Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-211-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-211-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps)
Emilie Janots
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
Department of Earth and Environmental Sciences,
Ludwig-Maximilians-Universität Munich, Luisenstr, 37, 80333 Munich,
Germany
Alexis Grand'Homme
Univ. Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
Matthias Bernet
Univ. Grenoble Alpes, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
Damien Guillaume
Univ Lyon, UJM-Saint-Etienne, UCA, CNRS, IRD, LMV UMR 6524, 42023,
Saint-Étienne, France
Edwin Gnos
Natural History Museum of Geneva, 1 route de
Malagnou, 1208 Geneva, Switzerland
Marie-Christine Boiron
Université de
Lorraine, CNRS, GeoRessources, 54000 Nancy, France
Magali Rossi
Univ. Grenoble Alpes, Univ.
Savoie Mont-Blanc, CNRS, EDYTEM, 73 000 Chambéry, France
Anne-Magali Seydoux-Guillaume
Univ Lyon, UJM-Saint-Etienne, UCA, CNRS, IRD, LMV UMR 6524, 42023,
Saint-Étienne, France
Roger De Ascenção Guedes
Editions du Piat, Glavenas, 43200 Saint-Julien-du-Pinet, France
Related authors
Christian A. Bergemann, Edwin Gnos, Alfons Berger, Emilie Janots, and Martin J. Whitehouse
Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, https://doi.org/10.5194/se-11-199-2020, 2020
Short summary
Short summary
Metamorphic domes are areas in a mountain chain that were unburied and where deeper parts of the crust rose to the surface. The Lepontine Dome in the Swiss and Italian Alps is such a place, and it is additionally bordered on two sides by shear zones where crustal blocks moved past each other. To determine when these tectonic movements happened, we measured the ages of monazite crystals that form in fluid-filled pockets inside the rocks during these movements of exhumation and deformation.
Felix Hentschel, Claudia A. Trepmann, and Emilie Janots
Solid Earth, 10, 95–116, https://doi.org/10.5194/se-10-95-2019, https://doi.org/10.5194/se-10-95-2019, 2019
Short summary
Short summary
We used microscopy and electron backscatter diffraction to analyse the deformation behaviour of feldspar at greenschist facies conditions in mylonitic pegmatites of the Austroalpine basement. There are strong uncertainties about feldspar deformation, mainly because of the varying contributions of different deformation processes. We observed that deformation is mainly the result of coupled fracturing and dislocation glide, followed by growth and granular flow.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Emmanuelle Ricchi, Christian A. Bergemann, Edwin Gnos, Alfons Berger, Daniela Rubatto, Martin J. Whitehouse, and Franz Walter
Solid Earth, 11, 437–467, https://doi.org/10.5194/se-11-437-2020, https://doi.org/10.5194/se-11-437-2020, 2020
Short summary
Short summary
This study investigates Cenozoic deformation during cooling and exhumation of the Tauern metamorphic and structural dome, Eastern Alps, through Th–Pb dating of fissure monazite-(Ce). Fissure (or hydrothermal) monazite-(Ce) typically crystallizes in a temperature range of 400–200 °C. Three major episodes of monazite growth occurred at approximately 21, 17, and 12 Ma, corroborating previous crystallization and cooling ages.
Christian A. Bergemann, Edwin Gnos, Alfons Berger, Emilie Janots, and Martin J. Whitehouse
Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, https://doi.org/10.5194/se-11-199-2020, 2020
Short summary
Short summary
Metamorphic domes are areas in a mountain chain that were unburied and where deeper parts of the crust rose to the surface. The Lepontine Dome in the Swiss and Italian Alps is such a place, and it is additionally bordered on two sides by shear zones where crustal blocks moved past each other. To determine when these tectonic movements happened, we measured the ages of monazite crystals that form in fluid-filled pockets inside the rocks during these movements of exhumation and deformation.
