results suggest a non-linear failure envelope. The non-linearity of the 

failure envelope is associated with decreasing dilation with increasing effective stress accompanied by changes in 20 

microstructural deformation processes, which explain the decreasing friction angle. For the first time, we can verify that the 

observed non-linear failure envelope is due to the gradual transition from brittle- to more ductile-dominated deformation on 

the microscale controlling the bulk hydro-mechanical behaviour of Opalinus Clay. 
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1 Introduction 25 

Many shales and other clay-rich rocks are considered as natural barriers in geo-engineering applications such as the disposal 

of nuclear waste (e.g. Sellin and Leupin, 2013). Therefore, a proper description of the material’s properties and behaviour is 

required for developing constitutive models to predict its physical behaviour upon effective stress changes. Past studies 

analysed the hydro-mechanical and failure behaviour of clay-rich rocks considered as host rocks for nuclear waste disposal 

(e.g., Amann et al., 2012; Bésuelle et al., 2014; Wild and Amann, 2018a; Braun et al., 2021). Here, a crucial aspect is the 30 

failure mode transition controlled by brittle- to ductile-dominated mechanisms and their implications on the microstructural 

development of the deforming geomaterial.  

For clay-rich rocks under controlled laboratory conditions, the style of deformation has been inferred from the bulk (hydro-) 

mechanical response such as stress-strain curves and effective stress paths as well as macroscopic inspections of failed samples 

(Tchalenko, 1970; Niandou et al. 1997; Nygard et al., 2006; Amann et al., 2012; Wild and Amann, 2018a; Wild and Amann, 35 

2018b).  However, comprehensive models including structural changes and processes on the microscale level have not been 

developed so far.  

The transition between failure modes and style of deformation has been analysed for many rock types such as sandstone, 

limestone, marble, and igneous rocks (e.g. Gramberg, 1965; Wong et al., 1997). Controlling factors for the style of deformation 

are effective stress, temperature, strain rate, fluid content and type of fluid (Evans et al., 1990). Three post-failure deformation 40 

modes are usually distinguished, which are the brittle, the semi-brittle or brittle-ductile, and the ductile mode. In triaxial 

compression, stress-strain curves show a distinct post-failure stress drop for the brittle mode (as opposed to the ductile mode) 

due to the strain softening behaviour. From a structural perspective, the spatial distribution of inelastic strain changes from 

localised shear fractures in the brittle field to semi-brittle flow and eventually to fully plastic flow without localised 

deformation and zero dilatancy in the ductile field (Evans et al., 1990). On a microscale, brittle deformation is typically 45 

associated with cataclasis including micro-cracking and grain communition, as opposed to distributed micro-cracking, 

twinning, flattening and bending of grains, which are the prominent mechanisms in ductile deformation (Yongnian et al., 1989; 

Menéndez et al., 1996; Wong et al., 1997). Over the decades, many models have been developed to predict the transition 

between these failure modes (e.g., Gramberg, 1965; Mogi, 1966, Goetze, 1971). For clay-rich geomaterials, the type of 

deformation is furthermore influenced by the consolidation state (Ingram and Urai, 1999; Nygard et al., 2006). Accordingly, 50 

over-consolidated clays tend to brittle failure and normal-consolidated clays tend to fail in ductile manner. 

Major findings on shear-induced structures in clays have been made by Skempton (1966),  Morgenstern and Tchalenko (1967) 

and Tchalenko (1968), who showed that shearing results in complex fabrics including kinks bands, the formation of multiple 

slip surfaces and shear lenses. Clays, natural and remoulded, have been further investigated on the micrometre-scale in SEM 

studies focusing on fabric changes upon uniaxial and triaxial loading. Different deformation processes can be identified, e.g., 55 

porosity reduction due to pore collapse of inter- and intra-aggregate pores of clay aggregates (Delage and Tessier, 2020), 

progressive reorientation of clay particles (Djéran-Maigre et al., 1998; Hattab and Fleureau, 2011), and the breakage of inter-
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aggregate bonds between clay aggregates (Hattab et al. 2013). Compared to clays, however, clay-rich rocks and especially 

shales are often characterised by a considerable maturity due to their burial history and diagenetic processes, and may show a 

different macro- and microscale deformation behaviour. In addition, the microstructural deformation and underlying processes 60 

of clay-rich materials are complex because of i) the polymineralic nature with contrasting mineral stiffnesses leading to elastic 

mismatches between different grains (Kranz 1983), and ii) the anisotropy due to preferred pore and mineral orientation 

(Attewell and Sandford, 1974). 

Recent high-resolution microstructural studies on clay-rich rocks deformed under triaxial compression provide insight into the 

deformation structures and associated mechanisms, which include micro-cracking, grain bending and rotation, as well as 65 

particulate flow localised within distinct shear zones (Desbois et al., 2017; Oelker, 2020; Schuck et al., 2020; Winhausen et 

al., 2021). Winhausen et al. (2021) found from microstructural analysis of an Opalinus Clay sample deformed under triaxial 

compression that brittle and ductile failure mechanisms at grain-scale may coexist, i.e. micro-cracking and bending of 

phyllosilicates. This coexistence and the effective stress-dependent deformation microstructures found in other shales (Ibanez 

and Kronenberg, 1993; Petley, 1999) suggest a transitional failure behaviour on the microscale likely due to increasing 70 

effective confining stresses. The influence of effective stresses on failure mode and micro-deformation processes was, 

however, so far not systematically analysed. This study attempts to relate the abovementioned processes on the microscale to 

the hydro-mechanical deformation behaviour of Opalinus Clay under various effective stresses.  

