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2 INSTALLATION

1 Introduction

1.1 Overview

PTATIN3D provides a suite of functionality to study long-term geodynamic processes related to
the dynamics of the lithosphere and crust. At its core, it provides support for solving non-linear,
incompressible Stokes flow problems in three dimensions, using a mixed finite element method
together with a marker-and-cell method.

1.2 Referencing

@inproceedings{may2014ptatin3d,
title={pTatin3D: High-performance methods for long-term lithospheric
dynamics},
author={May, Dave A and Brown, Jed and Le Pourhiet, Laetitial},
booktitle={High Performance Computing, Networking, Storage and Analysis,
SC14: International Conference for},
pages={274--284},
year={2014},
organization={IEEE}
}

Qarticle{may2015scalable,
title={A scalable, matrix-free multigrid preconditioner for finite element
discretizations of heterogeneous Stokes flow},

author={May, Dave A and Brown, Jed and Le Pourhiet, Laetitial},
journal={Computer Methods in Applied Mechanics and Engineering},
volume={290},
pages={496--523},
year={2015},
publisher={Elsevier}

2 Installation

2.1 Software requirements

» PETSc 3.9 or later (essential numerical library)

* git (used to obtain the source)

+ Python (non-essential: required to run the test suite)

» ParaView (non-essential: required for visualisation of simulation output)

* libz (non essential: used for output file compression)



http://www.mcs.anl.gov/petsc
www.paraview.org
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2.2 Obtaining the source

The source code for PTATIN3D is hosted at BitBucket using the Git version control system. The
latex stable version can be obtained with the git command

git clone https://bitbucket.org/ptatin/ptatin3d
which will copy the code into the directory ptatin/.

2.3 Compilation

Upon successful installation of PETSc, switch into the root directory of PTATIN3D. You should
provide a file, named makefile.arch, Which contains specific compiler optimizations for your
operating system and compiler. If you do not provide this, a default, tailored to Mac OS X, will
be copied for you. If you are trying to install PTATIN3D on another system, consult the directory
contig/ Where several different compiler/optimization sets have been provided for you. Provided
systems include Linux based cluster, Cray XT5/XE6/XC50 and the IBM BlueGene(L,P,Q). You can
use these files as a starting point for your particular system by copying the closest architecture file
matching your system, e.g. cp config/machine.arch.XXX makefile.arch, then make any necessary
changes to the new maxefile.arch to tailor it for your particular operating system / compiler.

Once makefile.arch is adjusted for your operating systemtype, type make -j from the root directory
of PTATIN3D.

» Compiling with a particular PETSc build
make -j PETSC_DIR=/path/to/your/petsc PETSC_ARCH=your.petsc.build

» Compiling with a particular compilation flags (C and Fortran)
make -j TATIN_CFLAGS=’-02’ TATIN_FFLAGS=’-fast’

The foIIowing targets for make exist: all, clean, drivers, test, testcheck, testall, testallcheck,
releaseinfo.

As discussed further in Section 5, you can run make test to get a first check that PTATIN3D has
been compiled correcily.

The target releaseinto Will automatically update the contents of the file include/ptatin version_info.h.
This file is updated to reflect the current revision information associated with the Git master
branch. This information is propagated into log files and the output of PTATIN3D.

The make system will create all objects, libraries and binary files in the following paths:
- ptatin3d/${PETSC_ARCH}/obj
- ptatin3d/${PETSC_ARCH}/1ib

- ptatin3d/${PETSC_ARCH}/bin

The current build system allows you to conveniently compile different PTATIN3D using different
PETSc builds (e.g. a debug PETSc build versus an optimised build).

2.3.1 Prefix PETSc Builds

PTATIN3D also support the use of “prefix” builds, which may be available as modules on clusters,
where one supplies peTsc_p1r without PETSC_ARCH. In this case, the three directories mentioned will
be created in the root PTATIN3D directory.


https://bitbucket.org
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2.3.2 GPU Support

PTATIN3D can be configured to compile special operator kernels for use with GPUs. CUDA and/or
OPENCL can be enabled by adding CONFIG_CUDA=y and/or CONFIG_OPENCL=y, respectively, to
makefile.arch, along with suitable values for compilers, libraries, and include paths. See the
examples in config/ for more.

3 Methods

3.1 Governing equations

We solve the mechancis, energy and transport problem within a time-dependent domain denoted
via Q(t), with boundary 092(t). The outward pointing normal to 012 is denoted via n.

Mechanics
Ven(Vo+ (Vo)') - Vp=f,
V.ou=f

Boundary conditions:
@, on 9OM

iy =v-m on 9N
63 =0 on 9Q%

64=0-n on INY

Energy
oT
pCPE+v~VT+V~(kVT) =Jr
Boundary conditions: )
T on 9QF
¢ = —kVT -n=0 on 0QF
Transport
DU _
Dt = gv,
where VU is a scalar, vector or tensor.
Boundary conditions: R
¥, on 99,

where 0QY denotes the segment of the boundary where inflow occurs, e.g. v - n < 0.
By default, we evolve the material region R according to

DR

Dt Y
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3.2 Coefficient forms
Mechanics
In discussing the flow laws, we denote the strain-rate tensor via

é=1 (Vo + (Vo))

. 1. -
€y = \/561‘]‘61‘]‘.

and its second invariant as

Shear viscosity

* Linear (constant)
nN="Ny = f(R)

* Linear (temperature dependent)
n =1 = no(R)exp(—0(R)T)
* Nonlinear (strain-rate and pressure dependent)

n(R)- - R) + PV(R
0=y = Ag(R)EMMRI=1 4(R)1/(R) ey (E()+()>

n(R)RT

* Nonlinear (stress limited)
— Tmin

T2y
Tmin = min(2é;n,, 1)

where
1y = [(R,€) or 7, = f(R, P,e).

The variable ¢ defines the accumulated plastic strain which evolves according to

De . €rr, if ané[[ > Ty
Dt )0, otherwise

Momentum forcing f,,

+ Constant
fu=FfR)
* Bouyancy
Fu=1rg
where the density is defined by either
pP= f(R),
or
p=po(1—aTl +BP).
Continuity forcing f,

+ Typically we use f, = 0.
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3.3 Numerics

Energy
Density
+ Constant
p:=f(R)
Conductivity
» Constant
k:=f(R)
» Temperature dependent
k= f(R.T)
Source
» Constant
fr=fR)
» Radiogenic
f1 = Ho(R) exp(—tA(R))
+ Adiabatic

f1==Ta(R)p(R)(g - v)
The final source term fr can be composed by summing the above terms
fr=fr+fr+Ir

where any of the individual terms may be zero.

Simplified conservation law
We also can solve the simpler equation

%—f+v~VT+V-(mVT) = fr.
With this form, the following choices are valid:
Diffusivity
» Constant
k= f(R)
Source
» Constant
fr=f(R)

3.3 Numerics
* Mechanics: Q2-P1 mixed finite elements on hexahedral elements
» Energy: overlapping Q1 finite elements (hex) with SUPG stabilization

+ Transport: Lagrangian particle (material point method)
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4 Drivers

PTATIN3D in itself is a library which aims to enable users to build specific executables to solve a
particular class of problems in lithospheric dynamics. Executables which utilize 1ibptatin3d are
referred to as drivers. For standard problems, e.g. time dependent linear (or non-linear) Stokes
problems with optionally thermal coupling, we provide several default drivers. The most important
(i.e. useful) of these are summarized below.

