Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.921 IF 2.921
  • IF 5-year value: 3.087 IF 5-year
    3.087
  • CiteScore value: 4.8 CiteScore
    4.8
  • SNIP value: 1.314 SNIP 1.314
  • IPP value: 2.87 IPP 2.87
  • SJR value: 0.993 SJR 0.993
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 38 Scimago H
    index 38
  • h5-index value: 36 h5-index 36
Volume 5, issue 2
Solid Earth, 5, 793–804, 2014
https://doi.org/10.5194/se-5-793-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Solid Earth, 5, 793–804, 2014
https://doi.org/10.5194/se-5-793-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Aug 2014

Research article | 06 Aug 2014

Record of Early Toarcian carbon cycle perturbations in a nearshore environment: the Bascharage section (easternmost Paris Basin)

M. Hermoso1,2, D. Delsate2, F. Baudin3,4, L. Le Callonnec3,4, F. Minoletti3,4, M. Renard3,4, and A. Faber2 M. Hermoso et al.
  • 1University of Oxford – Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK
  • 2Musée National d'Histoire Naturelle – Centre de Recherche Scientifique, 25 Rue Münster, 2160 Luxembourg, Luxembourg
  • 3UPMC Université Paris 06 – UMR7193 ISTeP, 4 Place Jussieu, 75005 Paris, France
  • 4CNRS – UMR7193 ISTeP, 4 Place Jussieu, 75005 Paris, France

Abstract. In order to understand the significance of the worldwide deposition of black shale facies in the Early Toarcian (~ 183 Ma), considerable attention has been drawn to this Early Jurassic sub-stage over the last 3 decades. The discovery of a pronounced negative carbon isotope excursion (CIE) within the black shales disrupting the generally positive trend in carbon isotopes has stimulated many studies, particularly with a view to establish the local versus global nature of this major geochemical phenomenon. Here we document the sedimentological and chemostratigraphic evolution of a proximal environment in the Luxembourgian sedimentary area. At Bascharage, Lower Toarcian sediments record the isotopic signature of the Early Toarcian oceanic anoxic event (OAE) by a pronounced positive trend that testifies for widespread anoxia. The expression of the carbon isotope perturbation in this section, however, is unusual compared to adjacent NW European sections. A first −7‰ negative CIE, whose onset is recorded at the top of the tenuicostatum zone, can be assigned to the well-documented and potentially global Toarcian carbon isotope excursion (T-CIE) with confidence using the well-constrained ammonite biostratigraphic framework for this section. In this interval, facies contain only a limited amount of carbonate as a result of intense detrital supply in such a proximal and shallow environment. Stratigraphically higher in the section, the serpentinum zone records a subsequent CIE (−6‰) expressed as four negative steps, each being accompanied by positive shifts in the oxygen isotopic composition of carbonate. The preservation state of coccoliths and calcareous dinoflagellates in the second CIE is excellent and comparable to that observed in under- and overlying strata, so this cannot be an artefact of diagenesis. Considering the nature of this record, and the lack of such a pronounced event in the serpentinum zone in coeval sections in Europe, we hypothesise that this second CIE was caused by local factors. The geochemical record of carbonate with a relatively light carbon and relatively heavy oxygen isotopic composition is compatible with the so-called Küspert model, by which a CIE can be explained by an influx of 12C-rich and cold waters due to upwelling bottom water masses.

Publications Copernicus
Download
Citation