Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-precision U–Pb ages in the early Tithonian to early Berriasian and implications for the numerical age of the Jurassic–Cretaceous boundary
Luis Lena
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Geneva, Geneva, 1205,
Switzerland
Rafael López-Martínez
Instituto de Geología, Universidad Nacional Autónoma de
Mexico, Ciudad de Mexico, 04510, Mexico
Marina Lescano
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET),
Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Beatriz Aguire-Urreta
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET),
Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Andrea Concheyro
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET),
Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Verónica Vennari
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET),
Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Maximiliano Naipauer
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET),
Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Elias Samankassou
Department of Earth Sciences, University of Geneva, Geneva, 1205,
Switzerland
Márcio Pimentel
Instituto de Geociências, Universidade de Brasilia, Brasilia, DF,
70910-900, Brasil
Victor A. Ramos
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET),
Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Urs Schaltegger
Department of Earth Sciences, University of Geneva, Geneva, 1205,
Switzerland
Related authors
No articles found.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024, https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.
Björn Baresel, Hugo Bucher, Morgane Brosse, Fabrice Cordey, Kuang Guodun, and Urs Schaltegger
Solid Earth, 8, 361–378, https://doi.org/10.5194/se-8-361-2017, https://doi.org/10.5194/se-8-361-2017, 2017
Short summary
Short summary
This study re-evaluates the characterization of the Permian–Triassic boundary based on high-precision U-Pb geochronology from two marine sections (Dongpan and Penglaitan) with continuous and conformable stage boundaries in the Nanpanjiang Basin (southern China). These new dates provide the basis for a first proof-of-concept study utilizing a Bayesian statistic age–depth chronology comparing these two sections with the Global Stratotype Section and Point at Meishan (western China).
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Geochronology
Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Cited articles
Aguirre-Urreta, B., Rawson, P. F., Concheyro, G. A., Bown, P. R., and Ottone,
E. G.: Lower Cretaceous (Berriasian-Aptian) biostratigraphy of the
Neuquén Basin, Argentina, Geol. Soc. Sp., 252, 57–81,
doi.org/10.1144/GSL.SP.2005.252.01.04, 2005.
Aguirre-Urreta, B., Vennari, V. V., Lescano, M., Naipauer, M., Concheyro, A.,
and Ramos, V. A.: Bioestratigrafía y geocronología de alta
resolución de la Formación Vaca Muerta, cuenca Neuquina. IX Congreso
de Exploración y Desarrollo de Hidrocarburos (Mendoza),
Trabajos Técnicos II, 245–268, 2014.
Aguirre-Urreta, B., Lescano, M., Schmitz, M. D., Tunik, M., Concheyro, A.,
Rawson, P. F., and Ramos, V. A.: Filling the gap: new precise Early
Cretaceous radioisotopic ages from the Andes, Geol. Mag., 152, 557–564,
https://doi.org/10.1017/S001675681400082X, 2015.
Aguirre-Urreta, B., Schmitz, M., Lescano, M., Tunik, M., Rawson, P. F.,
Concheyro, A., Buhler, M., and Ramos, V. A.: A high precision U–Pb
radioisotopic age for the Agrio Formation, Neuquén Basin, Argentina:
Implications for the chronology of the Hauterivian Stage, Cretac. Res.,
75, 193–204, https://doi.org/10.1016/j.cretres.2017.03.027, 2017.
Bakhmutov, V. G., Halásová, E., Ivanova, D. K., Józsa, Š.,
Reháková, D., and Wimbledon, W. A. P.: Biostratigraphy and
magnetostratigraphy of the uppermost Tithonian–lower Berriasian in the
Theodosia area of Crimea (Southern Ukraine), Geol. Q., 62, 197–236, https://doi.org/10.7306/gq.1404,
2018.
Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U.: Precise age for the Permian-Triassic
boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling, Solid Earth, 8, 361–378, https://doi.org/10.5194/se-8-361-2017, 2017.
Bown, P. R.: Early to Mid-Cretaceous calcareous nannoplankton from the
northwest Pacific Ocean, Leg 198, Shatsky Rise, Proc. Ocean Drill. Program,
Sci. Results, 198, 1–82, 2005.
Bralower, T. J., Monechi, S., and Thierstein, H. R.: Calcareous nannofossil
zonation of the Jurassic-Cretaceous boundary interval and correlation with
the geomagnetic polarity timescale, Mar. Micropaleontol., 14,
153–235, https://doi.org/10.1016/0377-8398(89)90035-2, 1989.
