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Abstract. Modelling the lithostatic pressure in the Earth’s interior is a common problem in Earth sciences. In this study we

propose to compute the lithostatic pressure from the conservation of momentum of a fluid, reduced to the case of a hydrostatic

scenario. This results in a partial differential equation (PDE) which can be solved using the classical numerical methods. To

illustrate the usefulness of a PDE based formulation to compute the lithostatic pressure we present two 2D models, one with

a deformed mesh and one with a radial gravity vector and a concentric density distribution. Moreover, we also present a 3D5

rift model which use the lithostatic pressure as a time-dependent boundary condition. This model shows a high degree of

non-cylindrical deformation resulting from the stress boundary condition that is accommodated by strike-slip shear zones. We

compare the result of this numerical model with a traditional rift model employing free-slip boundary conditions to demonstrate

the first order implications of considering “open” boundary conditions in 3D thermo-mechanical rift models.

1 Introduction10

In Earth sciences and geodynamic modelling, computing the lithostatic pressure can be essential. Specifically, numerous

thermo-mechanical studies use the lithostatic pressure as a type of stress boundary condition (e.g., Baes et al., 2018; Brune,

2014; Brune et al., 2012, 2014, 2017; Chertova et al., 2012, 2014; Ismail-Zadeh et al., 2013; Popov and Sobolev, 2008; Quin-

teros et al., 2010; Yamato et al., 2008). Moreover, the lithostatic pressure can also be used as an initial guess for the pressure

when solving linear or non-linear systems flow problems with iterative methods.15

The common approach to compute the lithostatic pressure P is to define a set of depth columns and integrate the rock

density ρ(x) over each column to obtain the lithostatic pressure at depth. That is, to compute the pressure P at some point x′,

we evaluate the 1D integral

P (x′) = P̄0 +

x′∫

x′s

ρ(x)||g(x)||dx, (1)

where x′s is the projection of x′ onto the surface of the Earth in the direction opposite to the gravity vector g and P̄0 is the20

reference pressure at the surface x′s. For the case of a constant density and gravity, this expression reduces to P (x′) = P0+ρgD

where D is the distance (depth) given by D = ‖x′s−x′|| and g = ||g||. When the density is a function of space and gravity is

constant, the 1D integral is decomposed into different segmentsDi and a suitable quadrature rule is applied over each segment.
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For example using a 1-point Gauss quadrature rule we have

P (x′) = P̄0 +
∑

i

∫

Di

ρ(x)gdx≈ P̄0 +
∑

i

ρigDi, (2)25

where ρi is the density at the centroid of the segment Di. For the case of a uniform mesh with cell edges aligned with the

gravity vector, all the cell edges / vertices are located along straight lines which are parallel to the direction of gravity. Hence

Eq. (2) can be simply evaluated by traversing along a column associated with a set of cells (or vertices). In this special case,

the sub-division of the integral is naturally defined by mesh cells. If the column sweep is performed from the surface to depth,

then only a single pass over each cell in a column is required to compute the pressure at any depth within that column by30

accumulating values from cells at shallower depths. That is if we traverse from segments i= 0,1,2, . . . ,N where the segments

are ordered such that Di+1 is located at greater depth than Di, then we have the following sequence P0 = P̄0 + ρ0gD0,

P1 = P̄0 + ρ0gD0 + ρ1gD1 = P0 + ρ1gD1, . . . , PN = P̄0 +
∑N
i ρigDi = PN−1 + ρNgDN .