Felix Hentschel, Claudia A. Trepmann, and Emilie Janots
Solid Earth, 10, 95–116, https://doi.org/10.5194/se-10-95-2019, https://doi.org/10.5194/se-10-95-2019, 2019
Short summary
Short summary
We used microscopy and electron backscatter diffraction to analyse the deformation behaviour of feldspar at greenschist facies conditions in mylonitic pegmatites of the Austroalpine basement. There are strong uncertainties about feldspar deformation, mainly because of the varying contributions of different deformation processes. We observed that deformation is mainly the result of coupled fracturing and dislocation glide, followed by growth and granular flow.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochronology
Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce)
Temporospatial variation in the late Mesozoic volcanism in southeast China
Christian A. Bergemann, Edwin Gnos, Alfons Berger, Emilie Janots, and Martin J. Whitehouse
Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, https://doi.org/10.5194/se-11-199-2020, 2020
Short summary
Short summary
Metamorphic domes are areas in a mountain chain that were unburied and where deeper parts of the crust rose to the surface. The Lepontine Dome in the Swiss and Italian Alps is such a place, and it is additionally bordered on two sides by shear zones where crustal blocks moved past each other. To determine when these tectonic movements happened, we measured the ages of monazite crystals that form in fluid-filled pockets inside the rocks during these movements of exhumation and deformation.
Xianghui Li, Yongxiang Li, Jingyu Wang, Chaokai Zhang, Yin Wang, and Ling Liu
Solid Earth, 10, 2089–2101, https://doi.org/10.5194/se-10-2089-2019, https://doi.org/10.5194/se-10-2089-2019, 2019
Short summary
Short summary
Western Pacific plate subduction played a key role in the late Mesozoic geologic evolution and volcanism in East Asia. New and published zircon U–Pb ages of extrusive rocks are compiled in SE China. Results show that the volcanism mainly spanned ~95 Myr (mainly 70 Myr, Late Jurassic–Early Cretaceous) and migrated northwest from the coast inland, implying the Paleo-Pacific Plate subducted northwestward and the roll-back subduction did not begin until the Aptian (~125 Ma) of the mid-Cretaceous.
Cited articles
Austrheim, H. and Griffin, W.: Shear Deformation and Eclogite Formation
Within Granulite-Facies Anorthosites of the Bergen Arcs, Western Norway,
Chem. Geol., 50, 267–281, https://doi.org/10.1016/0009-2541(85)90124-X, 1985.
Bellanger, M., Augier, R., Bellahsen, N., Jolivet, L., Monié, P., Baudin,
T., and Beyssac, O.: Shortening of the European Dauphinois margin (Oisans
Massif, Western Alps): New insights from RSCM maximum temperature estimates
and 40Ar/39Ar in situ dating, J. Geodyn., 83, 37–64,
https://doi.org/10.1016/j.jog.2014.09.004, 2015.
Bergemann, C., Gnos, E., Berger, A., Whitehouse, M., Mullis, J., Wehrens, P.,
Pettke, T., and Janots, E.: Th-Pb ion probe dating of zoned hydrothermal
monazite and its implications for repeated shear zone activity: An example
from the Central Alps, Switzerland, Tectonics, 36, 2016TC004407,
https://doi.org/10.1002/2016TC004407, 2017.
Berger, A., Gnos, E., Janots, E., Whitehouse, M., Soom, M., Frei, R., and Waight,
T. E.: Dating brittle tectonic movements with cleft monazite: Fluid-rock
interaction and formation of REE minerals, Tectonics, 32, 1176–1189,
https://doi.org/10.1002/tect.20071, 2013.
Bernet, M.: A field-based estimate of the zircon fission-track closure
temperature, Chem. Geol., 259, 181–189, 2009.
Bodnar, R. J.: Interpretation of Data from Aqueous-Electrolyte Fluid
Inclusion, in: Fluid Inclusions: Analysis and Interpretation, edited by:
Samson, I., Alderton, A., and Marshall, D., Mineralogical Association of
Canada, Ontario, 2003.