 

2 Materials and Methods 75 

2.1 Material description and preparation 

Opalinus Clay (OPA) from the Mont Terri Underground Research Laboratory in Switzerland is a soft clay shale formation, 

whose shaly facies is characterised by a dark-gray, clay-dominated matrix with silt- to sand-sized components like quartz, 

mica and feldspar grains, and calcite bioclasts such as fossil shells (Houben et al., 2014;  Lauper et al., 2021). The mineralogy 

is mainly composed of 50–70 % clay minerals, 10–20 % quartz, 7–25% carbonate and a minor amount of accessory minerals 80 

such as titanite, pyrite, and feldspars (Thury and Bossart, 1999; Klinkenberg et al., 2009). A large portion of the porosity is 

present in the clay matrix, which follows a power-law distribution with pore areas in the range of a few square-nanometres 

and smaller (Houben et al., 2014). The pronounced macro- and microscopic bedding, governed by the preferred orientation of 

grains and pores, causes a transversal-anisotropic, hydro-mechanical behaviour (Sarout et al., 2014; Wild and Amann, 2018a).  

2.2 Experimental Procedure 85 

The experimental assemblage consisted of a pressure vessel, two pressure generators for confining oil and pore water pressure, 

and an electro-mechanical axial load generator (i.e. servo motor). The system was operated using a 14 kHz digital controller. 
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Figure 1 shows the experimental setup consisting of the pressure cell containing the sample and the in-vessel sensor 

assemblage. 

The samples with dimensions of 60 mm length and 30 mm diameter were jacketed by a fluorine rubber (FKM) sleeve sealed 90 

from the confining oil fluid. Displacements were measured by three axial LVDTs (linear variable differential transformer) and 

a diametral extensometer. To avoid corrections for the deformation of the jacket, the radial sensor is in contact with the sample 

by steel plugs, which are embedded in the rubber sleeve. Two pressure transducers were installed at the top and bottom of the 

sample to measure the fluid pressure. For a uniform pore fluid distribution along the sample surface, sintered stainless-steel 

plates were placed above and below the sample (Fig. 1). An artificial brine was prepared after Mäder (2011), which was used 95 

to re-saturate the samples. The axial load was measured by an internal load cell of 100 kN capacity situated below the sample. 

This way, frictional forces between piston and sealing are excluded from the measurement. The experiments were conducted 

under a constant ambient temperature of 30° C in a climate chamber. 

Macroscopically intact P-samples, i.e., the maximum principal stress is applied parallel to the samples’ long axes and parallel 

to the bedding, were subjected to a total confining stress of 1.5 MPa and a back pressure of 0.3 MPa to initiate the sample 100 

saturation process. This effective stress of 1.2 MPa was considered, on one hand, to be sufficiently high to minimise swelling 

during the re-saturation process and, on the other hand, low enough to allow for testing in lower effective stress regimes at full 

saturation. After both strains were constant and water uptake was accomplished, the sample was subjected to several checks 

for the Skempton B-value, i.e. B-checks (Skempton, 1954), by increasing the total confining stress by 0.5 MPa increments 

under undrained conditions. These B-checks have been repeated until the change between two successive B-values was less 105 

or equal to 0.05. The complete saturation processes, i.e. initial saturation and B-check phase, lasted around 117 to 148 hours. 

In the consolidation stage, the confining stress and pore water pressure were increased simultaneously to the desired effective 

stress over a period of 5 hours. Consolidation was achieved once the backflow of pore water, as well as changes in axial and 

radial strains were zero. The complete consolidation process lasted around 45 to 66 hours. In the final shearing stage, the 

sample was subjected to differential stress by increasing the axial load under undrained conditions. At a constant axial strain 110 

rate of 5.0E-07 1/s shearing was performed until no differential stress changes occurred and the samples reached the residual 

effective strength.   

 

2.3 Sample treatment and microstructural analysis 

The workflow for the microstructural analysis is presented in Fig. 2. After the tests, the samples were carefully removed from 115 

the jackets and dried at room conditions followed by oven-drying at 105°C to constant weight. To maintain the microstructure 

during further preparation, the samples were subjected to a twofold stabilization by epoxy resin including the all-around surface 

and the surface cut normal to the shear band. This surface was manually polished using SiC grinding papers and documented 

by digital photography. Afterwards, sub-samples with sizes of 25 – 350 mm² along the shear zone were prepared for the 

successive Argon-ion beam polishing using a Leica TiC3X machine. Broad-ion-beam (BIB) polishing was applied for a shorter 120 
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period of 15 to 30 minutes at 5 kV with an ion beam incident angle of 10.5° and a second period of 4 to 6 hours at 3 kV with 

an incident angle of 4.5°. The samples were coated by an approximately 7 nm thick layer of tungsten using a Leica ACE600 

coating machine. Multiple images were stitched to automatically create larger mosaics using the Aztec software. 

SEM-imaging was conducted using a Zeiss SUPRA-55 equipped with SE2- (secondary electron), BSE- (back-scattered 

electron) and EDS-(energy dispersive X-ray) detectors , of which the first was used for phase segmentation, i.e., solid material 125 

or pore, and the latter two were used for the identification of mineral phases, i.e., heavy or light minerals and chemical 

composition. The workflow for the microstructural image analysis consisted of producing overview BSE-SEM maps at 100x 

to 150x magnification, and for a detailed analysis at grain scale, BSE- and SE2-images were taken from regions of interest at 

various magnifications from 5,000x to 40,000x. Additionally, EDS-element maps were created in combination with BSE-

images for a more quantitative determination of mineralogy. 130 

3 Results 

3.1 Water content and test configuration 

Table 1 shows the water content before and after testing. Figure 3 shows the successive Skempton B-values. A complete 

saturation was assumed when two subsequent B-values differed by ≤ 0.05. The test configurations and experimental results 

are summarised in table 2.   135 

3.2 Hydromechanical behaviour 

A linear-elastic behaviour was only observed in the very low differential stress region due to the early onset of yielding of 

OPA (Fig. 4). The results show an increasing Young´s modulus and a decreasing Poisson´s ratio with increasing effective 

confining stress (Tab. 2). We define the transition from elasticity to plasticity as the onset of yielding determined by the shear 

stress at which the axial stress-strain curve deviates from linearity (Brace et al., 1966). Yielding, peak and residual stresses 140 

increased with increasing effective confining stresses (Tab. 2, Fig. 4). The axial strain at which peak strength was reached 

increased with effective consolidation stress from 0.44 to 1.11%. All tests showed a strain softening behaviour in the post-

peak region. The residual effective strength was established after 1.5 to 2.5 % axial strain indicated by only minor stress or 

pore pressure changes in the range of 0.01 MPa/h. 

