Articles | Volume 11, issue 2
https://doi.org/10.5194/se-11-379-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-379-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GRACE constraints on Earth rheology of the Barents Sea and Fennoscandia
Faculty of Aerospace Engineering, TU Delft, Building 62 Kluyverweg 1, 2629 HS Delft, the Netherlands
NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems EDS, and Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands
Wouter van der Wal
Faculty of Aerospace Engineering, TU Delft, Building 62 Kluyverweg 1, 2629 HS Delft, the Netherlands
Faculty of Civil Engineering and Geosciences, TU Delft, Stevinweg 1, 2628 CN Delft, the Netherlands
Valentina R. Barletta
National Space Institute, DTU Space, Technical University of Denmark, Elektrovej Bygning 327, 2800 Kongens Lyngby, Denmark
Bart C. Root
Faculty of Aerospace Engineering, TU Delft, Building 62 Kluyverweg 1, 2629 HS Delft, the Netherlands
Louise Sandberg Sørensen
National Space Institute, DTU Space, Technical University of Denmark, Elektrovej Bygning 327, 2800 Kongens Lyngby, Denmark
Related authors
No articles found.
Caroline Jacoba van Calcar, Pippa L. Whitehouse, Roderik S. W. van de Wal, and Wouter van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2982, https://doi.org/10.5194/egusphere-2024-2982, 2024
Short summary
Short summary
The bedrock response to a melting Antarctic ice sheet delays grounding line retreat by up to 130 years and reduces sea level rise by up to 23% compared to excluding this effect. Current ice sheet models often use computationally fast but simplified Earth models that do not capture this feedback well. We recommend parameters for simple Earth models that approximate bedrock uplift and ice sheet evolution from a complex ice sheet - Earth model to improve sea level projections of the next centuries.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Anna Puggaard, Nicolaj Hansen, Ruth Mottram, Thomas Nagler, Stefan Scheiblauer, Sebastian B. Simonsen, Louise S. Sørensen, Jan Wuite, and Anne M. Solgaard
EGUsphere, https://doi.org/10.5194/egusphere-2024-1108, https://doi.org/10.5194/egusphere-2024-1108, 2024
Short summary
Short summary
Regional climate models are currently the only source for assessing the melt volume on a global scale of the Greenland Ice Sheet. This study compares the modeled melt volume with observations from weather stations and melt extent observed from ASCAT to assess the performance of the models. It highlights the importance of critically evaluating model outputs with high-quality satellite measurements to improve the understanding of variability among models.
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024, https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Short summary
Lakes on glaciers hold large volumes of water which can drain through the ice, influencing estimates of sea level rise. To estimate water volume, we must calculate lake depth. We assessed the accuracy of three satellite-based depth detection methods on a study area in western Greenland and considered the implications for quantifying the volume of water within lakes. We found that the most popular method of detecting depth on the ice sheet scale has higher uncertainty than previously assumed.
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024, https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Short summary
Under the right topographic and hydrological conditions, lakes may form beneath the large ice sheets. Some of these subglacial lakes are active, meaning that they periodically drain and refill. When a subglacial lake drains rapidly, it may cause the ice surface above to collapse, and here we investigate how to improve the monitoring of active subglacial lakes in Greenland by monitoring how their associated collapse basins change over time.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Nicolaj Hansen, Louise Sandberg Sørensen, Giorgio Spada, Daniele Melini, Rene Forsberg, Ruth Mottram, and Sebastian B. Simonsen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-104, https://doi.org/10.5194/tc-2023-104, 2023
Preprint withdrawn
Short summary
Short summary
We use ICESat-2 to estimate the surface elevation change over Greenland and Antarctica in the period of 2018 to 2021. Numerical models have been used the compute the firn compaction and the vertical bedrock movement so non-mass-related elevation changes can be taken into account. We have made a parameterization of the surface density so we can convert the volume change to mass change. We find that Antarctica has lost 135.7±27.3 Gt per year, and the Greenland ice sheet 237.5±14.0 Gt per year.