Bralower, T. J., Ludwig, K. R., and Obradovich, J. D.: Berriasian (Early
Cretaceous) radiometric ages from the Grindstone Creek Section, Sacramento
Valley, California, Earth Planet. Sc. Lett., 98, 62–73,
https://doi.org/10.1016/0012-821X(90)90088-F, 1990.
Campa, M. F. and Coney, P. J.: Tectono-stratigraphic terranes and mineral
resource distributions in Mexico, Can. J. Earth Sci., 20, 1040–1051,
https://doi.org/10.1139/e83-094, 1983.
Casellato, C. E.: Calcareous nannofossil biostratigraphy of upper
Callovian-lower Berriasian successions from the southern Alps, north Italy,
Riv. Ital. di Paleontol. e Stratigr., 116, 357–404, 2010.
Channell, J. E. T., Erba, E., Nakanishi, M., and Tamaki, K.: Late
Jurassic-early Cretaceous time scales and oceanic magnetic anomaly block
models, in: Geochronology Time Scales and Global Stratigraphic Correlation,
54, 51–63, 1995.
Edwards, A.: A preparation technique for calcareous nannoplankton,
Micropaleontology, 9, 103–104, 1963.
Elbra, T., Schnabl, P., Ková, K., Pruner, P., Kdýr, Š.,
Grabowski, J., Reháková, D., Svobodová, A., Frau, C., and
Wimbledon, W. A. P.: Palaeo- and rock-magnetic investigations across
Jurassic-Cretaceous boundary at St Bertrand's Spring, Drôme, France:
applications to magnetostratigraphy, Stud. Geophys. Geod., 62, 323–338,
https://doi.org/10.1007/s11200-016-8119-5, 2018.
Grabowski, J.: Magnetostratigraphy of the Jurassic/Cretaceous boundary
interval in the Western Tethys and its correlations with other regions?: a
review, Volumina Jurassica, 105–128, 2011.
Gradstein, F. M.: Introduction: In The Geologic Time Scale, 1–29, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00001-9,
2012.
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Veen, P. V,
Thierry, J., and Huang, Z.: Comparison of Cretaceous Time Scales, Geochronol.
Time Scales Glob. Stratigr. Correl., 54, 95–126, 1995.
Haslett, J. and Parnell, A.: A simple monotone process with application to
radiocarbon-dated depth chronologies, J. R. Stat. Soc. C-Appl.,
57, 399–418, https://doi.org/10.1111/j.1467-9876.2008.00623.x, 2008.
Hoedemaeker, P. J., Janssen, N. M. M., Casellato, C. E., Gardin, S.,
Reháková, D., and Jamrichová, M.: Jurassic/Cretaceous boundary in
the Río Argos succession (Caravaca, SE Spain), Rev. Paleobiol., 35,
111–247, https://doi.org/10.5281/zenodo.51872, 2016.
Huang, C., Hinnov, L., Fischer, A. G., Grippo, A., and Herbert, T.:
Astronomical tuning of the Aptian Stage from Italian reference sections,
Geology, 38, 899–902, https://doi.org/10.1130/G31177.1, 2010a.
Huang, C., Hesselbo, S. P., and Hinnov, L.: Astrochronology of the late Jurassic
Kimmeridge Clay (Dorset, England) and implications for Earth system
processes, Earth Planet. Sc. Lett., 289, 242–255, doi.org/10.1016/j.epsl.2009.11.013, 2010b.
Kent, D. V. and Gradstein, F. M.: A Cretaceous and Jurassic geochronology,
Geol. Soc. Am. Bull., 96, 1419–1427, 1985.
Kietzmann, D. A., Ambrosio, A. L., Suriano, J., Alonso, S., Gonz, F.,
Depine, G., and Repol, D.: The Vaca Muerta – Quintuco system (Tithonian –
Valanginian) in the Neuquén Basin, Argentina: a view from the outcrops
in the Chos Malal fold and thrust belt, Am. Assoc. Petr. Geol. B., 5,
743–771, https://doi.org/10.1306/02101615121, 2016.
Larson, R. L. and Hilde, T. W. C.: A revised time scale of magnetic
reversals for the Early Cretaceous and Late Jurassic, J. Geophys. Res.,
80, 2586, https://doi.org/10.1029/JB080i017p02586, 1975.
