Brown, E. L. and Lesher, C. E.:
North Atlantic magmatism controlled by temperature, mantle composition and buoyancy,
Nat. Geosci., 7, 820–824,
https://doi.org/10.1038/ngeo2264, 2014.
a
Denbigh, K.:
The principles of chemical equilibrium,
3rd Edn., Cambridge, Cambridge University Press, 494 pp., 1971.
a,
b,
c,
d
Dobson, D. P. and Mariani, E.:
The kinetics of the reaction of majorite plus ferropericlase to ringwoodite:
Implications for mantle upwellings crossing the 660 km discontinuity,
Earth Planet. Sc. Lett., 408, 110–118, 2014. a
Douglas Jr., J.:
On the Numerical Integration of
by Implicit Methods,
J. Soc. Ind. Appl. Math., 3, 42–65, 1955. a
Duesterhoeft, E. and de Capitani, C.:
Theriak
D: An add-on to implement equilibrium computations in geodynamic models,
Geochem. Geophy. Geosy., 14, 4962–4967,
https://doi.org/10.1002/ggge.20286, 2013.
a
Fisher, G. W.:
Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes,
Am. J. Sci., 273, 897–924, 1973. a
Gardés, E., Wunder, B., Wirth, R., and Heinrich, W.:
Growth of multilayered polycrystalline reaction rims in the MgO-
SiO2 system, part I: experiments,
Contrib. Mineral. Petr., 161, 1–12, 2011.
a,
b
Ghiorso, M. S.:
Chemical mass transfer in magmatic processes I. Thermodynamic relations and numerical aigoritlims,
Contrib. Mineral. Petr., 90, 107–120, 1985. a
Ghiorso, M. S.:
A globally convergent saturation state algorithm applicable to thermodynamic systems with a
stable or metastable omni-component phase,
Geochim. Cosmochim. Ac., 103, 295–300, 2013. a
Ghiorso, M. S. and Carmichael, S. E. :
A Regular Solution Model for Met-Aluminous Silicate Liquids:
Applications to Geothermometry, Immiscibility, and the Source Regions of Basic Magmas,
Contrib. Mineral. Petr., 71, 323–342, 1980. a
Ghiorso, M. S. and Sack, R. O.:
Chemical mass transfer in magmatic processes IV.
A revised and internally consistent thermodynamic model
for the interpolation and extrapolation of liquid-solid equilibria in
magmatic systems at elevated temperatures and pressures,
Contrib. Mineral. Petr., 119, 197–212, 1995. a
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., and Kress III, V. C.:
The pMELTS: A revision of MELTS for improved
calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa,
Geochem. Geophy. Geosy., 3, 1–35,
https://doi.org/10.1029/2001GC000217, 2002.
a
Gurnis, M. and Davies, G. F.:
The effect of depth-dependent viscosity on convective mixing in the mantle
and the possible survival of primitive mantle,
Geophys. Res. Lett., 13, 541–544, 1986. a
Helffrich, G.:
Heterogeneity in the mantle-its creation, evolution and destruction,
Tectonophysics, 416, 23–31, 2006. a
Holland, T. J. B. and Powell, R.:
An improved and extended internally consistent thermodynamic
dataset for phases of petrological interest, involving a new equation of state for solids,
J. Metamorph. Geol., 29, 333–383, 2011. a
Huang, J. and Davies, G. F.:
Stirring in three-dimensional mantle convection models and implications for geochemistry: Passive tracers,
Geochem. Geophy. Geosy., 8, Q03017,
https://doi.org/10.1029/2006GC001312, 2007.