The complete effective stress paths for all experiments are presented in Figure 5. We infer volumetric net dilation of the sample 145 

from the pore pressure peak during the shearing phase. The onset of net dilation (Tab. 2) took place before peak stress was 

reached indicating dilation before failure. Both peak and residual strength values showed a non-linear increase with mean 

effective stress (Fig. 5). A particular difference between the tests at different effective confining stresses was the pore pressure 

response in the post-peak region. For lower effective confinement (σ’c = 2.5 - 4 MPa), the post-failure pore pressure approached 

its initial consolidation pore pressure, i.e., approaching the theoretical drained stress path (grey lines in Fig. 5). For higher 150 
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effective confinements (σ’c = 10 – 16 MPa) the residual pore pressure was 33 % (σ’c = 10 MPa) and 61 % (σ’c = 16 MPa) 

higher than the initial consolidation pore pressure. 

3.3 Deformation microstructures 

The macro-structural analysis of the sample deformed at 2.5 MPa effective confining stress showed a deformation pattern 

expressed by multiple sub-parallel shear fractures distributed within the sample. The samples tested at effective confining 155 

stresses of 4 MPa or higher revealed multiple shear fractures, which concentrated in form of a central shear band crossing the 

entire sample (Fig. 6). The macroscopic shear band width was variable across each sample and increases slightly with 

increasing effective confinement up to widths of 2 mm. The inclination of shear fractures or the shear bands decreased from 

70° to 63.5° with increasing effective confinement. 

On the mesoscale, i.e., at the mm to hundreds of µm-scale, the macroscopic shear bands consist of a network of multiple shear 160 

fractures (Fig. 6a, b). For all specimens, a larger, continuous main fracture was observed, which was accompanied by 

surrounding parallel and sub-parallel fractures. The amount of these accompanying shear fractures decreases for higher 

effective consolidation stresses. Fractures at this scale cross the bedding at angles, which are equal to the inclination of the 

macroscopic shear band. Locally, relative shear displacements were identified, where fractures cross elongated calcite grains 

oriented sub-parallel or normal to the shear direction resulting in kinking of these elongated components (Fig. 2c, d).  165 

On the grain scale, the microstructure in the vicinity of the macroscopic shear bands was characterised by bands of localised 

deformation, i.e., shear zones. In these shear zones, the grain orientation changed compared to the non-sheared host rock from 

less preferred to highly preferred orientations parallel to the macroscopic shear band with increasing effective stresses. Within 

these zones, crushed or strained fossil shells and fambroidal pyrite aggregates were frequently observed . The intensity of 

straining and crushing increased with increasing effective confining stress (compare Fig. 7 and Fig. 8).  170 

At low effective confinements, no consistent preferred grain orientation were observed, except for occasional encounters of 1-

2 µm-thin layers constituting the shear zone boundary (Y-shears, cf. Logan et al., 1979). Further, the shear zone was comprised 

of disrupted and loosened grains as well as microlithons with a size of up to 50 µm. Transgranular fractures formed in quartz, 

calcite, mica and siderite grains inside the shear zone. A pronounced feature exclusively observed in the sample at low effective 

confinement (σ’c = 2.5 MPa) was kink banding (Fig. 7a, a’). Inside these bands, the grain orientation changed the direction by 175 

up to 90° along a sharp border. Kink bands were also present as Ca-bearing veins revealed by EDS images (Fig. 7b, b’), which 

formed buckles oriented in direction of the minimum principal stress.  

At 4 and 10 MPa effective confinement, the shear zones showed internal bands of preferred grain orientation parallel to the 

microscopic and macroscopic shear zone orientation (Fig. 9 for σ’c = 4 MPa). Distinct observations were made for the 

orientation of elongated grains and pores: outside the shear zone, grains and pores are oriented parallel to the macroscopic 180 

bedding and the direction of the maximum principal stress, respectively (Fig. 9: rose diagrams, black colour). Within the shear 

zone, both grains and pores showed an average orientation well-aligned with the microscopic and macroscopic orientation of 

the shear band (Fig. 9: rose diagrams, red colour) and demonstrate the self-similarity of deformation structures across different 
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scales. The shear zone was characterised by internal bands of obliquely-oriented clay minerals, i.e. Y-shears and P-foliation 

(cf. Logan et al., 1979), with respect to the shear zone boundary. Open fractures along these bands contained patches of a few 185 

µm up to 2 millimetres in size showing slickensides with striations in a normal-to-surface view (Fig. 9c). The apparent porosity 

in the shear zone was highly increased by voids formed by trans- and intergranular fractures (Fig. 9b).  

While the shear zone boundary appeared as a sharp transition for lower to intermediate effective stresses, mainly demonstrated 

by the increased intergranular porosity and the change of preferred grain orientation within the shear zone (Fig. 9). This sharp 

transition was less pronounced for the sample tested at 16 MPa effective confining stress (Fig. 8c). Here, the shear zone was 190 

accompanied by a broader zone of up to 200 µm width, in which the grain orientation rotated continuously until it was aligned 

parallel to the shear zone orientation. This transition zone hosted larger elongated calcite and mica grains, which were bent 

towards the shear zone orientation showing a continuous rotation of up to 135°. Calcite grains presented flexural tension 

fractures, which were filled by clay particles (Fig. 8b). Mica grains were stretched and folded showing an intracrystalline sub-

grain sliding and rotation. Ductile stringers were found as heavily folded organic matter particles (Fig. 8b). Within the shear 195 

zone, grains were aligned parallel to the macroscopic shear band orientation. Here, single hard grains such as quartz were 

mainly intact but partly also transgranular shear fractures were observed (Fig. 8c). The visible shear zone porosity was less 

increased compared to those in the samples at lower effective stresses. 