Mai Winstrup, Heidi Ranndal, Signe Hillerup Larsen, Sebastian Bjerregaard Simonsen, Kenneth David Mankoff, Robert Schjøtt Fausto, and Louise Sandberg Sørensen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-224, https://doi.org/10.5194/essd-2023-224, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Surface topography across the marginal zone of the Greenland Ice Sheet is constantly evolving. We here present four 500-meter resolution annual (2019–2022) summer DEMs (PRODEMs) of the Greenland ice sheet marginal zone, capturing all outlet glaciers of the ice sheet. The PRODEMs are based on fusion of CryoSat-2 radar altimetry and ICESat-2 laser altimetry. With their high spatial and temporal resolution, the PRODEMs will enable detailed studies of the changes in marginal ice sheet elevations.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022, https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
Short summary
Several alternative gravity modelling techniques and associated numerical codes with their own advantages and limitations are available for the solid Earth community. With upcoming state-of-the-art lithosphere density models and accurate global gravity field data sets, it is vital to understand the differences of the various approaches. In this paper, we discuss the four widely used techniques: spherical harmonics, tesseroid integration, triangle integration, and hexahedral integration.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Wouter van der Wal and Thijs IJpelaar
Solid Earth, 8, 955–968, https://doi.org/10.5194/se-8-955-2017, https://doi.org/10.5194/se-8-955-2017, 2017
Short summary
Short summary
As ice sheets grow and shrink, they move rocks around. In Scandinavia the movement took place mostly from inland to offshore areas, resulting in ongoing uplift in Scandinavia and subsidence in offshore areas. This study calculated the changes in height and gravity and found that they are significant. Thus, effects of past sediment loading have to be taken into account when interpreting measurements of height and gravity change in areas close to former ice sheets with large sediment transport.
Johan Nilsson, Alex Gardner, Louise Sandberg Sørensen, and Rene Forsberg
The Cryosphere, 10, 2953–2969, https://doi.org/10.5194/tc-10-2953-2016, https://doi.org/10.5194/tc-10-2953-2016, 2016
Short summary
Short summary
In this study we present a new processing methodology for retrieving surface elevations and elevation changes over glaciated terrain from CryoSat-2 data. The new methodology has been shown to be less sensitive to changes in near-surface dielectric properties and provides improved elevation and elevation change retrievals. This methodology has been applied to the Greenland Ice Sheet to provide an updated volume change estimate for the period of 2011 to 2015.
Zheng Xu, Ernst J. O. Schrama, Wouter van der Wal, Michiel van den Broeke, and Ellyn M. Enderlin
The Cryosphere, 10, 895–912, https://doi.org/10.5194/tc-10-895-2016, https://doi.org/10.5194/tc-10-895-2016, 2016
Short summary
Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.
J. Nilsson, L. Sandberg Sørensen, V. R. Barletta, and R. Forsberg
The Cryosphere, 9, 139–150, https://doi.org/10.5194/tc-9-139-2015, https://doi.org/10.5194/tc-9-139-2015, 2015
Short summary
Short summary
The aim of this study is to determine and quantify the impact of different regionalization schemes on surface elevation changes, and how they affect the estimated spread in mass balance of Arctic ice caps and glaciers. The study found that the choice of regionalization has an important effect in regions with maritime climate and high variability in elevation change. In these areas the spread in mass balance was in many cases larger than the estimated errors of the individual methods.
J. F. Levinsen, K. Khvorostovsky, F. Ticconi, A. Shepherd, R. Forsberg, L. S. Sørensen, A. Muir, N. Pie, D. Felikson, T. Flament, R. Hurkmans, G. Moholdt, B. Gunter, R. C. Lindenbergh, and M. Kleinherenbrink
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-5433-2013, https://doi.org/10.5194/tcd-7-5433-2013, 2013
Revised manuscript not accepted
V. R. Barletta, L. S. Sørensen, and R. Forsberg
The Cryosphere, 7, 1411–1432, https://doi.org/10.5194/tc-7-1411-2013, https://doi.org/10.5194/tc-7-1411-2013, 2013
Related subject area
Subject area: Core and mantle structure and dynamics | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Benchmark forward gravity schemes: the gravity field of a realistic lithosphere model WINTERC-G
Increased density of large low-velocity provinces recovered by seismologically constrained gravity inversion
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022, https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
Short summary
Several alternative gravity modelling techniques and associated numerical codes with their own advantages and limitations are available for the solid Earth community. With upcoming state-of-the-art lithosphere density models and accurate global gravity field data sets, it is vital to understand the differences of the various approaches. In this paper, we discuss the four widely used techniques: spherical harmonics, tesseroid integration, triangle integration, and hexahedral integration.