Although evaluating Eq. (2) may appear simple, its implementing may be inefficient, or algorithmically complex for general

use. Below we outline some common use-cases which render the column-wise integration difficult (or expensive):35

1. A mesh with cell edges (2D) or faces (3D) which are not aligned with the gravity vector (Figure 1a);

2. An unstructured mesh (Figure 1b);

3. A density structure (or gravity vector) which is spatially varying;

4. A parallel decomposition of the mesh (Figure 1c);

5. Time-dependence in the density, or mesh coordinates which requires continual re-evaluation of the lithostatic pressure.40

To compute P (x′) we first have to define the location x′s. In general this is non-trivial for use-cases 1. and 2. If both the density

and gravity are constant, then the only complexity associated with meshes identified in points 1. and 2. relate to computing

x′s. Due to the fact that the path of the integral (i.e. the “column”) does not coincide in general with a set of mesh cells or

vertices, the line integral must be performed for each point x′ in the mesh - the single pass approach used in the gravity aligned

mesh is not possible. If the density (or gravity) vary in space throughout the domain, the integral must be approximated via a45

suitable sub-division in space and, or a quadrature rule. Assuming that the density is a piece-wise constant over each cell, the

simplest approximation would be to determine the intersection between the line segment [x′,x′s] and each cell, and apply a

1-point quadrature rule over the intersecting segment times. In Figures 1 a) and b) we depict the complexity if this procedure

for a non-coordinate aligned and an unstructured mesh. When performing simulations in parallel where the mesh is distributed

across multiple MPI ranks, even for the case of a uniform mesh aligned with the gravity vector the column-wise integration50

approach is somewhat complicated. Individual MPI ranks may compute their local contribution to the sum of accumulated

pressures, however the final pressure requires a partial sum to be performed over mesh sub-domains which intersect the 1D

line integral. The global reduction (taken MPI ranks overlapping with each 1D line integral) is complicated to define for mesh

types identified in points 1. and 2. Lastly, if the lithostatic pressure is to be used as a boundary condition in a mechanical model,
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time dependence of density structure (or mesh) will require one to re-compute the lithostatic pressure at each time step. Hence55

the efficiency of the implementation used to compute the lithostatic pressure is important.

For these reasons, we propose an efficient, mesh and numerical method (finite elements, finite differences, finite volumes,

etc...) independent way to compute the lithostatic pressure for all scenarios 1-5 above by solving a partial differential equation

(PDE) for a hydrostatic equilibrium fluid. We also present thermo-mechanical numerical models and static numerical models

applied to Earth sciences and geodynamics to show the usefulness of this approach.60

2 PDE based lithostatic pressure formulation

For an incompressible fluid in a domain Ω, the conservation of momentum is given by the Navier-Stokes equation:

ρ

(
∂v

∂t
+v · ∇v

)
=∇ · τ −∇P + ρg (3)

where v is the velocity of the fluid, P is the pressure, τ the deviatoric stress tensor, ρ := ρ(x, t) is the density and g := g(x, t)

is the gravity vector and x, t denote the space and time respectively. The incompressibility constraint is given as:65

∇ ·v = 0. (4)

In the context of our problems we will decompose the boundary of the domain into two non-overlapping segments: ∂Ωsurf

along which we will regard as the free surface and prescribe that tangential and normal stresses are zero, i.e. τ −P I = 0 and

∂Ωi which denotes the interior parts of the boundary along which we may impose any valid combination of velocity / stress in

the normal and tangential directions. Furthermore, ∂Ω = ∂Ωi∪∂Ωsurf and ∂Ωi∩∂Ωsurf = ∅. The outward pointing unit normal70

vector to ∂Ω will be denoted via n̂.

To define the lithostatic pressure we make the ansatz that v = 0, hence Eq. (3) reduces to the usual hydrostatic equilibrium

problem:

0 =−∇P + ρg. (5)

and Eq. (4) is trivially satisfied in hydrostatic equilibrium. To solve Eq. (5) we require a single equation for P . This is achieved75

by taking the divergence of Eq. (5):

∇ ·∇P =∇ · (ρg). (6)

Taking the divergence of the momentum equation is common practice when studying iso-viscous fluids, and or in the derivation

of projection based Navier-Stokes flow solvers (Chorin, 1967). The only distinction here is that we have first assumed that v = 0

before taking the divergence of the momentum equations. To close the system the following boundary conditions are applied80

as they represent Earth-like bodies for a static state:

P = 0 for all x ∈ ∂Ωsurf (7)
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Eq. (7) is a Dirichlet constraint and defines that the reference (or datum) pressure should be zero on the surface of our geo-

logical body. This is consistent with the observation that the mean pressure on all points on the surface (above sea level) are

approximately equal. Secondly we require that85

∇P · n̂= ρg · n̂ for all x ∈ ∂Ωi. (8)

Eq. (8) is required such that the pressure on ∂Ωi is consistent with Eq. (5) in the direction normal to the boundary. We will

refer to Eqs. (6), (7) & (8) as the pressure Poisson problem.