Boutoux, A., Verlaguet, A., Bellahsen, N., Lacombe, O., Villemant, B., Caron,
B., Martin, E., Assayag, N., and Cartigny, P.: Fluid systems above basement
shear zones during inversion of pre-orogenic sedimentary basins (External
Crystalline Massifs, Western Alps), Lithos, 206–207, 435–453,
https://doi.org/10.1016/j.lithos.2014.07.005, 2014.
Boutoux, A., Bellahsen, N., Nanni, U., Pik, R., Verlaguet, A., Rolland, Y.,
and Lacombe, O.: Thermal and structural evolution of the external Western
Alps: Insights from (U–Th–Sm)/He thermochronology and RSCM thermometry in
the Aiguilles Rouges/Mont Blanc massifs, Tectonophysics, 683, 109–123,
https://doi.org/10.1016/j.tecto.2016.06.010, 2016.
Brandon, M. T., Roden-Tice, M. K., and Garver, J. I.: Late Cenozoic exhumation
of the Cascadia accretionary wedge in the Olympic Mountains, Northwest
Washington State, Geol. Soc. Am. Bull., 110, 985–1009, 1998.
Can, I.: A new improved Na/K geothermometer by artificial neural networks,
Geothermics, 31, 751–760, https://doi.org/10.1016/S0375-6505(02)00044-5,
2002.
Cenki-Tok, B., Darling, J. R., Rolland, Y., Dhuime, B., and Storey, C. D.:
Direct dating of mid-crustal shear zones with synkinematic allanite: new in
situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif,
Terra Nova, 26, 29–37, https://doi.org/10.1111/ter.12066, 2014.
Debon, F., Guerrot, C., Menot, R. P., Vivier, G., and Cocherie, A.: Late
Variscan granites of the Belledonne massif (French western Alps): an early
Visean magnesian plutonism, Schweiz. Mineral. Petrogr. Mitteilungen, 78,
67–85, 1998.
Derry, L. A., Evans, M. J., Darling, R., and France-Lanord, C.: Hydrothermal
heat flow near the Main Central Thrust, central Nepal Himalaya, Earth Planet.
Sc. Lett., 286, 101–109, https://doi.org/10.1016/j.epsl.2009.06.036, 2009.
Diamond, L.-W. and Tarantola, A.: Interpretation of fluid inclusions in
quartz deformed by weak ductile shearing: Reconstruction of differential
stress magnitudes and pre-deformation fluid propoerties, Earth Planet. Sc.
Lett., 417, 107–119, https://doi.org/10.1016/j.epsl.2015.02.019, 2015.
Diamond, L. W., Wanner, C., and Waber, H. N.: Penetration depth of meteoric
water in orogenic geothermal systems, Geology, 46, 1–4,
https://doi.org/10.1130/G45394.1, 2018.
Dodson, M. H.: Closure temperature in cooling geochronological and
petrological systems, Contrib. Mineral. Petrol., 40, 259–74, 1973.
Dumont, T., Champagnac, J.-D., Crouzet, C., and Rochat, P.: Multistage
shortening in the Dauphiné zone (French Alps): the record of Alpine
collision and implications for pre-Alpine restoration, Swiss J. Geosci., 101,
89–110, https://doi.org/10.1007/s00015-008-1280-2, 2008.
Engi, M., Lanari, P., and Kohn, M. J.: Significant Ages – An Introduction to
Petrochronology, Rev. Mineral. Geochem., 83, 1–12,
https://doi.org/10.2138/rmg.2017.83.1, 2017.
Fabre, C., Boiron, M.-C., Dubessy, J., Cathelineau, M., and Banks, D. A.:
Palaeofluid chemistry of a single fluid event: a bulk and in-situ
multi-technique analysis (LIBS, Raman Spectroscopy) of an Alpine fluid
(Mont-Blanc), Chem. Geol., 182, 249–264,
https://doi.org/10.1016/S0009-2541(01)00293-5, 2002.