1. ptatin_driver_ic.app Specifically designed to confirm that the model is defined in accordance

4.1

with what the developer had in mind. This driver does not solve any equations or perform
any time stepping. Rather it only loads the model, loads the initial conditions and boundary
conditions and calls the model output function.

. ptatin.driver_ts_init.app A driver for initlalising and solving time dependent, linear or non-

linear Stokes flow problems. The energy equation may be optionally activated within this
model.

To commence a new run, one must: (i) first execute the driver with the additional argument
-init. With this argument, the solution associated with the initial condition is computed
and checkpointed; (ii) execute the driver. When -init is not provided, the driver will load a
checkpoint file and commence time-stepping. See Section 7 for further details.

Checkpointing is enabled and restart capabilities are functional.

. ptatin_driver_energy.app A basic driver used for testing the advection diffusion solver. It does

not solve Stokes.

. ptatin_driver_linear_ts.app A driver for solving time dependent, linear Stokes flow problems.

Checkpointing is enabled, however no capabilities for restart is provided. This driver is
deprecated and will soon be removed - users should use ptatin_ driver_ts_init.app.

. ptatin_driver nonlinear_ts.app A driver for solving time dependent, non-linear Stokes flow

problems. The energy equation may be optionally activated within this model. Checkpoint-
ing is enabled, however no capabilities for restart is provided. This driver is deprecated and
will soon be removed - users should use ptatin_driver_ts_init.app.

Options for standard drivers

-nsteps: Number of time steps to perform.

-output_frequency: Interval to output data.

-output_path: Directory where output should be written to.

-dtmax: Upper bound on the time step permitted.

-dtmin: Lower bound on the time step permitted.

-constant_dt: Specifies a constant time step size which should be used.
-time max: Maximum time (in model units) which simulation should perform.

-checkpoint_every: Indicates interval which check point files with a non-unique name should
be written.
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* -checkpoint_every nsteps: Indicates interval which check point files with a unique name
(associated with the current time step) should be written.

* —checkpoint_every ncpumins: Indicates interval in terms of CPU time with which a check point
files with a unique name (associated with the current time step) should be written.

5 Example Models and Tests

A small test suite is provided with the source code for PTATIN3D. These are used to ensure
that core functionality is producing the correct results. The tests can be found in the directory
test/. To execute the tests, ensure that you have Python and Numpy' and execute make test(a
quick subset of tests) or make testaii(all tests) from the PTATIN3D root directory. These wiill
provide instructions on downloading a required test harness script. If on a batch system, after
the queueing system has run the tests, you can use

make testcheck
or

make testallcheck
to verify the results.
Numerous example models are provided with the source distribution. These serve as a start-
ing point to generate your own models. The most simple model is “viscous_sinker”, with
source files living in src/models/viscous_sinker. Several example options files are provided in
src/models/viscous_sinker/testjobs. We summarize the examples below

1. ex_sinker.opts: Defines a dense, viscous rectangular block in a unit cube domain. The
rectangular block sinks due to the buoyancy difference between the block and background
material. “Free slip” boundaries (zero normal velocity, zero tangential stress) are applied
along all boundaries. The model is time dependent with a linear viscous rheology, thus the
driver ptatin_driver_linear_ts.app should be used.

2. sinker-ex2.opts: Defines a buoyant spherical viscous inclusion in a domain Q = [0, 1] x
[0, 4] x [0, 1]. Boundary conditions on the upper surface o;;n; = 0 (“free surface”) and “free
slip” on all other sides. The upper surface is initialized to have a small amount of positive
topography. Only a single time step is performed. The driver ptatin driver_linear ts.app
should be used. This option file illustrates how flexible multi-grid coarsening and coarse
grid operators can be used. See Sec. 8.1 for further details.

3. sinker-mfscaling.opts: Defines a dense, viscous spherical inclusion in a unit cube
domain. A“free surface” upper boundary is used and all other boundaries are “free
slip”. The upper surface is initially flat. Only a single time step is performed. The driver
ptatin_driver_linear_ts.app Should be used. This option file is used for strong scaling experi-
ments.

6 Generated Output

All output generated via PTATIN3D will be written in the directory specified via the option
-output_path. If this option isn’t provided, a default directory called output will be generated.

To check, run python and then enter import numpy, which shouldn’t produce an error. (Enter exit () to exit.)


https://www.bitbucket.org/dmay/pythontestharness
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6.1 Diagnostics

The time dependent drivers will generate a log file (ptatin.log-XXX) and a file containing
all options (inputs) used for the current simulation (ptatin.options-XXX). Here, XXX will be
replaced with a year/date/time stamp (e.g. 2013.10.31_11:00:54) corresponding to when the
executable was launched. The time stamp ensures unique files will be give to each model run,
thus enabling them to reproduced at a later date. Log files contain information regarding the
mesh resolution, memory usage, CPU times associated with each solve and diagnostics about
the solver (number of iterations, residuals, etc) and the time step, current time associated with
the simulation. The options file generated can be used to re-run PTATIN3D models simply via
executing ./ptatin DRIVER.app -options_file ptatin.options-XXX.

6.2 Simulation results

PTATIN3D generates output in formats which can be visualized via the open source tool ParaView
(www.paraview.org). A comprehensive ParaView tutorial can be found here at http://www.
paraview.org/Wiki/The_ParaView_Tutorial. Additional tutorial information can be found here:

- www.bu.edu/tech/about/research/training/online-tutorials/paraview/

- www.cac.cornell.edu/education/Training/datal0/VisualizationWithParaView.pdf

A summary of file extensions commonly produced by PTATIN3D is provided below:

*.pvd: Contains time dependent datasets.

*.pvts: Contains mesh data (nodal fields and cell fields) for the complete mesh.

*.vts: Contains mesh data (nodal fields and cell fields) for each sub-domain used in the parallel
computation.

*.pvtu: Contains particle data for the complete set of material points.

*.vtu: Contains particle data for each sub-domain used in the parallel computation.

Depending on the particular output functions called in your model, numerous fields are generated
during a PTATIN3D simulation. The term “sub-domain” used above refers to the piece of the
mesh assigned to each core. In the mode of parallelism used in PTATIN3D, there is always one
sub-domain per core.

6.2.1 Mesh data

Velocity and pressure: Both the velocity and pressure fields are contained in the following set
of files:

timeseries_vp.pvd,

step000000_vp.pvts,

step000000_vp-subdomain00000.vts.

Floating point numbers are stored as double precision. All data is stored in a binary format. The
function

pTatin3d_ModelOutput_VelocityPressure_Stokes()

generates these data files.

Velocity: The velocity field is contained in the following set of files:

timeseries_v.pvd,

step000000_v.pvts,

step000000_v-subdomain00000.vts.

Floating point numbers are stored as single precision. All data is stored in a binary format. The


www.paraview.org
http://www.paraview.org/Wiki/The_ParaView_Tutorial
http://www.paraview.org/Wiki/The_ParaView_Tutorial
http://www.bu.edu/tech/about/research/training/online-tutorials/paraview/
www.bu.edu/tech/about/research/training/online-tutorials/paraview/
http://www.cac.cornell.edu/education/Training/data10/VisualizationWithParaView.pdf
www.cac.cornell.edu/education/Training/data10/VisualizationWithParaView.pdf
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function
pTatin3d_ModelOutputLite_Velocity_Stokes()
generates these data files.