To obtain the pressure Poisson problem we asserted that v = 0. However, for non hydrostatic cases (i.e. v 6= 0) which would

arise if there existing gradients in density orthogonal to the gravity vector, it is still possible to compute a pressure using90

Eq. (6). In this case, the pressure from Eq. (6) would represent (in general) a spatially varying reference pressure. To obtain the

total pressure (i.e. that due to fluid motion and gravity), the conservation of momentum and mass must be solved without the

assumption that v = 0.

In addition, whether the fluid is moving or stationary, the lithostatic pressure computed here should not be confused with the

static pressure of Bernoulli’s equation. From a fluid mechanics point of view, the lithostatic pressure we compute here would95

represent the potential energy term in Bernoulli’s equation for an inviscid fluid.

2.1 Weak formulation

Given a test function q ∈Hd
1 (Ω) where Hd

1 (Ω) := {v ∈H1(Ω) : v = 0 on ∂Ωsurf} we require that
∫

Ω

q∇ ·∇P dV =
∫

Ω

q∇ · (ρg)dV. (9)

Applying integration by parts to the left and right hand sides yields100
∫

Ω

∇q · ∇P dV −
∫

∂Ωi

qF · n̂dS =
∫

Ω

∇q · (ρg)dV −
∫

∂Ωi

qρg · n̂dS, (10)

where the flux F is given by

F =∇P. (11)

Note that the boundary ∂Ωsurf does not appear in Eq. (10) since the test function q vanishes along the Dirichlet boundary.

Furthermore, from the definition of the boundary condition in Eq. (10) the two surface integrals on the LHS and RHS cancel.105

Hence P ∈H1(Ω) is a weak solution of the pressure Poisson problem if
∫

Ω

∇q · ∇P dV =
∫

Ω

∇q · (ρg)dV, (12)

is satisfied for all q ∈Hd
1 (Ω). We also note that Eq. (12) only requires ρg ∈ L2(Ω), thus the formulation is valid for cases when

the density ρ is discontinuous.
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2.2 Implementation110

The strong (Eq. (6)) and weak (Eq. (12)) formulations of the pressure Poisson problem can be solved using the standard spatial

discretisation techniques, e.g. finite differences or finite elements. Moreover, since the equation is of Poisson type, it is readily

amenable to be solved using standard iterative multigrid and/or direct solvers. Lastly, because the formulation is expressed in

terms of a PDE, it is also straight forward to compute the lithostatic pressure on parallel computing architecture as we can

re-use existing discretisation implementations that support domain decomposition.115

3 Numerical examples

To show the usefulness of solving a PDE to compute the lithostatic pressure we propose several examples with variable mesh

geometries and density distribution. Moreover, we also present a thermo-mechanical model using the lithostatic pressure as

a boundary condition for the conservation of momentum that we compare with a thermo-mechanical model using a free-slip

boundary condition.120

3.1 2D Half annulus

The 2D half annulus model aims showing the efficiency of the method to compute the lithostatic pressure in a body with a

radial gravity vector and concentric density repartition (Figure 2a). This model represents a domain extending from




θ ∈ [−π2 , π2 ] rad

r ∈ [Re− 2700,Re] km
(13)

where θ is the angle and r the radius in 2D spherical coordinates, Re is the Earth radius (6375 km) and Re− 2700 km is the125

mantle-core boundary. Mapped into Cartesian coordinates gives:




x= r sin(θ),

y = r cos(θ).
(14)