a
Ito, G. and Mahoney, J.:
Flow and melting of a heterogeneous mantle: 1. Importance to the geochemistry of ocean island and mid-ocean ridge basalts,
Earth Planet. Sc. Lett., 230, 29–46, 2005a. a
Ito, G. and Mahoney J.:
Flow and melting of a heterogeneous mantle: 2. Implications for a non-layered mantle,
Earth Planet. Sc. Lett., 230, 47–63, 2005b. a
Iwamori, H. and Nakamura, H.:
Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics,
Gondwana Res., 27, 1131–1152, 2014. a
James, F.:
MINUIT: Function Minimization and Error Analysis,
CERN Program Libr. Long Writeup D506, version 94. 1, Geneva: CERN, 1994.
a,
b
Joesten, R.:
Evolution of mineral assemblage zoning in diffusion metasomatism,
Geochim. Cosmochim. Ac., 41, 649–670, 1977. a
Kellogg, L. H.:
Mixing in the mantle,
Annu. Rev. Earth Planet. Sc., 20, 365–388, 1992. a
Kondepudi, D. and Prigogine, I.:
Modern Thermodynamics,
1st Edn., John Wiley and Sons Ltd, UK, 486 pp., 1998.
a,
b,
c,
d
Li, Y., Deschamps, F., and Tackley, P. J.:
The stability and structure of primordial reservoirs in the lower mantle:
insights from models of thermochemical convection in three-dimensional spherical geometry,
Geophys. J. Int., 199, 914–930, 2014. a
Markl, G., Foster, C. T., and Bucher, K.:
Diffusion-controlled olivine corona textures in granitic rocks from
Lofoten, Norway: calculation of Onsager diffusion coefficients, thermodynamic modelling and petrological implications,
J. Metamorph. Geol., 16, 607–623, 1998. a
Milke, R., Dohmen, R., Becker, H. W., and Wirth, R.:
Growth kinetics of enstatite reaction rims studied on nano-scale,
Part I: Methodology, microscopic observations and the role of water,
Contrib. Mineral. Petr., 154, 519–533, 2007. a
Mundl, A., Touboul, M., Jackson, M. G., Day, J. M. D., Kurz, M. D., Lekic, V., Helz, R. T., and Walker, R. J.:
Tungsten-182 heterogeneity in modern ocean island basalts,
Science, 356, 66–69, 2017. a
Nishi, M., Kubo, T., Kato, T., Tominaga, A., Funakoshi, K., and Higo, Y.:
Exsolution kinetics of majoritic garnet from clinopyroxene in subducting oceanic crust,
Earth Planet. Sc. Lett., 189, 47–55, 2011. a
Nishiyama, T.:
Steady diffusion model for olivine-plagioclase corona growth,
Geochim. Cosmochim. Ac., 47, 283–294, 1983. a
Ozawa, H., Hirose, K., Mitome, M., Bando, Y., Sata, N., and Ohishi, Y.:
Experimental study of reaction between perovskite and molten
iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core,
Phys. Chem. Miner., 36, 355–363, 2009. a
Piazzoni, A. S., Steinle-Neumann, G., Bunge, H. P., and Dolejs̆, D.:
A mineralogical model for density and elasticity of the Earth's mantle,
Geochem. Geophy. Geosy., 8, Q11010,
https://doi.org/10.1029/2007GC001697, 2007.
a
Poirier, J. P.:
Introduction to the physics of the Earth's Interior,
2nd Edn., Cambridge University Press, UK, 312 pp., 2000. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes in Fortran 77: The Art of Scientific Computing,
2nd Edn. (reprinted), Cambridge Univ. Press, Cambridge, 933 pp., 1997. a
Prigogine, I. and Defay, R.:
Chemical thermodynamics,
1st Edn., London: Longmans, Green and co. Ltd, 543 pp., 1954.
a,
b,
c,
d
Ricard, Y., Richards, M., Lithgow-Bertelloni, C., and Le Stunff, Y.:
A geodynamic model of mantle density heterogeneity,
J. Geophys. Res., 98, 21895–21909,
https://doi.org/10.1029/93JB02216, 1993.