Temperature: The temperature field is contained in the following set of files:

timeseries_T.pvd,

step000000_T.pvts,

step000000_T-subdomain00000.vts.

Floating point numbers are stored as single precision. All data is stored in a binary format. The
function

pTatin3d_ModelOutput_Temperature_Stokes()

generates these data files.

6.2.2 Material point data
Material point data can be represented in two distinct manners:

1. As a point cloud, e.g. a set of unconnected points z,, with a set of material point properties
(e.g np, pp, -..) defined at each point coordinate z,. We refer to this as a “point-wise”
representation.

2. As cell constant values defined on the hex mesh (or sub-mesh hex) used to approximate
the velocity field. We refer to this as a “cell-wise” representation.

Each form of representing material point data has several advantages and disadvantages. The
point-wise representation of material point data has the following limitations: (i) the point-wise
representation requires a large amount of storage, and (ii) investigation of the 3D data set is
limited as operations such as iso-surfaces, clipping, etc cannot be defined on point clouds.
Furthermore, points do not represent a finite volume, thus they do not define a surface. Hence no
lighting/shading can be applied, thereby limiting the depth perception of the material point data
set. However, the point-wise representation is useful for debugging model setups. The cell-wise
representation of material point data overcomes both of the two limitations of the point-wise
representation. However, to define the material properties on each cell we have to introduce an
interpolation (or projection) between the data defined on the material points and the mesh. This
means that the result stored in the cell-wise data representation is only an approximation of the
true material point data. Cell-wise representation is useful for high-resolution simulations and
production runs in which the correctness of model setups has been verified.

Point-wise representation: Material point data fields associated with the basic marker type
(MPField_std) are contained in the following set of files:

timeseries mpoints_std.pvd,

step000000_mpoints_std.pvtu,

step000000_mpoints_std-subdomain00000.vtu.

Floating point numbers are stored in the precision associated with each material point data field.
All data is stored in a binary format. The function

pTatin3d_ModelOutput MPntStd ()

generates these data files.

A more flexible mechanism to output material point data associated with multiple marker types
is provided by the function swarmviewGeneric_Paraview(). Note that this function will not generate
a x.pvd file for you. All data is stored in a binary format. Marker types which can be output in
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these files are identified via the the following names:
MPField_Std, MPField_Stokes, MPField_StokesPl, MPField_Energy.

Marker data can alternatively be represented on the mesh used for computing the velocity/-
pressure solution. In this case, the material point data field is averaged over each element and
represented as a constant value within each element.

Cell-wise representation: Material point data fields which are represented on the mesh are
contained in the following set of files:

timeseries_mpoints_cell.pvd,

step000000_mpoints_cell.pvts,

step000000_mpoints_cell-subdomain00000.vts.

Floating point numbers are stored in the precision associated with each material point data field.
All data is stored in a binary format. The function

pTatin3d_ModelOutput_MarkerCellFields()

generates these data files. This function is flexible and permits specific marker fields to be output
into the file. Marker fields which can be output in these files are identified via the the following

Names: MPV_region, MPV_viscosity, MPV_density, MPV_plastic_strain, MPV_yield_indicator, MPV_diffusivity,

MPV_heat_source.

7 Checkpointing and Restarting

7.1 General

« All drivers are capable of generating checkpoint files - however only ptatin driver_ts_init.app

is capable to restarting a job from a checkpoint file.

* All checkpoint files created will reside underneath the following directory:

<OUTPUTDIR>/checkpoints

where <OUTPUTDIR> was specified via -output_path. Each checkpoint is associated with a
unique textual name related to the specific stage of the computation, for example the initial
condition, or the solution at a given time step. A checkpoint file associated with the initial
condition data will be written here

<OUTPUTDIR>/checkpoints/initial_condition

whilst a checkpoint associated with step 100 will be written here

<OUTPUTDIR>/checkpoints/stepl00

Within each each of these directories a number of different files are created. The parent
checkpoint file for the PTATIN3D is always called

ptatin3dctx. json

10
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7.2 Controlling checkpoint file creation

Specifying when a checkpoint should occur can be controlled in several different ways. These
are summarised below.

1. By enforcing that the code writes a checkpoint file every N steps, but the checkpoint files
will will have a common name. These files are over written each time checkpointing occurs.
Such functionality is useful when you simply need to restart the code on machine which
allows a fixed wall time and you want to job chain. Since the checkpoint files have a
common name, job chaining is straight forward. This type of checkpointing is activated via
the command line flag
—-checkpoint_every N

2. By enforcing that the code writes a checkpoint file every M time steps. These files will
have a file name with a unique extension, thus they do not get over-ridden. This type of
checkpointing is activated via the command line flag
-checkpoint_every nsteps M

3. By enforcing that the code writes a checkpoint file every X CPU minutes. This can be
useful if you have some time steps which require significantly more time to solve than
others. In this case, requesting to check point every M time steps might not be appropriate
and you might exceed the wall time before M time steps have completed. This type of
checkpointing is activated via the command line flag
-checkpoint_every ncpumins X

All of the above checkpoint creation options can be used together to preserve the results obtained
from a simulation. When they are used together, care is taken to ensure that time step based
checkpoint files are not written twice. For example, if | asked to checkpoint every 30 mins, and
this criterion is activated at step 10, and the -checkpoint_every nsteps options was used with
a value of 10, PTATIN3D will not checkpoint step10 twice.

7.3 Restarting via a checkpoint file

When ever a checkpoint file is written, the file restart.default is created into the directory
specified via —output_path. This file contains a PETSC options specifying the path to the most
recent checkpoint file created:

# restart.default
-restart_directory path/to/last_checkpoint_file_written

To restart from the last checkpoint file written, you just need to either execute

./ptatin_driver_ts_init.app

By default this driver will look in the directory <OUTPUTDIR> for restart.default and if found, it
will use the path to the checkpoint file specified via the option -restart_directory to restart the
run.

To restart from any checkpoint file written, you need to either execute

./ptatin_driver_ts_init.app \
-restart_directory path/to/your/checkpoint_file

11
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If no other options are provided, the restarted job will write output into the same directory
specified by the value of -output_path given to the run which generated the checkpoint file.

By default it is assumed that the output of a restarted job will be written into the same location as
the original job. If you wish to direct the output of you restarted run to a directory different from
that set by -output_path in the original job, you are required to specify the following two options:

./ptatin_driver_ts_init.app \
-restart_directory path/to/your/checkpoint_file \
-output_path path/to/new/outputdirectory

8 Nonlinear and Linear Solvers
The discrete linear Stokes problem can be expressed as

o o) 3] L 2

We solve Eq. (1) via a right preconditioned Krylov method using an Elman-Wathan style upper
block triangular preconditioner. The preconditioned system is thus

AR 2

U A B |u
-1 )L
The upper block triangular preconditioner is only required to be applied to vectors. Rather than

assembling the inverse and multiplying with an arbitrary vector (z1, z2), we re-state the problem
in the following manner

4B -] — s [f B[ <[] e @

The solve involving the upper triangular system is defined in two steps:

where

1. Solve —S ys = x5 for y,
2. Solve Ay, = x1 — By, fory;

The iterative solution strategy for the Stokes flow problem is a nested procedure, containing
many sub-solves. The nested form of the method used is depicted in Fig. 1. We will refer
to the outer most solver (i.e. that for Eq. (2)) as the “Stokes solve”. Any solver associated
with the A matrix will be verified to as a “Viscous block” solve. Any solver related to S will be
referred to as a “Pressure Schur complement” solve. In the following section we detail how to
configure the solver applied to Eq. (2) to obtain (u, p), and how to configure the solvers in steps 1
(-fieldsplit_u ksp) and 2 (-fieldsplit_p_ksp) of applying the upper triangular preconditioner.

