Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.921 IF 2.921
  • IF 5-year value: 3.087 IF 5-year
    3.087
  • CiteScore value: 4.8 CiteScore
    4.8
  • SNIP value: 1.314 SNIP 1.314
  • IPP value: 2.87 IPP 2.87
  • SJR value: 0.993 SJR 0.993
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 38 Scimago H
    index 38
  • h5-index value: 36 h5-index 36
Volume 9, issue 1
Solid Earth, 9, 75–90, 2018
https://doi.org/10.5194/se-9-75-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
Solid Earth, 9, 75–90, 2018
https://doi.org/10.5194/se-9-75-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Feb 2018

Research article | 08 Feb 2018

Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India

Naseer Ahmad and Puneeta Pandey Naseer Ahmad and Puneeta Pandey
  • Centre for Environmental Sciences and Technology, Central University of Punjab, Bathinda, Punjab-151001, India

Abstract. Land degradation leads to alteration of ecological and economic functions due to a decrease in productivity and quality of the land. The aim of the present study was to assess land degradation with the help of geospatial technology – remote sensing (RS) and geographical information system (GIS) – in Bathinda district, Punjab. The severity of land degradation was estimated quantitatively by analyzing the physico-chemical parameters in the laboratory to determine saline or salt-free soils and calcareous or sodic soils and further correlating them with satellite-based studies. The pH varied between 7.37 and 8.59, electrical conductivity (EC) between 1.97 and 8.78 dS m−1 and the methyl orange or total alkalinity between 0.070 and 0.223 (HCO3) g L−1 as CaCO3. The spatial variability in these soil parameters was depicted through soil maps generated in a GIS environment. The results revealed that the soil in the study area was exposed to salt intrusion, which could be mainly attributed to irrigation practices in the state of Punjab. Most of the soil samples of the study area were slightly or moderately saline with a few salt-free sites. Furthermore, the majority of the soil samples were calcareous and a few samples were alkaline or sodic in nature. A comparative analysis of temporal satellite datasets of Landsat 7 ETM+ and Landsat 8 OLI_TIRS of 2000 and 2014, respectively, revealed that the water body showed a slight decreasing trend from 2.46 km2 in 2000 to 1.87 km2 in 2014, while the human settlements and other built-up areas expanded from 586.25 to 891.09 km2 in a span of 14 years. The results also showed a decrease in area under barren land from 68.9847 km2 in 2000 to 15.26 km2 in 2014. A significant correlation was observed between the digital number (DN) of the near-infrared band and pH and EC. Therefore, it is suggested that the present study can be applied to projects with special relevance to soil scientists, environmental scientists and planning agencies that can use the present study as baseline data to combat land degradation and conserve land resources in an efficient manner.

Publications Copernicus
Download
Short summary
The severity of land degradation was assessed by analysing the physico-chemical parameters and correlating with satellite data in the Bathinda district, Punjab. Most of the soil samples were slightly or moderately saline, while a few were calcareous and alkaline. Comparing the satellite datasets of 2000 and 2014 revealed an increase in settlements and a decrease in barren area. The study can be useful for soil and environmental scientists and planning agencies for restoration of degraded lands.
The severity of land degradation was assessed by analysing the physico-chemical parameters and...
Citation