The gravity vector points to the centre (Cartesian coordinates: 0,0) and the density is distributed as 5 concentric layers with a

constant density in each (Figure 2a). The lithostatic pressure varies from 0 to 130 GPa with a concentric distribution following

the density distribution and the gravity vector orientation (Figure 2b).130

3.2 2D Sheared rectangle

The 2D sheared rectangle model aims showing the result of computing the lithostatic pressure in a deformed mesh not aligned

with the gravity vector. The domain extends along:




x ∈ [0,130] km

y ∈ [−100,0] km
(15)
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sheared with an angle of approximately 30° in the x direction. This model presents a uniform and constant density of 3300135

kg.m−3. The computed lithostatic pressure shows a linear increase from the surface to the bottom of the model (Figure 2c).

The zero flux boundary conditions on the x normal faces allows simulating an infinite domain in this direction.

3.3 Thermo-mechanical model

3.3.1 Physical model

To simulate the long term evolution of the deformation of the lithosphere we solve the stationary, non-inertial form of the140

conservation of momentum

∇ · τ −∇P = ρg (16)

with τ the deviatoric stress tensor, P the pressure, ρ the density of the fluid and g the gravitational acceleration vector. In

addition the continuity equation for an incompressible fluid is solved

∇ ·v = 0, (17)145

with v the velocity of the fluid. Moreover, to consider the temperature variations in the domain the time dependant conservation

of energy is solved

∂T

∂t
+v · ∇T =∇ · (κ∇T ) +

H

ρCp
, (18)

with T the temperature, t the time, κ the thermal diffusivity, H the heat source and Cp the thermal heat capacity.

The numerical solution of Eqs. (16) & (17) is obtained using a mixed finite element method which independently discretises

the velocity and pressure fields. Hence the numerical velocity and pressure obtained are solutions of the weak form of the

Stokes problem, given by

A(w,v) +B(w,p) +B(v, q)−
∫

ΓN

w ·T (v,p)dS =−
∫

Ω

ρw · gdV

where w ∈H1(Ω) and q ∈ L2(Ω) are test functions for the velocity and pressure respectively, ΓN denotes the Neumann

boundary, T denotes the traction vector given by T (v,p) = (τ (u)− pI)n̂ with n̂ being the outward pointing normal vector

from the boundary. The bilinear forms for the Stokes problem are given by (Elman et al., 2014):

A(w,v) =
∫

Ω

2η ε̇(w) : ε̇(v)dV, ε̇(u) = 1
2 [∇u+ (∇u)T ],

B(v, q) =−
∫

Ω

q∇ ·vdV.

Both the Stokes and thermal problem were solved using the parallel finite element code pTatin3D (May et al., 2014, 2015),150

which employs a mixed Q2-P1 discretisation for velocity and pressure and a Q1 for the temperature. The discretisation of the

energy equation additionally employed SUPG stabilisation (Brooks and Hughes, 1982).
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3.3.2 Initial conditions and rheology

To model the strain localization we use nonlinear visco-plastic rheologies expressed in term of viscosity. The ductile parts of

the domain are simulated using an Arrhenius flow law for dislocation creep155

ηv =A−
1
n

(
ε̇II
) 1

n−1 exp
(
Q+PV

nRT

)
, (19)

where A, Q and n are material-defined parameters (see Table 1), R is the universal gas constant, V the activation volume and

ε̇II the strain rate second invariant computed as

ε̇II =

√
1
2
ε̇ij . (20)

The brittle parts of the domain are simulated using a Drucker-Prager yield criterion adapted to continuum mechanics, given by160

ηp =
C cos(φ) +P sin(φ)

ε̇II
, (21)

with C the cohesion of the material, φ the friction angle.