12
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Figure 1: Solver hierarchy

13
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8.1 Configuring solvers
8.1.1 Non-linear Stokes solver
Non-linear methods adopt the following sequence
1. Given xq, set kK = 0. Compute ||F(xo)]]
2. Solve J(xp)dx = —F(xy)
3. Tp11 =x + Oz
4. Compute || F(xg+1)]l
5. k =k + 1, goto step 2 until converged.

The non-linear iteration sequence may be terminated for several different reasons. The reasons
and the controlling parameters (modifiable from the command line are provided below):
-snes_rtol 1.0e-3: StOpS if ||F(£L'k+1)H < 1073||F(1'0)||

-snes_atol 1.0e-3 : stops if || F(zr11)|| < 1073

-snes_stol 1.0e-3 : stops if ||0z < 1073||zx11]|

-snesmax_it 30 : Stops if 30 non-linear iterations occur

-snes max_funcs 30 : Stops if 30 non-linear residual evaluations occur

8.1.2 Linearized Stokes solve

-ksp_rtol 1.0e-3: Stops if HJ]C(SSC + Fk:” < 10_3||J05$ + F()H
-ksp_atol 1.0e-3 . StOpS if HJk(S.Z‘ + F]gH < 10-3
-kspmax_it 30 : stops if 30 Stokes iterations occur

8.1.3 Viscous block solve

-fieldsplit_u ksp.rtol 1.0e-3 : Stops if ||Auy — b|| < 1073|| Auy, — b||
-fieldsplit u kspatol 1.0e-3 : stops if ||Auy — bl < 1073
-fieldsplit_u kspmax_it 30 : Stops if 30 viscous block iterations occur

8.2 Multi-grid sequencing

The number of multi-grid levels is set via the option:

-dau-nlevels X
If X = 3, this will imply that the mesh specified via -ux 16 -my 16 -nz 16 Will be coarsened twice,
resulting (by default) in a mesh sequence with the number of elements M, = 16 (fine), M, = 8
and M, = 4 (coarse). For clarity, level 0 is designated as the “coarsest” level, and level X — 1 is
designated as the “finest” level.

Meshes can be coarsened by a constant factor on each level, or one can control the coarsening
factor level-by level. In both cases, the coarsening applied is dependent on the coordinate
direction (4, j, k). To define constant coarsening on every level, but varying in each direction, use
the options -da refine x, -da_refine_y, and -da_retine z, for example

14
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-da_refine x 4

-da_refine_y 2

-da_refine z 1
Note that different coarsening can be specified in each direction - here denoted via x,y,z in the
refinement command line option. Also note that a refinement factor of 1 implies that mesh will
not be coarsened in that direction.

To define level specific coarsening, use the OptiOﬂS -stk_velocity da refine hierarchy x, -stk_velocity_da refine hierarchy.y,
and -stk_velocity.da refine hierarchy. z, for example
-stk_velocity_da refine hierarchy x 4,1
The integer parameters are listed from coarse to fine levels (left to right). The above options will
result result in the following hierarchy in the z direction (from coarse to fine), M, = {4, 16, 16}.
Note that if you have X levels, you are only required to specify X — 1 values to define the
coarsening hierarchy.

Note that when using geometric multi-grid, all levels are spatial decomposed across all cores.
Furthermore, it is required that every core contains at least one element. Thus, the total number
of cores used to run a PTATIN3D job must not exceed the number of elements within the coarse
grid. If you require additional levels in your multi-grid hierarchy, you may

+ an algebraic multi-grid preconditioner as your coarse grid preconditioner, or

» use PETSC’s PCTELESCOPE to reduce the number of processors in the coarse grid commu-
nicator.

8.3 Coarse grid operators

Within PTATIN3D, the style of coarse grid operator can be configured at run time. We provide
support to enable four types of coarse grid operator; { assembled re-discretised = 0, matrix-free
re-discretised = 1, Galerkin = 2, matrix-free Galerkin = 3 }. Re-discretised operators imply
that the viscosity is projected through the mesh hierarchy and the finite element operators are
re-evaluated using the standard FE weak form defined on the fine level. Galerkin coarsening
implies that the coarse grid operator at level k A is defined via A, = RT A1 R, where R is
the restriction operator for level k + 1 to k. To define the triple matrix product required by the a
Galerkin operator definition on level k, it is require that the operator on level k + 1 be assembled,
i.e. be of either type { assembled re-discretised = 0, Galerkin = 2 }. Configuration of the coarse
grid operator type is define via the option

-A11_operator_type
, for example

-A11 _operator_type 2,2,0,1
where valid indices are {0, 1,2, 3} and operators on each level are specified from coarse to fine
(left to right).

8.4 Multi-grid performance profiling

To activate monitors which report CPU times on each multi-grid level, one must specify the
following options

-daunlevels X -fieldsplit_u.-pc_type mg -fieldsplit_u_pcmg_levels X -fieldsplit_u_pcmg_log -log_summary
Note that if the values for -daunlevels x and -fieldsplitupcmg levels X do not match, logging will
not be performed.
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8.5 Understanding residuals

When solving linear problems, two types of residuals are important to monitor for both accuracy of
the Stokes problem and efficiency of the solver. By default, all drivers report the Stokes residuals
for the individual components of the residual associated with the u, v, w-momentum equations
and the continuity equation. The complete residual associated with the residual of the full vector

(u,v,w,p) can be monitored using the flag
-ksp_monitor

The residuals output to the screen will typically look like the following:

0 KSP Component U,V,W,P residual norm [ 0.000000000000e+00, 2.307691625955e-03, 0.000000000000e+00, 0.000000000000e+00 ]
Residual norms for fieldsplit_u_ solve.
0 KSP Residual norm 1.000000000000e+00
1 KSP Residual norm 9.566218971472e-01
2 KSP Residual norm 6.120179419948e-01
3 KSP Residual norm 2.693954462485e-01
4 KSP Residual norm 7.305148723409e-02
5 KSP Residual norm 2.484961341074e-02
6 KSP Residual norm 7.872576358279e-03
1 KSP Component U,V,W,P residual norm [ 1.931850895378e-07, 2.249650371310e-03, 1.931669353791e-07, 3.613480131486e-04 ]
Residual norms for fieldsplit_u_ solve.
0 KSP Residual norm 9.383540923375e-01
1 KSP Residual norm 2.353199854638e-01
2 KSP Residual norm 6.233285019473e-02
3 KSP Residual norm 2.466199083002e-02
4 KSP Residual norm 6.082964600394e-03
2 KSP Component U,V,W,P residual norm [ 2.862389390637e-05, 9.461315464033e-04, 2.873233657833e-05, 1.128984116051e-03 ]
Residual norms for fieldsplit_u_ solve.
O KSP Residual norm 1.461862868221e+01
1 KSP Residual norm 6.787824394358e-01
2 KSP Residual norm 1.306125161069e-01
3 KSP Component U,V,W,P residual norm [ 1.614279704240e-04, 4.795734857592e-04, 1.613914106944e-04, 8.488885268501e-04 ]
Residual norms for fieldsplit_u_ solve.
0 KSP Residual norm 3.614067424860e+01
1 KSP Residual norm 1.727513541857e+00
2 KSP Residual norm 1.701193913599e-01
4 KSP Component U,V,W,P residual norm [ 1.182053444264e-04, 2.177408865879e-04, 1.181950335293e-04, 3.963394470286e-04 ]

The longer lines containing the “U,V,W,P residual norm” relate to the residuals of the Stokes
problem, whilst the shorter lines under each instance of “Residual norms for fieldsplit u_
solve.” relate to the viscous block solver which is performed as the Stokes preconditioner is
applied.