4 Discussion 

4.1 Poromechanical response 200 

All samples showed a bulk deformation behaviour typical for an over-consolidated rock under undrained triaxial compression. 

As presented in previous studies (Amann et al., 2012; Wild and Amann, 2018a), the onset of yielding, also called ‘onset of 

dilation’, starts in the early stage of differential loading. Wild and Amann (2018a) showed that the shear stress magnitude at 

the onset of the inelastic strain response depends on the effective consolidation stress and increases with increasing effective 

confinement, which was also observed in this study.  205 

The peak of pore pressure was reached before the peak stress for all samples tested and a pronounced reduction of pore pressure 

indicated net dilation before failure. However, the onset of dilation varied for each test. The maximum pore pressure was 

reached at axial strain shortly before peak stress for the lowest effective confinement (σ’c = 2.5 MPa) compared to axial strain 

at peak strength. Figure 10a shows the axial strain at the onset of net dilation normalised by the axial strain at failure. In contrast 

to the onset of yielding, this behaviour shows a non-linearly decreasing trend from 92% to 80 % of axial strain to the axial 210 

strain at peak strength with increasing effective confinement. This observation suggests that at high effective confining stresses 

plastic strain associated with dilation starts earlier compared to low effective confinements, and consequently plastic strain is 

accumulating for a longer period without complete failure.  

The magnitude of maximum pore pressure developed under undrained shearing increases in a non-linear fashion (Fig. 10b), 

which is in agreement with observations made by Wild and Amann 2018a. Furthermore, the effective stress path after failure 215 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.

Thomas Blenkinsop

Thomas Blenkinsop
These features need illustrating on a separate figure. The grain and pore orenations in the shear zones are quite varied in fact, as would be expected if both Y and Porienations are present. The descrition of the graina nd pore orieantion as well -aligned with the macroscopic orienation of the shear band is not very accurate, and does not correspond to the statemetn about the imprtance of the  Pfoilation (which would not be parallel to the macroscopic shear bands). 

Thomas Blenkinsop

Thomas Blenkinsop
of which sample?

Thomas Blenkinsop



8 

 

indicates a less dilatant behaviour for higher effective confinements demonstrated by significantly higher pore water pressures 

at residual strength state. 

4.2 Deformation processes 

Even though all samples deformed in a brittle manner in terms of their post-failure strain-softening behaviour and their 

localised deformation within a shear band or shear fractures on the macroscale, there were major differences in deformation 220 

characteristics on the microstructural level. Deformation structures and related processes were strongly dependent on the 

effective stress. A gradual change has been observed from low effective stresses presenting brittle deformation indicators such 

as shear fracturing and grain kinking to more ductile processes including inter-particle sliding, and grain bending for higher 

effective confinements. These observations suggest a transition from brittle-dominated shear failure towards a semi-brittle to 

ductile shearing. Underlying deformation mechanisms in the low effective stress range are cataclasis including the formation 225 

of multiple shear fractures characterising the shear zone, while at higher effective stresses, deformation is expressed by grain 

boundary and rotational sliding forming a ductile shear zone. Nonetheless, we emphasise that there is a coexistence of brittle 

and ductile deformation processes on the grain scale as observed also in other studies (Yongnian et al., 1989; Schuster et al. 

2021; Winhausen et al., 2021). This appears to be associated with the contrasting mineral stiffnesses of the constituents such 

as hard calcite and quartz grains, and softer phyllosilicates. In contrast to the shaly facies of OPA from the MT-URL, the sandy 230 

facies is characterised by a heterogeneous mineralogy distribution at the macroscale (Lauper et al., 2021; Kneuker and Furche, 

2021) and the microscale (Houben et al., 2014). This heterogeneity is also manifested in the distribution and the style of 

deformation within this facies (Schuster et al., 2021). However, the shaly facies can be considered homogeneous on the mm-

scale (cf. Fig. 6), and deformation processes observed in selected areas of the sub-samples are considered representative for 

the entire sample, and allow for comparing the structures encountered in all samples of this study. 235 

An additional difference in structural deformation was observed for the porosity within the shear zones. While all samples 

showed an increased shear zone porosity, we observed a decreasing trend with increasing effective confinements. Furthermore, 

the shear zone width increases with effective confinement and its boundary changes from a sharp boarder (Fig. 7,9) to a smooth 

broader transition zone (Fig. 8). These observations are corroborated by the deformation processes analysed above: Localised 

brittle shear fracturing at low effective stresses facilitates more dilation while ductile shearing suppresses dilation but requires 240 

more space for strain accommodation.  

These findings are consistent with observations on a suppressed dilation and the reduced magnitude of pore pressure 

development for higher effective stresses.  Furthermore, the earlier dilation before failure at high effective stresses can be 

related to the formation of the transition zone. The formation of the bended transition zone has been initiated in the pre-failure 

regime due to fabric rotation and dragging. Once minerals and pores were rotated to a preferred orientation and well-aligned, 245 

i.e., to the orientation of the microscopic and macroscopic shear zone/band, bulk failure is initiated. In the post-peak region, 

most of the shear strain is likely accommodated in the narrow shear zone of preferred mineral orientation, which is in agreement 
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with the slickensides of a considerable size found in the shear zones (Fig. 9c). Here, strongly localised shear strain leads to 

intercrystalline sliding and eventually to the delamination of phyllosilicates (Fig. 8c).  

All samples were sheared to their residual strength where the effective stress remained essentially constant. Thus, we conclude 250 

that further straining may not cause structural or void changes, i.e., a critical state. During further shearing, we infer that 

deformation is accommodated by frictional flow and sliding in the shear zones with preferred mineral orientations, i.e., P-

foliations, while the fabric elements remain constant (cf. Haines et al., 2013). 