Fügenschuh, B. and Schmid, S. M.: Late stages of deformation and exhumation
of an orogen constrained by fission-track data: A case study in the Western
Alps, GSA Bull., 115, 1425–1440, https://doi.org/10.1130/B25092.1, 2003.
Gasquet, D., Bertrand, J.-M., Paquette, J.-L., Lehmann, J., Ratzov, G.,
Guedes, R. D. A., Tiepolo, M., Boullier, A.-M., Scaillet, S., and Nomade, S.:
Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine
basement massif of the French western Alps: new U-Th-Pb and argon ages from
the Lauziere massif, Bull. Soc. Geol. Fr., 181, 227–241,
https://doi.org/10.2113/gssgfbull.181.3.227, 2010.
Glotzbach, C., van der Beek, P. A., and Spiegel, C.: Episodic exhumation and
relief growth in the Mont Blanc massif, Western Alps from numerical modelling
of thermochronology data, Earth Planet. Sc. Lett., 304, 417–430,
https://doi.org/10.1016/j.epsl.2011.02.020, 2011.
Gnos, E., Janots, E., Berger, A., Whitehouse, M., Walter, F., Pettke, T., and
Bergemann, C.: Age of cleft monazites in the eastern Tauern Window:
constraints on crystallization conditions of hydrothermal monazite, Swiss J.
Geosci., 108, 55–74, https://doi.org/10.1007/s00015-015-0178-z, 2015.
Goncalves, P., Oliot, E., Marquer, D., and Connolly, J. a. D.: Role of
chemical processes on shear zone formation: an example from the Grimsel
metagranodiorite (Aar massif, Central Alps), J. Metamorph. Geol., 30,
703–722, https://doi.org/10.1111/j.1525-1314.2012.00991.x, 2012.
Grand'Homme, A., Janots, E., Bosse, V., Seydoux-Guillaume, A. M., and Guedes,
R. D. A.: Interpretation of U-Th-Pb in-situ ages of hydrothermal
monazite-(Ce) and xenotime-(Y): evidence from a large-scale regional study in
clefts from the western alps, Mineral. Petrol., 110, 1–21,
https://doi.org/10.1007/s00710-016-0451-5, 2016.
Hall, D. L., Sterner, S. M., and Bodnar, R. J.: Freezing point depression of
NaCl-K-Cl-H2O solutions, Econ. Geol., 83, 197–202, 1988.
Hofmann, B. A., Helfer, M., Diamond, L. W., Villa, I. M., Frei, R., and
Eikenberg, J.: Topography-driven hydrothermal breccia mineralization of
Pliocene age at Grimsel Pass, Aar massif, Central Swiss Alps, Schweiz.
Mineral. Petrogr. Mitteilungen, 84, 271–302, 2004.
Janots, E., Berger, A., Gnos, E., Whitehouse, M., Lewin, E., and Pettke, T.:
Constraints on fluid evolution during metamorphism from U-Th-Pb systematics
in Alpine hydrothermal monazite, Chem. Geol., 326–327, 61–71,
https://doi.org/10.1016/j.chemgeo.2012.07.014, 2012.
Leisen, M., Boiron, M. C., Richard, A., and Dubessy, J.: Determination of Cl
and Br concentrations in individual fluid inclusions by combining
microthermometry and LA-ICPMS analysis: Implication for the origin of
salinity in crustal fluids, Chem. Geol., 330–331, 197–206,
https://doi.org/10.1016/j.chemgeo.2012.09.003, 2012.
Leloup, P. H., Arnaud, N., Sobel, E. R., and Lacassin, R.: Alpine thermal and
structural evolution of the highest external crystalline massif: The Mont
Blanc, Tectonics, 24, TC4002, https://doi.org/10.1029/2004TC001676, 2005.
Marquer, D. and Burkhard, M.: Fluid circulation, progressive deformation and
mass-transfer processes in the upper crust: the example of basement-cover
relationships in the External Crystalline Massifs, Switzerland. J. Struct.