The modelled domain contains 4 initial flat layers representing the upper continental crust, the lower continental crust, the

lithosphere mantle and the asthenosphere mantle respectively (Figure 3a). The upper crust extends from the surface of the165

domain (y = 0 km) to y =−25 km and is modelled with a dislocation creep quartz rheology (Ranalli, 1997). The lower crust

takes place from y <−25 km to y =−35 km and is simulated with a dislocation creep anorthite rheology (Rybacki and Dresen,

2000). The lithosphere mantle lays from y <−35 km to y =−120 km while the asthenosphere mantle lays from y <−120

km to y =−450 km. They are both modelled using a dislocation creep olivine flow law (Hirth and Kohlstedt, 2003).

The initial density distribution follows the lithologies and is reported in Table 1. In addition, the density varies with pressure170

and temperature following the Boussinesq approximation

ρ(P,T ) = ρ0(1−αT +βP ), (22)

with ρ0 the initial density, P is the total pressure computed from the conservation of momentum (Eq. (16)) and continuity

equation (Eq. (17)), α the thermal expansion and β the compressibility.

Moreover, the initial temperature field is computed as a steady-state solution of the heat equation175

∇ · (κ∇T ) +
H

ρCp
= 0, (23)

using a surface temperature of T = 0◦C at y = 0 km and T = 1450◦C at y =−450 km. Other thermal parameters are reported

in Table 1

3.3.3 Boundary conditions

To show the influence of the lithostatic pressure boundary condition we compare two rift models. In the reference model, an180

extension velocity of vx = 1 cm/yr is applied on the whole faces of normal x, whilst on faces of normal z a free-slip boundary
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Table 1. Physical parameters for the thermo-mechanical rift model.

Parameter Units Upper crust Lower crust Lithosphere mantle Asthenosphere mantle

A MPa−n.s−1 6.7× 10−6 13.4637 2.5× 104 2.5× 104

n - 2.4 3.0 3.5 3.5

Q kJ.mol−1 156 345 532 532

φ ° 30 30 30 30

C MPa 20 20 20 20

V m3.mol−1 0 38× 10−6 8× 10−6 8× 10−6

Cp m2.K−1.s−2 850 850 850 850

κ W.m−1.K−1 2.7 2.85 3.3 3.3

H µW.m−3 1.5 0.3 0 0

ρ0 kg.m−3 2700 2850 3300 3300

α K−1 3× 10−5 3× 10−5 3× 10−5 3× 10−5

β Pa−1 10−11 10−11 10−11 10−11

condition is applied (Figure 3c). To ensure mass conservation we impose an inflow velocity on the bottom face of normal y to

balance any outflow which occurs due to the imposed extension. Along the surface of the model we use a free surface (zero

normal stress, zero tangential stress) boundary condition.

The second rift model uses more complex boundary conditions (Figure 3b). On faces of normal x, the domain boundary is185

decomposed into two subdomains ∂Ω = ΓD∪ΓN , with ΓD the subdomain on which Dirichlet boundary conditions are applied

and ΓN the subdomain on which Neumann boundary conditions are applied. The Dirichlet boundary conditions are defined as

follows:




vx = 1 cm.yr−1 for y ∈ [0,−120] km

vy = 0 cm.yr−1 for y ∈ [0,−120] km

vz = 0 cm.yr−1 for y ∈ [0,−120] km

(24)

with the sign of vx being negative on the face xmin and positive on the face xmax. The Neumann boundary conditions are defined190

as follow:

T =−Pl n̂ for y ∈ (−120,−450] km, (25)

where Pl is the lithostatic pressure computed with Eq. (5) and n̂ the normal vector pointing outward the domain. To account

for the density evolution through time due to the deformation and material advection, Eq. (5) is solved at every time step and

the Neumann boundary condition described by Eq. (25) is evaluated at every time step. On the faces of normal z the Neumann195

boundary condition described by Eq. (25) is applied on the whole faces. The bottom of the domain is prescribed a no-slip
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condition (v = 0) and the surface of the domain is a free surface where the mesh deforms accordingly to the computed velocity

field. These Neumann boundary conditions allow material to flow both in and out through the boundary depending only on the

Dirichlet boundary conditions and deformation which occurs inside the modelled domain.