4.2 Effective strength and failure mode 

A change in failure mode from axial splitting to shear failure has been inferred from macroscopic observations for OPA from 255 

unconfined up to confinements of 4 MPa (Amann et al., 2011; Amann et al., 2012). In this study, we extend this observation 

to higher effective confinements, and - based on our microstructural analysis - we are able to transfer the bulk geomechanical 

behaviour to the processes on the microscale level.  

The transitional change of failure mode on the microscale correlates well with the bulk failure behaviour. The non-linear 

changes of stiffness, onset of dilation, dilation magnitude, as well as peak and residual strength with effective stresses are 260 

governed by the changing micromechanical processes. For the peak and residual strength, the non-linear failure envelope 

implies a change in friction angle with increasing effective confinement, which is likely associated with the gradual change in 

shear band inclination and the transition from brittle to ductile-dominated deformation. At lower effective stresses, micro-

cracking and multiple shear fracturing require more shear stress to overcome higher internal frictional resistances compared 

to intergranular grain boundary sliding and bending at higher effective stresses.  265 

The decrease in friction angle due to an increase in ductility has also been demonstrated experimentally for saturated kaolinite 

and bentonite clays (Hicher et al., 2000). For the case of clay-rich rocks such as shales, Niandou et al. (1997) have shown that 

the failure surface of Tournemire Shale is non-linear and the failure mode depends on the confining stress.  

To constrain a failure criteria for peak and residual strength, we combine our results with those of Wild and Amann 2018a 

(Fig. 11). As opposed to the linear and bi-linear failure criteria established in past studies for OPA (Amann et al., 2012; Favero 270 

et al. 2018; Minardi et al., 2021; Wild and Amann, 2018a), we propose a non-linear envelope for the ultimate and residual 

strength as derived for other clays (e.g., Bishop et al., 1965; Petley, 1999). Therefore, we use the modified constitutive equation 

(Eq. 1) to describe the failure surface in 2D q-p’-space proposed for geologic materials by Desai et al. (1984). To fit this model 

to the data presented in Figure 5, the parameters shown in Table 3 were used, where q is the differential stress at peak and 

residual strength in MPa, respectively, p’ is the mean effective stress in MPa, and µ, C and β are fitting parameters. 275 

 𝑞 = (𝜇𝑝′ + 𝐶)𝑒−𝛽𝑝
′
    Eq. 1 
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5 Summary and conclusions 

In consolidated undrained triaxial compression, Opalinus Clay shows a transitional failure behaviour from brittle- to ductile-

dominated deformation with increasing effective confining stress. Although in a classical sense, the general bulk behaviour 280 

can be described as brittle deformation due to the strain-softening behaviour in the post-peak phase and the localised strain in 

distinct shear bands, our results suggest these indicators are insufficient for properly describing the failure mechanism. Instead, 

we highlight the significance of micro-mechanical processes in the microscale governing the failure mode and controlling the 

rheology of the material.   

Our results demonstrate the transition in failure mode by, firstly, the non-linear dependency of hydro-mechanical properties 285 

on effective stress, i.e., the onset of net dilation, the magnitude of developed pore pressure, as well as peak and residual 

strength, and, secondly, the structural deformation processes changing from brittle-dominated to ductile-dominated failure on 

the microscale. This transition is accompanied by a decreasing porosity in the shear zone and a less pronounced dilation with 

increasing effective confining stresses. Our conceptual microstructural model (Fig. 11) for shear failure in Opalinus Clay is 

characterised by a set of multiple, distinct and dilatant shear zones with brittle-dominated deformation for lower effective 290 

stresses in the range of 2.5 MPa effective stress at failure. For effective stresses around 4 to 10 MPa, OPA shows a transitional 

failure mode. For effective confining stresses in the range of 16 MPa and expectedly higher stresses, failure on the microscale 

is a less dilatant forming a broader shear zone dominated by ductile deformation. Based on these observations we propose a 

non-linear failure criterion to describe the behaviour of shaly Opalinus Clay. 

 295 

Data availability. Lab testing data and high-resolution BIB-SEM images are available in the supplement provided. 

Competing interests. The authors declare that they have no conflict of interest. 

Author contributions. LW performed the laboratory tests, BIB-SEM microscopy, data analysis, and wrote the manuscript with 

contributions from all authors. LW, KK, MRJ and JLU discussed the results. FA acquired funding and contributed to the 

interpretation of the results.  300 

Acknowledgements. We would like to thank the Swiss Federal Nuclear Safety Inspectorate (ENSI) for funding this work, which 

was performed within the framework of the project entitled “Development and Validation of a Constitutive Model for Opalinus 

Clay”.  

 

 305 

 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

6 References 

Amann, F., Button, E. A., Evans, K. F., Gischig, V. S., and Blümel, M.: Experimental Study of the Brittle Behavior of 

Clay shale in Rapid Unconfined Compression, Rock Mechanics and Rock Engineering, 44, 415–430, 

https://doi.org/10.1007/s00603-011-0156-3, 2011. 310 

Amann, F., Kaiser, P., and Button, E. A.: Experimental Study of Brittle Behavior of Clay Shale in Rapid Triaxial 

Compression, Rock Mechanics and Rock Engineering, 45, 21–33, https://doi.org/10.1007/s00603-011-0195-9, 2012. 

Attewell, P. B. and Sandford, M. R.: Intrinsic Shear Strength of a Brittle, Anisotropic Rock — I: Experimental and 

Mechanical Interpretation, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11, 423-

430, 1974. 315 

Bésuelle, P., Viggiani, G., Desrues, J., Coll, C., and Charrier, P.: A Laboratory Experimental Study of the 

Hydromechanical Behavior of Boom Clay, Rock Mechanics and Rock Engineering, 47, 143–155, 

https://doi.org/10.1007/s00603-013-0421-8, 2014. 