8.6 Trouble shooting convergence problems
Convergence failure of Stokes solver

1. Elements possess a high aspect ratio (AR). When using Q»-P; elements, the inf-sup
constant increases with increasing AR. Possible fixes: (1) Strengthen the Schur comple-
ment preconditioner. This could be achieved by -fieildsp1lit_p_pc_type 1u, Or switching to
use an approximate form of S = BY A~!B via say one application of a Krylov method
preconditioned with the scaled lumped mass matrix. Increasing the strength of the Schur
complement preconditioner can be achieved by making the solve on A~ more accurate
and making the solve on S more accurate; (2) modify the element resolution to make AR
< 10.

2. Convergence failure of the viscous block. This can be diagnosed by running with these
OptiOﬂS; -fieldsplit_u kspmonitor_true_residual -fieldsplit_u_ksp_converged reason. See below
for more information.

Convergence failure of viscous block

1. MG smoother is not strong enough. Possible fixes: (1) Increase the number of smoothing ap-
plications via -fieldsplitumg levels kspmax_it; (2) completely re-configure the smoother for
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example try -fieldsplit_umg levels ksp.type fgmres -fieldsplit_umg levels kspmax.it 4 -fieldsplit_umg levels_pc_ty]
bjacobi. Not that this will require assembling the coarse grid operators; (3) Use more robust

coarse grid operators, e.g. assemble some levels and use Galerkin coarsening on the

coarser levels; (4) Use less levels, or try aggressive coarsening.

. MG coarse grid solver fails to converge. This can be diagnosed by running with these op-

tions; -fieldsplit_umg coarse ksp monitor_true residual -fieldsplit_u mg coarse_ksp_converged reason.

Possible fixes: (1) Improve the coarse grid solver. See below for more details.

Convergence failure of viscous block, GMG coarse grid solver

1.

MG coarse grid preconditioner isn’t strong enough. Possible fixes: (1) Use algebraic

multigrid (ML, Hypre) as a preconditioner; (2) Use heavy sub-domain preconditioners, e.g.
-fieldsplit_umg _coarse_pc_type asm -fieldsplit_umg coarse_pc_asm_overlap 2 -fieldsplit_u.mg_coarse_sub_pc_type
ilu -fieldsplit_umg-coarse_sub_pc_factor_levels 2; (3) Try using a semi-redundant approach

where you accumulate the coarse grid problem on a sub-set of cores and use stronger

sub-domain preconditioners.

Convergence failure of non-linear Stokes solver

1.

Coming soon. . ..

8.7 Using optimized operators

PTATIN3D should automatically use optimized kernels for matrix-free application of the operators
A and B in Equations 1 and 2. Additional control over the A operator (also known as the viscous
block or the A;; operator)is achieved with a command line flag

-all_op <ref,tensor,avx,opencl,cuda,subrepart>

The default is avx if your compiler detects that AVX is available, and otherwise tensor. See the
initial PTATIN3D output for a note about whether or not AVX was detected. Note that you may
need to provide a special compiler flag in makefile.arch, such as -march=native, to enable

AVX.

opencl and cuda kernels require that you have configured PTATIN3D to use OPENCL and CUDA,
respectively; see Section 2.3.2. Note that these kernels assume one GPU per rank.

If you have AVX, CUDA, and MPI-3 shared memory constructs ? available, you can use -a11_op
subrepart, which uses the CUDA and AVX kernels simultaneously, assuming 1 GPU per shared-
memory domain. It requires specification of a parameter describing what fraction of the work
(local elements) to allocate to the GPU,

-subrepart_frac <value 0-1>

This value should be tuned until good load balance is achieved between the single rank per node
which uses the GPU, and the others which use only the CPU. Good balanced is achieved when
a time “ratio” value of 1.0 is observed in the PETSC logs in the MatMultMFA11_sub row.

You may also experiment with using more than one OPENMP (hyper)thread per rank.

2|n particular, a working MPI_Comm_split_type ()
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9 Geometry

9.1 Modelling domain

The underlying coordinate system used in PTATIN3D is Cartesian. In Fig. 2 we identify the face
labels used.

NORTH_FACE (ptatin_std_dirichlet bcs.c)
DMDABCLIist JMAX LOC (dmda bcs.c)
face id = 2 (FaceLatticeLayout3d())

EAST_FACE (ptatin_std_dirichlet_bcs.c)
DMDABCLIist IMAX LOC (dmda_bcs.c)
face id = 0 (FaceLatticeLayout3d())

FRONT_FACE (ptatin_std_dirichlet_bcs.c)
DMDABCList KMAX_LOC (dmda_bcs.c)
face_id = 4 (FaceLatticeLayout3d())

—x

WEST_FACE (ptatin_std_dirichlet_bcs.c)
[ DMDABCLIst IMIN_LOC (dmda_bes.c)
face_id = 1 (FaceLatticeLayout3d())

BACK_FACE (ptatin_std_dirichlet_bcs.c)
DMDABCLIist JMIN_LOC (dmda_bcs.c)
face id =5 (FaceLatticeLayout3d())

SOUTH_FACE (ptatin_std_dirichlet_bcs.c)
DMDABCList KMIN_LOC (dmda_bcs.c)
face_id = 3 (FaceLatticeLayout3d())

Figure 2: Natural coordinate system used by the physical domain Q in PTATIN3D. Labels indicate various
names given by different structures functionality.

10 Building Models

10.1 Code structure

The idea we have for building models is that models should be separated as much as possible
from the core functionality of PTATIN3D. That is, we want to separate boundary conditions, mesh
geometry, etc. as much as possible from the solver used to solve the underlying PDE (Stokes).

For this reason, we have adopted a code structure in which models are compiled and combined
into a separate, stand alone library. When using a PTATIN3D driver (a program which solves
something), we link the model library against the solver library.

Models live under the directory

ptatin3d/src/models/
and the models are compiled into the static library 1ibptatin3dmodels.a An example model called
“template” is provided in src/models.

To add a model, you need to add the path to and the filename of all files within your model
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Figure 3: Nomenclature and basis function ordering for the volume and surface basis functions. &,n,¢
are the spatial coordinates in local element coordinate system. The notation €1, ¢~ indicates
faces along which ¢ = 1,& = —1 respectively. The convention associated with defining outward
pointing surface normals (n) and the two tangent vectors to the surface (t1,t2) are indicated.

directory into the file

ptatin3d/src/models/local.mk

A typical snippet of this file is shown below. Your files should replace the string <new_model _files>.