Geol., 14, 1047–1057, 1992.
Moëlo, Y., Palvadeau, P., Meisser, N., and Meerschaut, A.: Structure
cristalline d'une ménéghinite naturelle pauvre en cuivre,
Cu0,58Pb12,72(Sb7,04Bi0,24)S24, Comptes Rendus Geosci., 334, 529–536,
https://doi.org/10.1016/S1631-0713(02)01792-3, 2002.
Mullis, J., Dubessy, J., Poty, B., and O'Neil, J.: Fluid regimes during late
stages of a continental collision: Physical, chemical, and stable isotope
measurements of fluid inclusions in fissure quartz from a geotraverse through
the Central Alps, Switzerland, Geochim. Cosmochim. Acta, 58, 2239–2267,
https://doi.org/10.1016/0016-7037(94)90008-6, 1994.
Nziengui, J. J.: Excès d'argon radiogénique dans le quartz des
fissures tectoniques: implications pour la datation des séries
méthamorphiques, L'exemple de la coupe de la Romanche, Alpes Occidentales
françaises (Thèse 3ème cycle), Université Joseph Fourier,
Grenoble, France, 209 pp., 1993.
Oliot, E., Goncalves, P., Schulmann, K., Marquer, D., and Lexa, O.:
Mid-crustal shear zone formation in granitic rocks: Constraints from
quantitative textural and crystallographic preferred orientations analyses,
Tectonophysics, 612–613, 63–80, https://doi.org/10.1016/j.tecto.2013.11.032,
2014.
Poty, B. P., Stalder, H. A., and Weisbrod, A. M.: Fluid inclusions studies in
quartz from fissures of Western and Central Alps, Schweiz. Mineral. Petrogr.
Mitteilungen, 54, 717–752, 1974.
Putnis, A. and Austrheim, H.: Fluid-induced processes: metasomatism and
metamorphism, Geofluids, 10, 254–269,
https://doi.org/10.1111/j.1468-8123.2010.00285.x, 2010.
Putnis, A., Jamtveit, B., and Austrheim, H.: Metamorphic Processes and
Seismicity: the Bergen Arcs as a Natural Laboratory, J. Petrol., 58,
1871–1898, https://doi.org/10.1093/petrology/egx076, 2017.
Rahn, M. K., Brandon, M. T., Batt, G. E., and Garver, J. I.: A zero-damage model
for fission track annealing in zircon, Am. Mineral., 89, 473–484, 2004.
Raimondo, T., Clark, C., Hand, M., Cliff, J., and Anczkiewicz, R.: A simple
mechanism for mid-crustal shear zones to record surface-derived fluid
signatures, Geology, 41, 711–714, https://doi.org/10.1130/G34043.1, 2013.
Reiners, P. W. and Brandon, M. T.: Using thermochronology to understand
orogenic erosion, Annu. Rev. Earth Pl. Sc., 34, 419–466, 2006.
Roedder, E.: Fluid Inclusions, Mineralogical Society of America, Chantilly,
646 pp., 1984.
Rolland, Y., Cox, S., Boullier, A.-M., Pennacchioni, G., and Mancktelow, N.:
Rare earth and trace element mobility in mid-crustal shear zones: insights
from the Mont Blanc Massif (Western Alps), Earth Planet. Sc. Lett., 214,
203–219, https://doi.org/10.1016/S0012-821X(03)00372-8, 2003.
Rolland, Y. and Rossi, M.: Two-stage fluid flow and element transfers in
shear zones during collision burial-exhumation cycle: Insights from the Mont
Blanc Crystalline Massif (Western Alps), J. Geodyn., 101, 88–108,
https://doi.org/10.1016/j.jog.2016.03.016, 2016.
Rossi, M. and Rolland, Y.: Stable isotope and Ar∕Ar evidence of prolonged
multiscale fluid flow during exhumation of orogenic crust: Example from the
Mont Blanc and Aar Massifs (NW Alps), Tectonics, 33, 1681–1709,
https://doi.org/10.1002/2013TC003438, 2014.