Bishop, A. W., Webb, D. L., and Lewin, P. I.: Undisturbed Samples of London Clay from the Ashford Common Shaft: 

Strength–Effective Stress Relationships, Géotechnique, 15, 1–31, https://doi.org/10.1680/geot.1965.15.1.1, 1965. 320 

Brace, W. F., Paulding, B. W., and Scholz, C.: Dilatancy in the fracture of crystalline rocks, Journal of Geophysical 

Research, 71(16), 3939–3953, https://doi.org/10.1029/JZ071i016p03939, 1966. 

Braun, P., Ghabezloo, S., Delage, P., Sulem, J., and Conil, N.: Transversely Isotropic Poroelastic Behaviour of the 

Callovo-Oxfordian Claystone: A Set of Stress-Dependent Parameters, Rock Mech Rock Eng, 54, 377–396, 

https://doi.org/10.1007/s00603-020-02268-z, 2021. 325 

Delage, P. and Tessier, D.: Macroscopic effects of nano and microscopic phenomena in clayey soils and clay rocks, 

Geomechanics for Energy and the Environment, 27, 100177, https://doi.org/10.1016/j.gete.2019.100177, 2021. 

Desai, C. S., and Siriwardane, H. J.: Constitutive laws for engineering materials, with emphasis on geologic materials. 

Prentice Hall, 468pp, 1984. 

Desbois, G., Höhne, N., Urai, J. L., Bésuelle, P., and Viggiani, G.: Deformation in cemented mudrock (Callovo–330 

Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: insights from triaxial deformation, broad ion 

beam polishing and scanning electron microscopy, Solid Earth, 8, 291–305, https://doi.org/10.5194/se-8-291-2017, 2017. 

Djéran-Maigre, I., Tessier, D., Grunberger, D., Velde, B., and Vasseur, G.: Evolution of microstructures and of 

macroscopic properties of some clays during experimental compaction, Marine and Petroleum Geology, 15, 109–128, 

https://doi.org/10.1016/S0264-8172(97)00062-7, 1998. 335 

Evans, B., Fredrich, J. T., and Wong, T.: The brittle-ductile transition in rocks: Recent experimental and theoretical 

progress, in: Geophysical Monograph Series, vol. 56, edited by: Duba, A. G., Durham, W. B., Handin, J. W., and Wang, H. 

F., American Geophysical Union, Washington, D. C., 1–20, https://doi.org/10.1029/GM056p0001, 1990. 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



12 

 

Favero, V., Ferrari, A., and Laloui, L.: Anisotropic Behaviour of Opalinus Clay Through Consolidated and Drained 

Triaxial Testing in Saturated Conditions, 51, 1305–1319, https://doi.org/10.1007/s00603-017-1398-5, 2018. 340 

Goetze, C.: High temperature rheology of westerly granite, J. Geophys. Res., 76, 1223–1230, 

https://doi.org/10.1029/JB076i005p01223, 1971. 

Gramberg, J.: The axial cleavage fracture 1 Axial cleavage fracturing, a significant process in mining and geology. 

Engineering Geology, 1(1), 31-72, https://doi.org/10.1016/0013-7952(65)90006-2, 1965 

Haines, S. H., Kaproth, B., Marone, C., Saffer, D., and van der Pluijm, B.: Shear zones in clay-rich fault gouge: A 345 

laboratory study of fabric development and evolution, Journal of Structural Geology, 51, 206–225, 

https://doi.org/10.1016/j.jsg.2013.01.002, 2013. 

Hattab, M. and Fleureau, J.-M.: Experimental analysis of kaolinite particle orientation during triaxial path, Int. J. Numer. 

Anal. Meth. Geomech., 35, 947–968, https://doi.org/10.1002/nag.936, 2011. 

Hattab, M., Hammad, T., Fleureau, J.-M., and Hicher, P.-Y.: Behaviour of a sensitive marine sediment: microstructural 350 

investigation, Géotechnique, 63, 71–84, https://doi.org/10.1680/geot.10.P.104, 2013. 

Hicher, P. Y., Wahyudi, H., and Tessier, D.: Microstructural analysis of inherent and induced anisotropy in clay, Mech. 

Cohes.-Frict. Mater., 5, 341–371, 2000. 

Houben, M. E., Desbois, G., and Urai, J. L.: A comparative study of representative 2D microstructures in Shaly and 

Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods, 49, 143–161, 355 

https://doi.org/10.1016/j.marpetgeo.2013.10.009, 2014. 

Ibanez, W. D. and Kronenberg, A. K.: Experimental deformation of shale: Mechanical properties and microstructural 

indicators of mechanisms, 30, 723–734, https://doi.org/10.1016/0148-9062(93)90014-5, 1993. 

Ingram, G. M. and Urai, J. L.: Top-seal leakage through faults and fractures: the role of mudrock properties, 158(1), 125–

135, https://doi.org/10.1144/GSL.SP.1999.158.01.10, 1999. 360 

Klinkenberg, M., Kaufhold, S., Dohrmann, R., and Siegesmund, S.: Influence of carbonate microfabrics on the failure 

strength of claystones, 107, 42–54, https://doi.org/10.1016/j.enggeo.2009.04.001, 2009. 

Kneuker, T. and Furche, M.: Capturing the structural and compositional variability of Opalinus Clay: constraints from 

multidisciplinary investigations of Mont Terri drill cores (Switzerland), Environ Earth Sci, 80, 421, 

https://doi.org/10.1007/s12665-021-09708-1, 2021. 365 

Kranz, R. L.: Microcracks in rocks: A review, Tectonophysics, 100, 449–480, https://doi.org/10.1016/0040-

1951(83)90198-1, 1983. 