# ptatin3d/src/models/local.mk

libptatin3dmodels-y.c += $(call thisdir, \
ptatin_models_reg.c \
template/model_ops_template.c \
<new_model_files> \

)

Importantly, all lines must end with forward slash character (/).
Within the directory
ptatin3d/src/models/template
are the files which define any specific data structures needed for the model, (model_template_ctx.h)

and a file (model_ops_template.c) containing a complete (yet empty) model description. A “model”
description in PTATIN3D consists of defining the following operations.

1. FP_pTatinModel Initialize (NON essential) Initialize any model specific options, and or model
specific parameters in your user defined model context.

2. FP_pTatinModel ApplyBoundaryCondition Define boundary conditions for the PDE (Stokes, en-
ergy).
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3. FP_pTatinModel ApplyBoundaryConditionMG Define boundary conditions for velocity on each multi-
grid level.

4. FP_pTatinModel ApplyMaterialBoundaryCondition (non essential) Define the influx of material
points if you have prescribed boundary conditions for velocity which are such that - n < 0
(e.g. inflow boundary conditions).

5. FP_pTatinModel ApplyInitialSolution (NON essential for Stokes) Define initial values in the
velocity, pressure (non essential) and temperature (essential) vectors. For the Stokes
variables (u, p), specifying an initial value may improve convergence of the Stokes solve
on the first time step (e.g. by introducing a hydrostatic pressure gradient in the pressure
vector).

6. FP_pTatinModel ApplyInitialMeshGeometry Define the geometry of the mesh. Typlcally this is
done simply by described a hexahedral domain via the PETSC function pupasetUniformCoordinates ().

7. FP_pTatinModel ApplyInitialMaterialGeometry Define the initial geometry of the lithology on the
markers. (e.g. specify rheology)

8. FP_pTatinModel UpdateMeshGeometry (NON essential) Define how the mesh should evolve with
time. In some models the mesh remains fixed in space through out time, thus this function
need not be defined. Other models may wish to deform the mesh with the velocity vector,
or may wish to advect the free surface and then apply remeshing within the interior of the
domain. Such prescription of ALE mesh movement should be specified here.

9. FP_pTatinModel Output (NON essential) Specify what mesh fields (e.g. velocity, pressure,
temperature) and marker fields will be outputted. Numerous methods to output objects
from PTATIN3D are provided. Any model specific output functions should be called here.

10. Fp_pTatinModel Destroy Upon completion of a PTATIN3D job, this function will be called to
release the memory allocated which is associated with this particular model. If no data
structures were defined, then this function does not need to be defined.

Following the definition of the above functions, to complete the model definition we have to
perform the following steps :

1. pTatinModelCreate() Calling this creates a little structure to hold your function pointers and
other model related information.

2. pTatinModelSetName(...,MODELNAME); The variable in mopeLnave, will used as the command line
argument used to select the model -ptatin model MODELNAME

3. pTatinModelSetUserData() Set any data structures required by the model.

4. Assign the function pointers. This is done via pTatinModelSetFunctionPointer(). The second
argument indicates which function pointer is used. These are defined via typedef enum {
} pTatinModelOperation; and are declared in ptatinmodels.h TO assign the operations which
your model will perform, a helper function (pTatinModelSetFunctionPointer()) iS provided. Ex-
ample usage:
pTatinModelSetFunctionPointer(...,PTATIN_MODEL_APPLY BC,my_apply-bc_function);

pTatinModelSetFunctionPointer(...,PTATIN_.MODEL_APPLY_INIT_MAT_GEOM,my_apply-init material_geom_function);
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5. Register the model via the call pratinModelregister() This will add your model definition
into a list which PTATIN3D will have access to. Steps 1-5 are provided within the function
pTatinModelRegister_Template().

6. Finally, you need to edit ptatinmodels_reg.c and add the function call to register your model.
This should be done within pTatinModelRegistera11() as you’ll note, you will see the “template”
model registration function pTatinModelRegister_Template() ;

So you don’t have the compiler warning about “implicitly defined function”, simply add the
prototype as an extern, €.9.
extern PetscErrorCode pTatinModelRegister_Template(void);

10.2 Compiling your model

Models must be compiled at the root level of the PTATIN3D. That is, to make a model, you
must run “make all” from ptatinza You should not run make from within the model directory
ptatin3d/src/models OF ptatin3d/src Ol ptatin3d/src/models/template.

10.3 Implementing Dirichlet boundary conditions

PTATIN3D uses “iterators” to assist you in defining boundary and initial conditions. lterators allow
you to apply user defined functions to set boundary and initial conditions into the data structures
and solution vectors used by PTATIN3D without requiring the user to see the underlying data
structures used, or understand parallelism.

To apply boundary conditions, the main function used is:
PetscErrorCode DMDABCListTraverse3d(
BCList list,
DM da,
DMDABCListConstraintLoc doflocation,
PetscInt dof_idx,
PetscBool (*evaluate_boundary_condition) (PetscScalar*,PetscScalar*,voidx),
void *ctx)
which is declared in dnda bes.c, where the input arguments are identified as;

BCList list - data structure used to store boundary conditions.
DM da - data structure used to represent the mesh and quantity (e.g. velocity).

DMDABCListConstraintLoc doflocation - index identifying which region of the mesh you wish to

attach a boundary condition to. The value used here should be one of { bMpaBcList_INTERIOR LOC,
DMDABCList_IMIN_LOC, DMDABCList_IMAX_LOC, DMDABCList_JMIN_LOC, DMDABCList_JMAX_LOC, DMDABCList_KMIN_LOC,
DMDABCList KMAX Lac }. Refer to Fig. 2 for the geometric interpretation of these names.

PetscInt dof_idx - integer identifying which degree of freedom the constraint should be
applied to (.e.g v, would correspond to 0, v, would correspond to 1).

PetscBool (*evaluate_boundary_condition)(PetscScalar*,PetscScalar*,void*) - the user provided
function which defines the boundary condition.

void *ctx - any data structure, or parameters which are required by the user provided
function to evaluate the boundary condition.
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The calling sequence for evaluate boundary_condition iS,
PetscBool evaluate_boundary condition( PetscScalar position[], PetscScalar *value, void *ctx )

where the arguments are;
PetscScalar position[] - coordinates in space where the boundary condition is evaluated.
void *ctx - user defined data require to evaluate the boundary condition.
PetscScalar *value - the actual value of the boundary condition [OUTPUT].

PetscBool - the function must return { persc_true, PETsc_FALSE } to indicate whether the
boundary condition should be applied at this location [OUTPUT].

For a simple example of a user defined boundary condition function, refer to
PetscBool BCListEvaluator_constant(PetscScalar position[],PetscScalar *value,void *ctx)

in file dmda_bes.c.

A standard set of velocity Dirichlet boundary conditions for Stokes are defined in ptatin_std_dirichlet_boundary_conditions.
Please refer to ptatin_std_dirichlet _boundary_conditions.h for a summary of the functions available.
Notes:

1. Boundary conditions can be applied within the interior of the domain using the value
DMDABCList_INTERIOR_LOC.

2. Boundary conditions do not have to be applied along an entire face. Prescribing boundary
conditions internal to a face is controlled by whether your user provided function returns
PETSC_TRUE Of PETSC.FALSE. For example, if the bc evaluator was called with the argument
DMDABCList_IMIN.LOC we Will traverse along the bottom boundary. The user defined function
could return persc_TruE if 2 < 0.5 and persc_FaLSE otherwise. When peTsc_FALSE is returned
the parameter petscScalar *value iS ignored.