Rossi, M., Rolland, Y., and Cox, S. F.: Geochemical variations and element
transfer during shear-zone development and related episyenites at middle
crust depths: insights from the Mont Blanc granite (French-Italian Alps),
High-Strain Zones Struct. Phys. Prop., 245, 373–396,
https://doi.org/10.1144/GSL.SP.2005.245.01.18, 2005.
Seward, D. and Mancktelow, N.: Neogene Kinematics of the Central and Western
Alps - Evidence from Fission-Track Dating, Geology, 22, 803–806,
https://doi.org/10.1130/0091-7613(1994)022<0803:NKOTCA>2.3.CO;2, 1994.
Shepherd, T. J., Rankin, A. H., and Alderton, D. H. M.: A Practical Guide to
Fluid Inclusion Studies, Blackie, Glasgow, 293 pp., 1985.
Sharp, Z. D., Masson, H., and Lucchini, R.: Stable isotope geochemistry and
formation mechanisms of quartz veins; extreme paleoaltitudes of the Central
Alps in the Neogene, Am. J. Sci., 305, 187–219,
https://doi.org/10.2475/ajs.305.3.187, 2005.
Simon-Labric, T., Rolland, Y., Dumont, T., Heymes, T., Authemayou, C.,
Corsini, M., and Fornari, M.: 40Ar/39Ar dating of Penninic Front tectonic
displacement (W Alps) during the Lower Oligocene (31–34 Ma), Terra Nova, 21,
127–136, https://doi.org/10.1111/j.1365-3121.2009.00865.x, 2009.
Tagami, T. and Murakami, M.: Probing fault zone heterogeneity on the Nojima
fault: Constraints from zircon fission-track analysis of borehole samples,
Tectonophysics, 443, 139–152, 2007.
Tagami, T., Galbraith, R. F., Yamada, R., and Laslett, G. M.: Revised annealing
kinetics of fission tracks in zircon and geologic implications, in: Advances
in Fission-Track Geochronology, edited by: van den Haute, P., De Corte, F.,
99–112,
Kluwer Acad. Publ., Dordrecht, 1998.
Verma, S. P. and Santoyo, E.: New improved equations for NaK, NaLi and SiO2
geothermometers by outlier detection and rejection, J. Volcanol. Geotherm.
Res., 79, 9–23, https://doi.org/10.1016/S0377-0273(97)00024-3, 1997.
Whipp, D. M. and Ehlers, T. A.: Influence of groundwater flow on
thermochronometer-derived exhumation rates in the central Nepalese Himalaya,
Geology, 35, 851–854, https://doi.org/10.1130/G23788A.1, 2007.
Willett, S. D. and Brandon, M. T.: Some analytical methods for converting
thermochronometric age to erosion rate, Geochem. Geophys. Geosys., 14,
209–222, https://doi.org/10.1029/2012GC004279, 2013.
Yamada, R., Tagami, T., Nishimura, S., and Ito, H.: Annealing kinetics of
fission tracks in zircon: an experimental study, Chem. Geol., 122, 249–258,
https://doi.org/10.1016/0009-2541(95)00006-8, 1995.
Zhang, Y. G. and Frantz, J. D.: Determination of the homogenization
temperatures and densities of supercritical fluids in the system
NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions, Chem.
Geol.,
64, 335–350, 1987.
Short summary
This geochronological and thermometric study reveals unusually hot fluids in an Alpine-type fissure of granite from the external crystalline massif (Western Alps). The fluid is estimated to be 150-250 °C hotter than the host rock and requires a dynamic fluid pathway at mid-crustal conditions in the ductile regime. This fluid circulation resets the zircon fission track thermochronometer, but only at the fissure contact. Thermal disturbances due to advective heating appear to be localized.
This geochronological and thermometric study reveals unusually hot fluids in an Alpine-type...