Legarreta L. and Uliana, M. A.: The Jurassic succession in west-central
Argentina: stratal patterns, sequences and paleogeographic evolution.
Palaeogeogr. Palaeocl., 120, 303–330,
https://doi.org/10.1016/0031-0182(95)00042-9, 1996.
López-Martínez, R., Barragán, R., Reháková, D., and
Cobiella-Reguera, J. L.: Calpionellid distribution and microfacies across
the Jurassic/Cretaceous boundary in western Cuba (Sierra de los
Órganos), Geol. Carpathica, 64, 195–208,
https://doi.org/10.2478/geoca-2013-0014, 2013a.
López-Martínez, R., Barragán, R., and Reháková, D.: The
Jurassic/Cretaceous boundary in the Apulco area by means of calpionellids
and calcareous dinoflagellates: An alternative to the classical Mazatepec
section in eastern Mexico, J. South Am. Earth Sci., 47, 142–151,
https://doi.org/10.1016/j.jsames.2013.07.009, 2013b.
López-Martínez, R., Barragán, R., Reháková, D.,
Martini, M., and de Antuñano, S. E.: Calpionellid biostratigraphy, U-Pb
geochronology and microfacies of the Upper Jurassic-Lower Cretaceous
Pimienta Formation (Tamazunchale, San Luis Potosí, central-eastern
Mexico), Bol. la Soc. Geol. Mex., 67, 75–86, 2015.
López-Martínez, R., Aguirre-Urreta, B., Lescano, M., Concheyro, A.,
Vennari, V., and Ramos, V. A.: Tethyan calpionellids in the Neuquén Basin
(Argentine Andes), their significance in defining the Jurassic/Cretaceous
boundary and pathways for Tethyan-Eastern Pacific connections, J. South Am.
Earth Sci., 78, 1–10, https://doi.org/10.1016/j.jsames.2017.06.007, 2017.
Lowrie, W. and Ogg, J. G.: A magnetic polarity time scale for the Early
Cretaceous and Late Jurassic, Earth Planet. Sc. Lett., 76, 341–349, 1985.
Lukeneder, A., Halásová, E., Kroh, A., Mayrhofer, S., Pruner, P.,
Reháková, D., Schnabl, P., Sprovieri, M., and Wagreich, M.: High
resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the
Gresten Klippenbelt (Austria), Geol. Carpathica,
61, 365–381, https://doi.org/10.2478/v10096-010-0022-3, 2010.
Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W., and Bralower,
T. J.: Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle
source for Shatsky Rise, Geology, 33, 185–188, https://doi.org/10.1130/G21378.1,
2005.
Malinverno, A., Hildebrandt, J., Tominaga, M., and Channell, J. E. T.:
M-sequence geomagnetic polarity time scale (MHTC12) that steadies global
spreading rates and incorporates astrochronology constraints, J. Geophys.
Res.-Sol. Ea., 117, 1–17, https://doi.org/10.1029/2012JB009260, 2012.
Martinez, M., Deconinck, J. F., Pellenard, P., Riquier, L., Company, M.,
Reboulet, S., and Moiroud, M.: Astrochronology of the Valanginian-Hauterivian
stages (Early Cretaceous): Chronological relationships between the
Paraná-Etendeka large igneous province and the Weissert and the Faraoni
events, Global Planet. Change, 131, 158–173, https://doi.org/10.1016/j.gloplacha.2015.06.001, 2015.
Midtkandal, I., Svensen, H. H., Planke, S., Corfu, F., Polteau, S., Torsvik,
T. H., Faleide, J. I., Grundvåg, S. A., Selnes, H., Kürschner, W.,
and Olaussen, S.: The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a)
in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian
boundary, Palaeogeogr. Palaeocl.,
463, 126–135, https://doi.org/10.1016/j.palaeo.2016.09.023,
2016.
Muttoni, G., Visconti, A., Channell, J. E. T., Casellato, C. E., Maron, M., and Jadoul, F.: An expanded Tethyan
Kimmeridgian magneto-biostratigraphy from the S'Adde section (Sardinia): Implications for the Jurassic timescale,
Palaeogeogr. Palaeocl., 503, 90–101, https://doi.org/10.1016/j.palaeo.2018.04.019, 2018.