3. When defining time dependent boundary conditions, the variable time should be included
within the user defined structured (void *ctx) which is passed into DMDABCListTraverse3d().

10.4 Implementing initial conditions

Iterators are provided to allow to define the contents of PETSC vectors via user defined functions.
This is particularly useful to define initial conditions, e.g. for the temperature field. The procedure
is similar to that used to define boundary conditions described above. The two iterators used
to fill in values within a vector are pMpavecTraverse3d and pMpavecTraverseIJK Which are declared in
dmda_iterator.c. Below we describe the calling pattern of these two functions.

The standard vector iterator is given by
PetscErrorCode DMDAVecTraverse3d(
DM da,
Vec X,
PetscInt dof_idx,
PetscBool (*evaluate_function) (PetscScalar*,PetscScalar*,voidx*),
void *ctx),
where the input arguments are identified as;

DM da - data structure used to represent the mesh and quantity (e.g. velocity).
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vec x - PETSC vector into which you want to insert values (e.g. velocity).

PetscInt dof_idx - integer identifying which degree of freedom the constraint should be
applied to (.e.g v, would correspond to 0, v, would correspond to 1).

PetscBool (*evaluate_function) (PetscScalar*,PetscScalar*,void*) - the user provided function.

void *ctx - any data structure or parameters which are required to evaluate the the user
provided function.

The calling sequence for evaluate function iS,
PetscBool evaluate_function( PetscScalar position[], PetscScalar *value, void *ctx )
where the arguments are

PetscScalar position[] - cOordinates in space where the user defined function will be evalu-
ated.

void *ctx - user defined data require to evaluate the boundary condition.
PetscScalar *value - the result of the user provided function [OUTPUT].

PetscBool - the function must return { pErsc_truE, PETSC_FALSE } to indicate whether the value
should be inserted into the vector [OUTPUT].

The standard ijk vector iterator is given by
PetscErrorCode DMDAVecTraverseIJK(
DM da,
Vec X,
PetscInt dof_idx,
PetscBool (*evaluate_functionIJK) (PetscScalar*,PetscInt*,PetscInt*,PetscScalar*,void*),
void *ctx),

where the input arguments are identified as;
DM da - data structure used to represent the mesh and quantity (e.g. velocity).
vec X - PETSC vector into which you want to insert values (e.g. velocity).

PetscInt dof_idx - integer identifying which degree of freedom the constraint should be
applied to (.e.g v, would correspond to 0, v, would correspond to 1).

PetscBool (*evaluate_functionIJK)(PetscScalar#*,PetscInt*,PetscInt*,PetscScalar*,void+) - the user
provided function.

void *ctx - any data structure or parameters which are required to evaluate the the user
provided function.

The calling sequence for evaluate_functionIJX iS,

PetscBool evaluate_functionIJK( PetscScalar position[], PetscInt global_index[], PetscInt local_index[],
PetscScalar *value, void *ctx )
where the arguments are

PetscScalar position[] - coordinates in space where the user defined function will be evalu-
ated.

PetscInt global-index[] - 4, j, k values of the node in the global numbering system.
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PetscInt local_index[] - i, 7, k values of the node in the local numbering system.
void *ctx - user defined data require to evaluate the boundary condition.
PetscScalar *value - the result of the user provided function [OUTPUT].

PetscBool - the function must return { persc_truE, PETSC_FALSE } to indicate whether the value
should be inserted into the vector [OUTPUT].

11 Passive Swarms

11.1 Introduction

The PSwarm object provides a convenient way to track deformation and other quantities of
interest (e.g. temperature) at discrete locations in the model domain. The PSwarm object defines
a “passive swarm”, a set of discrete particles with no assumed connectivity to any other particle
in the swarm. The particles are contained within the model domain and do not influence the flow
field, or interact with each other (hence the usage of the word passive).

11.2 Defining passive swarms

A single passive swarm can be created with the following code

PSwarm pswarm;

PSwarmCreate (PETSC_COMM_WORLD, &pswarm) ;

Any arbitrary number of passive swarms can be created at run-time with the following code:

PSwarm *pswarm_array;

PSwarmCreateMultipleInstances (PETSC_COMM_WORLD,&pswarm_array) ;

together with the the command line option

-pswarm_list xx,yy

where xx and yy define the unique names you wish to assign to each passive swarm. In
this example, since two names are provided, two passive swarms are created. If the option
-pswarm_list was not found, pswarm_array will be returned as an array of NULL pointers.

11.3 Options

The definition and behaviour of the PSwarm object is configurable at run-time via command line
options. When only a single PSwarm object is created, a unique name is not required to identify
the PSwarm. In this case, all options take take the form

-pswarm_<OPTION_NAME> <VALUE>

When multiple PSwarm objects have been defined, the options will be denoted via

—###_pswarm_<OPTION_NAME> <VALUE>
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where ### is be the name used to identify each passive swarm (see Section 11.2)
For the options to take effect, one is required to call

PSwarmSetFromOptions (pswarm) ;

An example of how to create and traverse through multiple PSwarm objects is shown below.

PSwarm *pswarm_array, *pswarm;

PSwarmCreateMultipleInstances (PETSC_COMM_WORLD,&pswarm_array) ;
pswarm = &pswarm_array [0] ;
while (*pswarm && pswarm_array) {

PSwarmSetFromOptions (*pswarm) ;

pswarm++;

}

11.4 Defining initial coordinates

Several choices are possible to define the initial coordinates of the points in each passive swarm.
The method used to define the coordinate is controlled via the command line argument

—###_pswarm_coord_layout

Valid choices for -###_pswarm_coord_layout are 1, 2, 3 The default value is 1. The methods of
defining the coordinates are described below

11.4.1 Filling a sub-set of the velocity mesh ( -###_pswarm_coord_layout 1)

Within each Q2 element, the user can define a number of points in each i, j, k direction via

—-###_pswarm_lattice_nx 3,4,5

By default, all elements are filled with points. If desired, a box shaped clipping mask can be
applied. Points located within the box are kept whilst all other points are ignored. The dimensions
of the box are defined via

—###_pswarm_lattice_min 0.0,0.0,0.0
—###_pswarm_lattice_max 1.0,2.0,3.0

Options example:

-###_pswarm_coord_layout 1
—-###_pswarm_lattice_nx 3,4,5
—###_pswarm_lattice_min 0.0,

0.0,0.0
—-###_pswarm_lattice_max 1.0,2.0,3.0

B

Note that in general, this point creation method does not allow you to precisely control the total
number of points which will exists within the passive swarm as it depends on the resolution of the
finite element mesh.
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11.4.2 Filling a box ( -###_pswarm_coord_layout 2)

This method allows you to define a box geometry with a fixed number of points in each i, j, k
direction.
Options example:

-###_pswarm_coord_layout 2
—-###_pswarm_box_nx 3,4,5
—###_pswarm_box_min 0.3,0.4,0.5
—###_pswarm_box_max 0.6,0.8,1.0

The above defines a domain [0.3,0.6] x [0.4,0.8] x [0.5,1.0] and fills this domain with 3 points
in the z- direction, and 4,5 points in the y-, z- directions respectively. The number of points
specified in each direction must be greater than 1. Note: this design limitation could be easily
fixed. Point coordinates generated which reside outside the background finite element mesh are
ignored and not included within the passive swarm.