Lauper, B., Zimmerli, G. N., Jaeggi, D., Deplazes, G., Wohlwend, S., Rempfer, J., and Foubert, A.: Quantification of 

Lithological Heterogeneity Within Opalinus Clay: Toward a Uniform Subfacies Classification Scheme Using a Novel 

Automated Core Image Recognition Tool, Front. Earth Sci., 9, 645596, https://doi.org/10.3389/feart.2021.645596, 2021. 370 

Logan, J. M., Friedman, M., Dengo, C., Shimamoto, T., and Higgs, N.: Experimental studies of simulated gouge and 

their application to studies of natural fault zones, 39, 1979. 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



13 

 

Mäder, U.: Recipe and preparation of a simplified artificial pore water for Opalinus Clay and “Brown Dogger” based on 

the Nagra reference pore water composition, containing Na- K-Ca-Mg-Cl-SO4-HCO3, and adjusted to atmospheric PCO2, 

NAGRA AN, 11-159, 2011. 375 

Menéndez, B., Zhu, W., and Wong, T.-F.: Micromechanics of brittle faulting and cataclastic flow in Berea sandstone, 

Journal of Structural Geology, 18, 1–16, https://doi.org/10.1016/0191-8141(95)00076-P, 1996. 

Minardi, A., Giger, S. B., Ewy, R. T., Stankovic, R., Stenebråten, J., Soldal, M., Rosone, M., Ferrari, A., and Laloui, L.: 

Benchmark study of undrained triaxial testing of Opalinus Clay shale: Results and implications for robust testing, 

Geomechanics for Energy and the Environment, 25, 100210, https://doi.org/10.1016/j.gete.2020.100210, 2021. 380 

Mogi, K.: Pressure Dependence of Rock Strength and Transition from Brittle Fracture to Ductile Flow, Bulletin of the 

Earthquake Research Institute, 44, 215-232, 1966. 

Morgenstern, N. R. and Tchalenko, J. S.: Microscopic structures in kaolin subjected to direct shear, Geotechnique, 17, 

309-328, https://doi.org/10.1680/geot.1967.17.4.309, 1967. 

Niandou, H., Shao, J. F., Henry, J. P., and Fourmaintraux, D.: Laboratory Investigation of the Mechanical Behaviour of 385 

Tournemire Shale, Int. J. Rock Mech. Min. Sci., 34(1), 3-16, https://doi.org/10.1016/S1365-1609(97)80029-9,  1997. 

Nygård, R., Gutierrez, M., Bratli, R. K., and Høeg, K.: Brittle–ductile transition, shear failure and leakage in shales and 

mudrocks, Marine and Petroleum Geology, 23(2), 201–212, https://doi.org/10.1016/j.marpetgeo.2005.10.001, 2006. 

Oelker, Anne. Deformation properties of Boom Clay: Implementation of a multi-scale concept. No. RWTH-2019-09913. 

PhD Thesis, published at RWTH Publifications, 2020. 390 

Petley, D. N.: Failure envelopes of mudrocks at high confining pressures, Geological Society, London, Special 

Publications, 158, 61–71, https://doi.org/10.1144/GSL.SP.1999.158.01.05, 1999. 

Sarout, J., Esteban, L., Delle Piane, C., Maney, B., and Dewhurst, D. N.: Elastic anisotropy of Opalinus Clay under 

variable saturation and triaxial stress, Geophysical Journal International, 198(3), 1662–1682, 

https://doi.org/10.1093/gji/ggu231, 2014. 395 

Schuck, B., Desbois, G., and Urai, J. L.: Grain-scale deformation mechanisms and evolution of porosity in experimentally 

deformed Boom Clay, Journal of Structural Geology, 130, 103894, https://doi.org/10.1016/j.jsg.2019.103894, 2020. 

Schuster, V., Rybacki, E., Bonnelye, A., Herrmann, J., Schleicher, A. M., and Dresen, G.: Experimental Deformation of 

Opalinus Clay at Elevated Temperature and Pressure Conditions: Mechanical Properties and the Influence of Rock Fabric, 

Rock Mech Rock Eng, https://doi.org/10.1007/s00603-021-02474-3, 2021. 400 

Sellin, P. and Leupin, O. X.: The Use of Clay as an Engineered Barrier in Radioactive-Waste Management – A Review, 

Clays and Clay Minerals,  61(6), 477–498, https://doi.org/10.1346/CCMN.2013.0610601, 2013. 

Skempton, A. W.: The pore-pressure coefficients A and B, Géotechnique, 4, 143–147, 

https://doi.org/10.1680/geot.1954.4.4.143, 1954. 

Skempton, A. W.: Some observations on tectonic shear zones, 1st ISRM Congress, 1966. 405 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

Tchalenko, J. S.: The evolution of kink-bands and the development of compression textures in sheared clays, 

Tectonophysics, 6, 159–174, https://doi.org/10.1016/0040-1951(68)90017-6, 1968. 

Tchalenko, J. S.: Similarities between Shear Zones of Different Magnitudes, Geol Soc America Bull, 81(6), 1625-1640, 

https://doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2, 1970. 

Thury, M. and Bossart, P.: The Mont Terri rock laboratory, a new international research project in a Mesozoic shale 410 

formation, in Switzerland, Engineering Geology, 52, 347–359, https://doi.org/10.1016/S0013-7952(99)00015-0, 1999. 

Wild, K. M. and Amann, F.: Experimental study of the hydro-mechanical response of Opalinus Clay – Part 1: Pore 

pressure response and effective geomechanical properties under consideration of confinement and anisotropy, Engineering 

Geology, 237, 32–41, https://doi.org/10.1016/j.enggeo.2018.02.012, 2018. 

Wild, K. M. and Amann, F.: Experimental study of the hydro-mechanical response of Opalinus Clay – Part 2: Influence 415 

of the stress path on the pore pressure response, Engineering Geology, 237, 92–101, 

https://doi.org/10.1016/j.enggeo.2018.02.011, 2018. 

Winhausen, L., Klaver, J., Schmatz, J., Desbois, G., Urai, J. L., Amann, F., and Nussbaum, C.: Micromechanisms leading 

to shear failure of Opalinus Clay in a triaxial test: a high-resolution BIB–SEM study, Solid Earth, 12, 2109–2126, 

https://doi.org/10.5194/se-12-2109-2021, 2021. 420 

Wong, T., David, C., and Zhu, W.: The transition from brittle faulting to cataclastic flow in porous sandstones: 

Mechanical deformation, J. Geophys. Res., 102, 3009–3025, https://doi.org/10.1029/96JB03281, 1997. 