Ogg, J. G.: Geomagnetic Polarity Time Scale, in The Geologic Time Scale,
85–113, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00005-6, 2012.
Ogg, J. G. and Lowrie, W.: Magnetostratigraphy of the Jurassic / Cretaceous
boundary, Geology, 14, 547–550, 1986.
Ogg, J. G., Hasenyager, R. W., Wimbledon, W. A., Channell, J. E. T., and
Bralower, T. J.: Magnetostratigraphy of the Jurassic-Cretaceous boundary
interval-Tethyan and English faunal realms, Cretac. Res.,
12, 455–482, https://doi.org/10.1016/0195-6671(91)90002-T, 1991.
Ogg, J. G., Hinnov, L. A., and Huang, C.: Cretaceous, In The Geological Time
Scale., 793–853, Elsevier., https://doi.org/10.1016/B978-0-444-59425-9.00027-5, 2012.
Ogg, J. G., Ogg, G. M., and Gradstein, F. M.: Cretaceous, in A Concise
Geologic Time Scale, 167–186, Elsevier, 2016a.
Ogg, J. G., Ogg, G. M., and Gradstein, F. M.: Jurassic, in A Concise Geologic
Time Scale, 151–166, Elsevier, 2016b.
Ovtcharova, M., Goudemand, N., Hammer, Ø., Guodun, K., Cordey, F.,
Galfetti, T., Schaltegger, U., and Bucher, H.: Developing a strategy for
accurate definition of a geological boundary through radio-isotopic and
biochronological dating: The Early-Middle Triassic boundary (South China),
Earth-Sci. Rev., 146, 65–76, https://doi.org/10.1016/j.earscirev.2015.03.006, 2015.
Padilla and Sánchez, R. J.: Evolución geológica del sureste
mexicano desde el Mesozoico al presente en el contexto regional del Golfo de
México, Boletín la Soc. Geológica Mex., 59, 19–42,
https://doi.org/10.18268/BSGM2007v59n1a3, 2007.
Pálfy, J.: The quest for refined calibration of the Jurassic time-scale,
Proc. Geol. Assoc., 119, 85–95, https://doi.org/10.1016/S0016-7878(08)80260-X, 2008.
Pálfy, J., Smith, P. L., and Mortensen, J. K.: A U – Pb and 40 Ar/39
Ar time scale for the Jurassic, Can. J. Earth Sci., 944, 923–944,
2000.
Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E., and Huntley, B.: A
flexible approach to assessing synchroneity of past events using Bayesian
reconstructions of sedimentation history, Quaternary Sci. Rev., 27,
1872–1885, https://doi.org/10.1016/j.quascirev.2008.07.009, 2008.
R Core Team: RStudio Team, RStudio: Integrated Development for R. RStudio, Inc., Boston, MA,
available at: http://www.rstudio.com/
(last access: 21 June 2018), 2015.
Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R.: Joint
determination of 40K decay constants and 40Ar*/40K for the Fish Canyon
sanidine standard, and improved accuracy for 40Ar/39Ar geochronology,
Geochim. Cosmochim. Ac., 74, 5349–5367, https://doi.org/10.1016/j.gca.2010.06.017,
2010.
Riccardi, A. C.: The marine Jurassic of Argentina?: a biostratigraphic
framework, Episodes – Newsmag. Int. Union Geol. Sci., September, 326–335,
2008.
Riccardi, A. C.: Remarks on the Tithonian-Berriasian ammonite
biostratigraphy of west central Argentina, Vol. Jurassica, XIII, 23–52,
https://doi.org/10.5604/17313708, 2015.
Sager, W. W.: What built Shatsky Rise, a mantle plume or ridge tectonics?,
Geol. Soc. Am. Spec. Pap., 388, 721–733, https://doi.org/10.1130/2005.2388(41), 2005.
Salvador, A.: Late Triassic- Jurassic paleogeography and origin of Gulf of
Mexico basin, Am. Assoc. Petr. Geol. B.,
63, 419–451,
https://doi.org/10.1306/2F917F19-16CE-11D7-8645000102C1865D, 1987.
Selby, D., Mutterlose, J., and Condon, D. J.: U-Pb and Re-Os geochronology of
the Aptian/Albian and Cenomanian/Turonian stage boundaries: Implications for
timescale calibration, osmium isotope seawater composition and Re-Os
systematics in organic-rich sediments, Chem. Geol.,
265, 394–409, https://doi.org/10.1016/j.chemgeo.2009.05.005, 2009.