Wolfgang Szwillus, Jörg Ebbing, and Bernhard Steinberger
Solid Earth, 11, 1551–1569, https://doi.org/10.5194/se-11-1551-2020, https://doi.org/10.5194/se-11-1551-2020, 2020
Short summary
Short summary
At the bottom of the mantle (2850 km depth) two large volumes of reduced seismic velocity exist underneath Africa and the Pacific. Their reduced velocity can be explained by an increased temperature or a different chemical composition. We use the gravity field to determine the density distribution inside the Earth's mantle and find that it favors a distinct chemical composition over a purely thermal cause.
Cited articles
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antactica
component of postglacial rebound model ICE-6G_C (VM5a) based on GPS
positioning, exposure age dating of ice thickness and relative sea level
histories, Geophys. J. Int., 198, 537–563,
https://doi.org/10.1093/gji/ggu140, 2014. a, b, c, d
Barletta, V. and Bordoni, A.: Effect of different implementations of the same
ice history in GIA modeling, J. Geodyn., 71, 65–73,
https://doi.org/10.1016/j.jog.2013.07.002, 2013. a
Barnhoorn, A., van der Wal, W., and Drury, M. R.: Upper mantle viscosity and
lithospheric thickness under Iceland, J. Geodyn., 52, 260–270, https://doi.org/10.1016/j.jog.2011.01.002, 2011. a
Bettadpur, S.: Gravity Recovery and Climate Experiment Level-2 Gravity Field
Product User Handbook, UTCSR, Texas, USA, 2012. a
Cammarano, F., Goes, S., Vacher, P., and Giardini, D.: Inferring upper-mantle
temperatures from seismic velocities, Phys. Earth Planet.
Int., 138, 197–222,
https://doi.org/10.1016/S0031-9201(03)00156-0, 2003. a, b
Cheng, M., Tapley, B. D., and Ries, J. C.: Deceleration in the Earth's
oblateness, J. Geophys. Res.-Sol. Ea., 118, 740–747,
https://doi.org/10.1002/jgrb.50058, 2013. a
de Linage, C., Rivera, L., Hinderer, J., Boy, J.-P., Rogister, Y., Lambotte,
S., and Biancale, R.: Separation of coseismic and postseismic gravity changes
for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE
observations and modelling of the coseismic change by normal-modes summation,
Geophys. J. Int., 176, 695–714,
https://doi.org/10.1111/j.1365-246X.2008.04025.x, 2009. a
Denton, G. and Hughes, T.: The Last Great Ice Sheets, Wiley-Interscience, New
York, 1981. a
Dobslaw, H., Flechtner, F., Dahle, C., Dill, R., Esselborn, S., Sasgen, I., and
Thomas, M.: Simulating high-frequency atmosphere-ocean mass variability for
dealiasing of satellite gravity observations : AOD1B RL05, J.
Geophys. Res., 118, 3704–3711, https://doi.org/10.1002/jgrc.20271, 2013. a
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys.e Earth Planet. Int., 25, 297–356,
https://doi.org/10.1016/0031-9201(81)90046-7, 1981. a, b
Flechtner, F., Dobslaw, H., and Fagiolini, E.: AOD1B Product Description
Document for Product Release 05, GFZ German Research Centre for Geosciences, Potsdam, Germany, 2015. a
Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E.,
Raimondo, J.-C., and Güntner, A.: What Can be Expected from the GRACE-FO
Laser Ranging Interferometer for Earth Science Applications?, Surv.