3.3.4 Lithostatic pressure200

In the context of our finite-element forward model, we also solve the pressure Poisson problem using finite elements. As such,

to compute Pl we employ the weak formulation given by Eq. (12). In our particular implementation, we employ Q1 for Pl, and

these Q1 elements overlap the Q2 elements used to approximate the velocity.

As a demonstration of the computed Pl using this approach, in Figures 2f and 2g we show the lithostatic pressure in our rift

model at 12.5 Myr after large deformations that led to mantle exhumation, differential thinning of the continental crust and a205

variable topography has occurred. In this model, Pl was evaluated on a mesh consisting of 256× 64× 128 Q1 finite elements

on 1024 MPI ranks. The discrete pressure Poisson system was solved using geometric multigrid. As a rough estimate, solving

for Pl required ∼ 0.2% of the time required to solve the non-linear viscous flow problem. Obviously this value is strongly

dependent on both the physical model (linear viscous versus non-linear viscous) and the implementation details, efficiency of

how the discrete flow problem is solved. However, when considering even the simplest flow problem imaginable (i.e. linear210

iso-viscous flow laws), it does remain true that solving the Poisson problem will be far less expensive than solving either the

linear or non-linear viscous flow problem.

3.3.5 Tectonics evolution

The model using free-slip boundary conditions displays a cylindrical deformation pattern that could be reduced to a two dimen-

sional model. As shown by the shear zones orientation and strain regime, the deformation is only extensional and perpendicular215

to the extension direction (Figure 4a to 4d and Figure 5). This strain localization is directly due to the free-slip boundary con-

dition stating that any flow perpendicular to the boundary is prohibited. Moreover, the streamlines clearly show a laminar flow

which is parallel to the extension direction in the lithosphere and perpendicular below the rift spreading centre (Figure 6a and

6b).

On the contrary, the model using the lithostatic pressure as a boundary conditions displays a non-cylindrical deformation.220

While extensional shear zones perpendicular to the extension direction develop in the central part of the domain, the edges of

the rift experience oblique and strike-slip deformation (Figure 4e to 4h). As the extension goes on, the extensional deformation

localizes along a spreading centre causing an increasing inflow on the boundaries of the domain with the lithostatic pressure

boundary condition (Figure 7c). As a result, near these boundaries the velocity field introduces non-cylindrical features which

are accommodated by strike-slip faults (Figure 4g and 4h). These strike-slip faults delimit a triangular region terminating on a225

triple junction between two strike-slip faults and a ridge (RFF triple junction). Along these strike-slip faults, the deformation is

partitioned between purely vertical strike-slip shear zones and shallow dipping normal shear zones rooting into the strike-slip

shear zones (Figure 5).

9

https://doi.org/10.5194/se-2022-7
Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



In addition, the lithostatic pressure boundary condition applied below the lithosphere on faces perpendicular to the extension

direction allow material to freely advect in and out of the domain in a physically consistent manner. Thus, it results that in230

the asthenosphere, inflow occurs along these boundaries and convection cells are observed to develop below the lithosphere

(Figure 6d).

4 Discussion

4.1 Implication on lithosphere deformation

Using the lithostatic pressure as a boundary condition produces a velocity field perpendicular to the extension direction in the235

rift axis. This velocity field introduces non-cylindrical deformation accommodated by oblique and strike-slip structures. The

results of this study are very similar to previous studies directly applying an inflow perpendicularly to the extension direction

(Le Pourhiet et al., 2018; Jourdon et al., 2020). At the tip of the rift, a triangular region delimited by strike-slip faults or

very oblique rift develops to accommodate the oblique velocity field. The similarity of these results shows that using open

boundary conditions instead of kinematic boundary conditions in 3D may reveal first order implications for the lithosphere240

strain localization. In the case of geodynamic systems presenting the characteristics of a propagating rift (or ridge) with oblique

and strike-slip deformation at its tip, considering the forces applied by the surrounding material weight could be the first order

process at the origin of non-cylindrical deformation.