Suter, M.: Tectonics of the external part of the Sierra Madre Oriental
foreland thurst-and-fold belt between xilitla and the Moctezuma river
(Hidalso and San Luis Potose States), Rev. Mex. ciencias geológicas,
4, 19–31, 1980.
Svobodová, A. and Košťák, M.: Calcareous nannofossils of the
Jurassic/Cretaceous boundary strata in the Puerto Escaño section
(southern Spain)-biostratigraphy and palaeoecology, Czech Acad. Sci. v.v.i.,
Rozvojová, 67, 0–6, https://doi.org/10.1515/geoca-2016-0015, 2016.
Tamaki, K. and Larson, R. L.: The Mesozoic tectonic history of the Magellan
microplate in the western central Pacific, J. Geophys. Res.,
93, 2857–2874, https://doi.org/10.1029/JB093iB04p02857, 1988.
Tripathy, G. R., Hannah, J. L., and Stein, H. J.: Refining the
Jurassic-Cretaceous boundary: Re-Os geochronology and depositional
environment of Upper Jurassic shales from the Norwegian Sea, Palaeogeogr.
Palaeocl., 503, 13–25,
https://doi.org/10.1016/j.palaeo.2018.05.005, 2018.
Vennari, V. V., Lescano, M., Naipauer, M., Aguirre-urreta, B., Concheyro,
A., Schaltegger, U., Armstrong, R., Pimentel, M., and Ramos, V. A.: New
constraints on the Jurassic-Cretaceous boundary in the High Andes using
high-precision U-Pb data, Gondwana Res., 26, 374–385,
https://doi.org/10.1016/j.gr.2013.07.005, 2014.
Vennari, V. V.: Tithonian ammonoids (Cephalopoda, Ammonoidea) from the Vaca
Muerta Formation, Neuquén Basin, West-Central Argentina, Palaeontogr.
Abt. A, 306, 85–165, https://doi.org/10.1127/pala/306/2016/85, 2016.
Wimbledon, W. A. P.: Developments with fixing a Tithonian/Berriasian (J/K)
boundary, Vol. Jurassica, 15, 181–186, https://doi.org/10.5604/01.3001.0010.7467, 2017.
Wimbledon, W. A. P., Casellato, C. E., Reháková, D., Bulot, L. G.,
Erba, E., Gardin, S., Verreussel, R. M. C. H., Munsterman, D. K., and Hunt,
C. O.: Fixing a basal Berriasian and Jurassic/Cretaceous (J/K) boundary – Is
there perhaps some light at the end of the tunnel?, Riv. Ital. di Paleontol.
e Stratigr., 117, 295–307, 2011.
Wimbledon, W. A. P., Reháková, D., Pszczółkowski, A.,
Casellato, C. E., Halásová, E., Frau, C., Bulot, L. G., Grabowski,
J., Sobień, K., Pruner, P., Schnabl, P., and Čížková,
K.: An account of the bio- and magnetostratigraphy of the Upper
Tithonian–Lower Berriasian interval at Le Chouet, Drôme (SE France),
Geol. Carpathica, 64, 437–460, https://doi.org/10.2478/geoca-2013-0030, 2013.
Wotzlaw, J.-F., Brack, P., and Storck, J.-C.: High-resolution stratigraphy and zircon U-Pb geochronology of the Middle Triassic Buchenstein
Formation (Dolomites, northern Italy): precession-forcing of hemipelagic carbonate sedimentation and calibration of the Anisian-Ladinian boundary
interval, J. Geol. Soc. London., https://doi.org/10.1144/jgs2017-052, 2017.
Zhang, Y. W., Minguez, Ogg, D., and Olaussen, J. G.:
Magnetostratigraphy across u-pb-dated horizons in svalbard boreholes to
partly resolve the debated age of barremian/aptian boundary, Geol. Soc. Am., 50,
https://doi.org/10.1130/abs/2018AM-323068, 2018.
Short summary
This paper investigates the numerical age of the J–K boundary that remains one of the last main Phanerozoic system boundaries without an adequate constraint by adequate radioisotopic ages. Here we find that there is potentially 4 Myr of difference between the current age of the J–K boundary and our data.
This paper investigates the numerical age of the J–K boundary that remains one of the last main...