Geophys., 37, 453–470, https://doi.org/10.1007/s10712-015-9338-y, 2016. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Goes, S., Govers, R., and Vacher, P.: Shallow mantle temperatures under Europe
from P and S wave tomography, J. Geophys. Res.-Sol. Ea.,
105, 11153–11169, https://doi.org/10.1029/1999JB900300, 2000. a, b
Grosswald, M. G.: Late Weichselian ice sheet of Northern Eurasia,
Quaternary Res., 13, 1–32, https://doi.org/10.1016/0033-5894(80)90080-0, 1980. a
Grosswald, M. G.: Late-Weichselian ice sheets in Arctic and Pacific Siberia,
Quaternary Int., 45, 3–18, https://doi.org/10.1016/S1040-6182(97)00002-5,
1998. a, b
Grosswald, M. G. and Hughes, T. J.: The Russian component of an Arctic Ice
Sheet during the Last Glacial Maximum, Quaternary Sci. Rev., 21,
121–146, https://doi.org/10.1016/S0277-3791(01)00078-6, 2002. a
Han, S.-C. and Simons, F. J.: Spatiospectral localization of global
geopotential fields from the Gravity Recovery and Climate Experiment
(GRACE) reveals the coseismic gravity change owing to the 2004
Sumatra-Andaman earthquake, J. Geophys. Res.-Sol. Ea.,
113, B01405, https://doi.org/10.1029/2007JB004927, 2008. a
Han, S.-C., Shum, C. K., Jekeli, C., Kuo, C.-Y., Wilson, C., and Seo, K.-W.:
Non-isotropic filtering of GRACE temporal gravity for geophysical signal
enhancement, Geophys. J. Int., 163, 18–25,
https://doi.org/10.1111/j.1365-246X.2005.02756.x, 2005. a
Hirth, G. and Kohlstedt, D.: Rheology of the upper mantle and the mantle wedge: A view from the experimentalists, in: Inside the Subduction Factory, 2004, edited by: Eiler, J., Geophysical Monograph Series, American Geophysical Union
(AGU), Blackwell Publishing Ltd, 83–105, https://doi.org/10.1029/138GM06, 2013. a
Huang, P.: Modelling Glacial Isostatic Adjustment with Composite Rheology,
PhD thesis, The University of Hong Kong, Pokfulam, Hong Kong, 2018. a
Hughes, A. L. C., Gyllencreutz, R., Lohne, O. Y. S., Mangerud, J., and Inge,
J.: The last Eurasian ice sheets – a chronological database and time-slice
reconstruction, DATED-1, Boreas, 45, 1–45, https://doi.org/10.1111/bor.12142, 2016. a, b, c
Kachuck, S. B. and Cathles, L. M.: Constraining the geometry and volume of the
Barents Sea Ice Sheet, J. Quaternary Sci., 33, 527–535,
https://doi.org/10.1002/jqs.3031, 2018. a, b, c, d
Kaufmann, G. and Wu, P.: Lateral asthenospheric viscosity variations and
postglacial rebound: A case study for the Barents Sea, Geophys. Res.
Lett., 25, 1963–1966, https://doi.org/10.1029/98GL51505, 1998. a
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic
velocities in the Earth from traveltimes, Geophys. J. Int.,
122, 108–124, https://doi.org/10.1111/j.1365-246X.1995.tb03540.x, 1995. a
Kusche, J., Schmidt, R., Rietbroek, S., and Petrovic, R.: Decorrelated GRACE
time-variable gravity solutions by GFZ , and their validation using a
hydrological model, J. Geodesy, 83, 903–913,
https://doi.org/10.1007/s00190-009-0308-3, 2009. a
Lambeck, K.: Constraints on the Late Weichselian ice sheet over the
Barents Sea from observations of raised shorelines, Quaternary Sci.