11.4.3 Using a user defined coordinate list ( -###_pswarm_coord_layout 3)

This method allows you to exactly specify the initial location of the passive swarm points by
providing a list of z, y and z coordinates.
Options example:

—###_pswarm_coord_layout 3
—###_pswarm_coor_n 4

—-###_pswarm_coor_x 0.4,0.6,0.4,0.6
—###_pswarm_coor_y 0.1,0.1,0.3,0.3
-###_pswarm_coor_z 0.5,0.5,0.5,0.5

will define 4 particles with the coordinates (0.4,0.1,0.5) , (0.6,0.1,0.5) , (0.4,0.3,0.5) and
(0.6,0.3,0.5). Point coordinates specified which reside outside the background finite element
mesh are ignored and not included within the passive swarm.

11.5 Visualisation

Assuming we have a PSwarm declared as follows

PSwarm pswarm;

and where slab defines the unique names assigned to each passive swarm.
Calling the viewer function

PSwarmViewInfo (pswarm) ;

will report meta-data about your swarm to stdout. Calling

PSwarmView(pswarm,PSW_VT_SINGLETON) ;

will create a single VTU file across all MPI-rank in the given communicator. Given that passive
swarms may be sparsely distributed throughout the finite element mesh, this output generation
style is preferred (even though it may not be the fastest approach). This method will generate the
following output:
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* timeseries_slab_pswarm.pvd
* step****/step*x**_slab_pswarm.vtu

Lastly, setting the last arg to the value PSW_VT_PERRANK, e.g.

PSwarmView(pswarm,PSW_VT_PERRANK) ;

will create a VTU file per MPI-rank. This method will generate the following output:
* timeseries_slab_pswarm.pvd
* stepx***/step*x**_slab_pswarm-subdomain00000.vtu

* step****/step*x**_slab_pswarm.pvtu

11.6 Defining the transport mode

Passive swarms can be defined to remain stationary over time, or to be advected with the fluid
velocity. We refer to this choice as a “transport mode”. By default, all passive swarms are
assumed to utilize a Lagrangian transport mode (e.g. they move with the fluid velocity). If you
require swarms to be stationary, use the command line option

—###_pswarm_transport_mode_eulerian

11.7 Defining the field update methods

A number of quantities can optionally be computed, or updated on each passive swarm. For
example we can compute the pressure, temperature or track the finite strain. Such tasks are
referred to as “field update” methods. By default, swarms do not have any field update methods
specified.

On any given swarm, the user may request any number of field update methods be applied. For
instance, swarm “xx” may have no field updates specified, whilst swarm “yy” may be asked to
track pressure and finite strain. This would be invoked via the following command line arguments:

-yy_pswarm_field_update_pressure
-yy_pswarm_field_update_finite_strain

NOTE: Only a field update method for pressure is implemented

11.8 Defining the region index of a passive swarm

For convenience, we optionally allow users to set a region index on all points within a passive
swarm. This is achieved via the command line option

—-###_pswarm_region_index 3

which would assign a region index of 3 to each point in this passive swarm. The default region
index is set to 0.
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11.9 Post-processing finite strain

A simple recipe to post-process finite strain is described below. Here will define an initial set of
points within a box, and track the deformation of the box over time.

The script requires ParaView, and furthermore the build of ParaView must have Python support
enabled. We will be using the python wrapper provided by ParaView called pvpython. For binary
builds on OSX, this can be located here:

/Applications/paraview.app/Contents/bin/pvpython

Procedure

1. Use the coordinate layout option

-pswarm_coord_layout 2

Upon executing of the PSwarm coordinate generation code, the following file will be created
in your output directory

deformation_grid_ref.vts

2. Within your model output function, call either PSwarmView (pswarm,PSW_VT_SINGLETON) or
PSwarmView (pswarm,PSW_VT_PERRANK) to generate snapshots of the passive swarm.

3. To generate a deformation grid for a given time step, you need to execute the following
script

pvpython utils/python-post-proc/extract-dgrid.py \
-i path/to/inputfile.vtu \
-b path/to/deformation_grid_ref.vts \
-0 outfilename.vts

The file created outfilename.vts, contains a hex-mesh representation of your deformed
box which can be loaded and rendered by ParaView.

In step 3., the file specified by the -i must be a vtu file and not a pvtu file. Either format can be
generated by PSwarm object (e.g. PSW_VT_SINGLETON vs. PSW_VT_PERRANK). A script is provided
to convert a pvtu file associated with your passive swarm into a vtu file. To do this, use

pvpython utils/filters/convert_pvtu2vtu.py \
-i path/to/inputfile.pvtu

This will create the following file

path/to/inputfile.vtu

NOTE: deformation grid reference file is not PREFIXED
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12 Non-dimensional scaling

The preferred choice of scaling is the following; the users chooses a characteristic velocity, length
and viscosity v*, x*, n*. These choices define the following non-dimensional variables, v' = v/v*,
2’ =z /x*, n' =n/n*. Given the Stokes problem

Ve (Vo (Vo)') =Vp=pg,  V-u=0,

the non-dimensional form thus becomes

* * 2

x / **pg, V/'U/ZO,
v

V/' / VIU/Jr V/U/T o Vp:
' ( (Vo)) — ;

where V' = %V From this the non-dimensional pressure is chosen as

771}
p=p7, p=-—
X

Thus the final non-dimensional form of the Stokes problem is given by:

.’L'*2

\viR 77/ (v/vl T (V/U/)T) _ v/p/ —_ pg V' -u =0.

n*v*

The right hand side should be interpreted as a non-dimensional force per volume. If desired,
we can express the right hand side in terms of a non-dimensional density p = p*p’ and gravity
9=9g"

* 2
v/ . 77/ (v/vl + (v/U/)T) _ v/p/ _ <;U* ) (p*p/) (g*g/) , v/ = 0.

12.1 Additional notes

1. The ideal choice of z*, v*, n* scaling should result in values of velocity and pressure which
follow © = maxy(|v}|) ~ 1 and p = maxy(|p},|) ~ 1. If your scaling doesn’t produce this type
of behaviour, then one should be careful in choosing the stopping condition applied to both
the non-linear and linear solvers. For example, if v ~ 10°, it doesn’t make much sense to
solve the non-linear equations to a tolerance of F,, F}, ~ 107°.

2. Convergence of both linear and non-linear solver will appear slow if the scaling if the
characteristic size of the velocity and pressure coming out of your model are orders
of magnitude different. For instance, if your choice of scaling produces F, ~ 10° and
F, ~ 107! and you stop on d,s = 1075, then a large number of iterations will be required
to reduce the 2-norm of (F,, F},) to be less than 1075.

3. Adjusting the scaling parameters to force v,p — 1: Assuming a model with a linear
rheology and a free surface boundary condition, the following observations can be made:
(i) increasing v* by a factor of X will cause v’ to decrease by a factor of X and p’ will be
unaffected; (ii) increasing x* by a factor of X will cause v’ to increase by a factor of X2 and
p’ to increase by a factor of X?; (iii) increasing n* by a factor of X will not affect v/, however
p’ will decrease by a factor of X.
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