Yongnian, H., Chuanyong, L., and Lanbin, S.: Microstructural Features of Deformed Rocks across the Brittle-Ductile 

Transition, Physics and Chemistry of the Earth, 17, 11-15, https://doi.org/10.1016/0079-1946(89)90003-7, 1989. 

 425 

 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



15 

 

7 Figures  

 

 

Figure 1: Experimental setup showing the cell configuration and the sensor assemblage. 430 
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Figure 2: Procedure of sample preparation and workflow for microstructural analysis including the two-fold stabilisation the 

broad-ion-beam polishing and the imaging strategy.  
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Figure 3: Skempton B-values demonstration the saturation of the samples. Experiments are numbered according to the sequence 435 
of performance with increasing effective consolidation stresses used, i.e. 2.5, 4, 10 and 16 MPa. 
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Figure 4: (a) Differential stress-strain curves of all tests, where as radial strain in measured normal to the bedding plane. (b) shows 

the early linear-elastic strain region for test OPA-P-10. The linear fit (grey line) is used to constrain the elastic parameters and the 

deviation from linearity, i.e. on the onset of yielding. 440 
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Figure 5: Effective stress paths for samples with consolidation stresses 2.5, 4, 10 and 16 MPa. The grey lines represent the 

theoretical drained stress path, i.e., constant pore pressures. 

 445 
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Figure 6: Macroscopic structures of deformed samples show shear bands, whose inclinations decrease with respect to horizontal 

with higher effective confinements. BSE-images show the mesoscopic view of the shear band, consisting of multiple shear fractures 

(a) and b)), and elongated calcite grains present the relative shear displacement. We note here that based on our structural 

interpretation, the bedding orientation of one sample (σc = 2.5 MPa) is inclined by 84° instead of 90° from horizontal. However, we 450 
consider this small discrepancy of 6° insignificant for the analysis. 
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Figure 7: SEM-images presenting mesoscopic and microscopic deformation structures for the samples deformed at 2.5 

MPa effective consolidation stress. (a) shows a network of multiple, anastomosing fractures constituting one of the main 

shear fractures observed on the macro scale (a’) shows kinking of minerals and disrupted, randomised microfabric in 455 

a shear zone. (b) displays a dilatant kink-band, which is characterised by a sharply kinked ca-bearing vein observed in 

the EDS-image (d). 
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Figure 8: SEM-BSE images presenting deformation structures of the samples tested at 16 MPa effective confinement.  

(a) shows the rotating fabric in the transition zone, which aligns to the shear zone. (b) presents typical grain-scale 460 

deformation markers such as intracrystalline rotational sliding, and stretching of fossil shells. Larger, elongated calcite 

grains hosts intragranular flexural fractures. (c) displays inter and intracrystalline sliding of phyllosilicates, and 

strained fossil shells leaving crushed trails aligned parallel to the shear zone direction. 
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Figure 9: SEM-images of the sample deformed at 4 MPa effective confinement presenting the shear zone as well as 465 

orientations of grains, pores, and macroscopic structures. a) shows grain orientation (BSE-image) b) shows the 

increased apparent porosity in the shear zone, and c) displays the surface morphology of a shear plane (both SE2-

images). Rose diagrams of grains and pore within and outside of the shear zones indicate the self-similarity of structure 

orientations across different scale magnitudes. 
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 470 

Figure 10: (a) Axial strain at the onset of (net) dilation normalised by the respective axial strain at failure indicates an earlier (net) 

dilation at higher effective stresses. (b) Maximum change in pore water pressure during undrained loading increases with higher 

effective stresses. Both graphs show a strong non-linearity. 
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 475 

Figure 11: Peak and residual effective strength of shaly Opalinus Clay under triaxial undrained compression and our 

microstructural model for shear failure. The non-linear failure envelopes, fitted through all data points, underlines the gradual 

transition for deformation microstructures from brittle to ductile and the tendency for suppression of dilatancy due to the reduction 

in shear zone porosity. 

 480 

 

 

 

 

 485 

 

 

 

 

https://doi.org/10.5194/se-2022-19
Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



26 

 

 490 

Table 1: Water content of samples before and after the experiment indication the resaturation of the samples. 

Sample # 
water content before 

testing (%) 

water content after 

testing (%) 

OPA-P-2.5 6.88 8.85 

OPA-P-4 6.79 7.75 

OPA-P-10 6.74 7.35 

OPA-P-16 6.75 8.10 

 

 

Table 2: Overview of experimental parameters (σc: total confining stress, u0: initial pore water pressure before shearing, σ’c: effective 

confining stress before shearing) and elastic (E: Young’s modulus, ν⊥: Poisson’s ratio) , hydro-mechanical and strength parameters (qf: 495 
differential stress at failure, qr: residual differential stress ,Δumax: maximum change in pore pressure during shearing phase,. 

Sample # 
σc  

(MPa) 

u0  

(MPa) 

σ’c 

(MPa) 

E  

(GPa) 

ν⊥  

(-) 

qf  

(MPa) 

qr  

(MPa) 
Δumax 

(MPa) 

OPA-P-2.5 5 2.5 2.5 4.01 0.74 7.1 3.86 1.08 

OPA-P-4 6.5 2.5 4 5.92 0.63 11.32 5.88 1.41 

OPA-P-10 12.5 2.5 10 7.04 0.62 20.01 10.28 2.67 

OPA-P-16 19 3 16 7.75 0.62 28.20 13.81 3.93 

 

 

Table 3: Parameters used for fitting the failure surface constrained by Eq. 1 to our data and those of Wild and Amann (2018a). 

 µ C β 

peak strength 2.0 0.5 0.0191 

residual strength 1.0584 0 0.0191 

 500 
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