a
Rubie, D. C. and Ross II, C. R.:
Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints
and implications for deep slab processes,
Phys. Earth Planet. In., 86, 223–241, 1994. a
Saxena, S. K.:
Earth mineralogical model: Gibbs free energy minimization computation in the system
MgO-
FeO-
SiO2,
Geochim. Cosmochim. Ac., 60, 2379–2395, 1996. a
Schubert, G., Turcotte, D. L., and Olson, P.:
Mantle convection in the Earth and planets,
1st Edn., Cambridge University Press, UK, 940 pp., 2001. a
Smith, P. M. and Asimow, P. D.:
Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models,
Geochem. Geophy. Geosy., 6, Q02004,
https://doi.org/10.1029/2004GC000816, 2005.
a
Smith, W. R. and Missen, R. W.:
Chemical reaction equilibrium analysis: theory and algorithms,
1st Edn. (reprint), Malabar: Krieger Publishing Company, 364 pp., 1991.
a,
b,
c
Stracke, A. and Bourdon, B.:
The importance of melt extraction for tracing mantle heterogeneity,
Geochim. Cosmochim. Ac., 73, 218–238, 2009. a
Tackley, P. and Xie, S.:
The thermochemical structure and evolution of Earth's mantle:
constraints and numerical models,
Philos. T. R. Soc. S.-A, 360, 2593–2609, 2002. a
Tannehill, J. C., Anderson, D., and Pletcher, R. H.:
Computational Fluid Mechanics and Heat Transfer,
2nd Edn., Taylor and Francis, Levittown, 792 pp., 1997.
a,
b
Tesoniero, A., Cammarano, F., and Boschi, L.:
S-to-P heterogeneity ratio in the lower mantle and thermo-chemical implications,
Geochem. Geophy. Geosy., 17, 2522–2538,
https://doi.org/10.1002/2016GC006293, 2016.
a
Tirone, M. and Sessing, J.:
Petrological Geodynamics of Mantle Melting I. AlphaMELTS
+ Multiphase Flow: Dynamic Equilibrium Melting,
Method and Results,
Front. Earth Sci., 5, 81,
https://doi.org/10.3389/feart.2017.00081, 2017.
a
Tirone, M., Buhre, S., Schmück, H., and Faak, K.:
Chemical Heterogeneities in the Mantle: the Equilibrium Thermodynamic Approach,
Lithos, 244, 140–150,
https://doi.org/10.1016/j.lithos.2015.11.032, 2015.
a,
b
Tirone, M., Rokitta, K., and Schreiber, U.:
Thermochronological evolution of intra-plate magmatic crystallization inferred from an integrated modeling approach: a
case study in the Westerwald, Germany,
Lithos, 260, 178–190,
https://doi.org/10.1016/j.lithos.2016.05.008, 2016.
a
Trampert, J., Deschamps, F., Resovsky, J., and Yuen, D.:
Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle,
Science, 306, 853–856, 2004. a
van Keken P. E. and Ballentine, C. J.:
Whole-mantle versus layered mantle convection and the role of a
high-viscosity lower mantle in terrestrial volatile evolution,
Earth Planet. Sc. Lett., 156, 19–32, 1998. a
van Keken, P. E., Hauri, E. H., and Ballentine, C. J.:
Mantle mixing: The Generation, Preservation, and Destruction of Chemical Heterogeneity,
Annu. Rev. Earth Planet. Sc., 30, 493–525, 2002.
a,
b
Walzer, U. and Hendel, R.:
A new convection-fractionation model for the evolution of the principal geochemical reservoirs of the Earth's mantle,
Phys. Earth Planet. In., 112, 211–256, 1999. a
Zhao, C., Garnero, E. J., McNamara, A. K., Schmerr, N., and Carlson, R. W.:
Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii,
Earth Planet. Sc. Lett., 426, 143–153, 2015. a
Zhong, S.:
Constraints on thermochemical convection of the mantle from plume
heat flux, plume excess temperature, and upper mantle temperature,
J. Geophys. Res., 111, B04409,
https://doi.org/10.1029/2005JB003972, 2006.
a