5 Conclusions

In this study we presented a method to compute the lithostatic pressure in which we cast the problem in terms of a partial245

differential equation (PDE). From a practical standpoint, the PDE approach is generic (it’s applicable to all spatial discreti-

sation and on any type of computational grid), efficient and amenable parallel computing environments. From the modelling

perspective, the PDE approach has specific advantages for example in models with a variable density structure (stationary or

time-dependent), and models which employ the lithostatic pressure as a boundary condition of the flow problem (stationary

or time-dependent). Re-evaluating the lithostatic pressure in time-dependent problems is not problematic (even if the mesh250

deforms) since solving the Poisson problem can be performed using optimal preconditioners (e.g. geometric or algebraic

multigrid).

Lastly, we showed in the context of 3D models of continental rifting, using the lithostatic pressure as a boundary condition

within the flow problem, resulted in non-cylindrical velocity fields which produced strain localization in the lithosphere along

large scale strike-slip shear zones and the formation and evolution of triple junctions.255

Code availability. The code pTatin3D used in this study to produce the 3D thermo-mechanical models is an open source free software

licensed under GPL3. The supplementary repository contains the version of the code used to produce the models presented in this study. To
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run the same models, user should use the driver named test_driver_checkpoint_fv.app and the options files (.opts) provided

in the supplementary files. We also provide FEniCS code to compute the lithostatic pressure in a circular domain and in a square domain

with varying densities. The version of FEniCS used is 2016.1.0 and is freely available.260
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Figure 1. Schematic representation of meshes for which computing an integral in the vertical direction can be challenging. (a) Mesh with a

grid not aligned with the the gravity vector. (b) Unstructured mesh. (c) Parallel distribution of a mesh. The dashed blue lines represent the

direction along which the integral must be performed. The blue crosses represent the points that have to be evaluated during the integration.
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Figure 2. (a) Density structure and (b) lithostatic pressure in a 2D half annulus. The contour lines on the pressure field are plotted every 5

GPa. (c) Lithostatic pressure in a sheared rectangular domain. The contour lines are plotted every 0.25 GPa. (d) Density in cross-section view

of the 3D rift model with lithostatic pressure boundary condition in the x-y plane at z = 0. (e) Density in cross-section view in the z-y plane

at x= 500 km. (f) 3D view of the lithostatic pressure. (g) Cross-section view in the z-y plane at x= 500 km of the lithostatic pressure. The

contour lines are plotted every 0.25 GPa.
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Figure 3. (a) 3D view of the modelled domain. An initial plastic strain with a Gaussian repartition is applied in the central part of the domain

in the lithosphere. (b) Map and cross-section view of the boundary conditions for the model with free-slip boundary conditions. (c) Map

and cross-section view of the boundary conditions for the model with lithostatic pressure boundary conditions. (d) Yield-stress envelope and

initial temperature of the first 120 km.

16

https://doi.org/10.5194/se-2022-7
Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 4. Map view of the strain regime evolution in time and space of the model with (a to d) free-slip boundary conditions and (e to h)

lithostatic pressure boundary conditions.
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Figure 5. Map view of the models with free-slip (left) and lithostatic pressure (right) boundary conditions. (a)-(a’) , (b)-(b’) and (c)-(c’) lines

indicate the cross-sections displayed below. The cross-sections shows the numerical lithologies with strain rate second invariant (Eq. (20))

and the strain regime.
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Figure 6. Streamlines at 2.5 Myr of the model with free-slip boundary conditions (left column) and the model with lithostatic pressure

boundary conditions (right column). (a) and (c) Downward view of the streamlines. (b) and (d) Side view of the streamlines. The colour scale

indicates the norm of the velocity vector.

19

https://doi.org/10.5194/se-2022-7
Preprint. Discussion started: 28 January 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 7. Map view of the z component of the velocity (vz). Red curves represent the z component of the velocity along the boundary zmax

at the surface. Blue curves represent the z component of the velocity along the boundary zmin at the surface.
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