Rev., 14, 1–16, https://doi.org/10.1016/0277-3791(94)00107-M, 1995. a
Lambeck, K., Smither, C., and Johnston, P.: Sea-level change, glacial rebound
and mantle viscosity for northern Europe, Geophys. J. Int.,
134, 102–144, https://doi.org/10.1046/j.1365-246x.1998.00541.x, 1998. a
Le Meur, E. and Huybrechts, P.: A comparisonon if different ways of dealing
with isostasy: Examples from modelling the Antarctic ice sheet during the
last grlacial cycle, Ann. Glaciol., 23, 309–317,
1996. a
Lemoine, J.-M., Bruinsma, S., Loyer, S., Biancale, R., Marty, J.-C., Perosanz,
F., and Balmino, G.: Temporal gravity field models inferred from GRACE
data, Adv. Space Res., 39, 1620–1629,
https://doi.org/10.1016/j.asr.2007.03.062, 2007. a
Levshin, A. L., Schweitzer, J., Weidle, C., Shapiro, N. M., and Ritzwoller,
M. H.: Surface wave tomography of the Barents Sea and surrounding regions,
Geophys. J. Int., 170, 441–459,
https://doi.org/10.1111/j.1365-246X.2006.03285.x, 2007. a
Mangerud, J., Astakhov, V., and Svendsen, J.-I.: The extent of the Barents
Kara ice sheet during the Last Glacial Maximum, Quaternary Sci. Rev.,
21, 111–119, https://doi.org/10.1016/S0277-3791(01)00088-9, 2002. a
Matsuo, K. and Heki, K.: Current Ice Loss in Small Glacier Systems of the
Arctic Islands (Iceland, Svalbard, and the Russian High Arctic) from
Satellite Gravimetry, Terrestial Atmospheric Oceanic Science, 24, 657–670,
https://doi.org/10.3319/TAO.2013.02.22.01(TibXS), 2013. a, b
Mitrovica, J. X. and Peltier, W. R.: On postglacial geoid subsidence over the
equatorial oceans, J. Geophys. Res.-Sol. Ea., 96,
20053–20071, https://doi.org/10.1029/91JB01284, 1991. a
Moholdt, G., Wouters, B., and Gardner, A. S.: Recent mass changes of glaciers
in the Russian High Arctic, Geophys. Res. Let., 39, l10502,
https://doi.org/10.1029/2012GL051466, 2012. a
Oerlemans, J. and van der Veen, C. J.: Bedrock Adjustment,
Springer Netherlands, Dordrecht, 111–123, https://doi.org/10.1007/978-94-009-6325-2_7, 1984. a
Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., and Stroeven, A. P.:
The build-up , configuration , and dynamical sensitivity of the Eurasian
ice-sheet complex to Late Weichselian climatic and oceanic forcing,
Quaternary Sci. Rev., 153, 97–121,
https://doi.org/10.1016/j.quascirev.2016.10.009, 2016. a
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L.,
Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.:
Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev.,
169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017. a, b, c
Paulson, A., Zhong, S., and Wahr, J.: Modelling post-glacial rebound with
lateral viscosity variations, Geophys. J. Int., 163,
357–371, https://doi.org/10.1111/j.1365-246X.2005.02645.x, 2005. a
Paulson, A., Zhong, S., and Wahr, J.: Inference of mantle viscosity from GRACE
and relative sea level data, Geophys. J. Int., 171,
497–508, https://doi.org/10.1111/j.1365-246X.2007.03556.x, 2007. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G-C (VM5a) model, J.
Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176,
2015. a, b, c
Peralta-Ferriz, A.: Arctic Ocean Circulation Patterns Revealed by Ocean Bottom
Pressure Anomalies, PhD thesis, University of Washington, Seattle, Washington, 2012. a
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a
degree-40 shear-velocity model for the mantle from new Rayleigh wave
dispersion, teleseismic traveltime and normal-mode splitting function
measurements, Geophys. J. Int., 184, 1223–1236,
https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011. a, b
Rodell, M., Houser, P., Jambor, U., Gottschalck, K., Meng, C., Aresnault, K.,
Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J., Walker, J., Lohmann,
D., and Toll, D.: The global land data assimilation dystem, Am.
Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Root, B. C., van der Wal, W., Novák, P., Ebbing, J., and Vermeersen, L. L. A.:
Glacial isostatic adjustment in the static gravity field of Fennoscandia,
J. Geophys. Res.-Sol. Ea., 120, 503–518,
2015b. a
Rovira-Navarro, M., van der Wal,
W., Barletta,
V. A., Root, B. C., and Sandberg Sørensen, L.: Data underlying the research on GRACE constraints on Earth rheology of the Barents Sea and Fennoscandia, 4TU.Centre for Research Data, https://doi.org/10.4121/uuid:424126e6-b5d3-4ac9-b5cd-f495c8ad6939, 2019. a
Sakumura, C.: Comparison of Degree 60 and Degree 96 Monthly Solutions. GRACE
Technical note 10, Center for Space Research, the University of Texas, 2014. a
Sasgen, I., Klemann, V., and Martinec, Z.: Towards the inversion of GRACE
gravity fields for present-day ice-mass changes and glacial-isostatic
adjustment in North America and Greenland, J. Geodyn., 59–60, 49–63, https://doi.org/10.1016/j.jog.2012.03.004, 2012. a
Schaeffer, A. J. and Lebedev, S.: Global shear speed structure of the upper
mantle and transition zone, Geophys. J. Int., 194, 417–449,
https://doi.org/10.1093/gji/ggt095, 2013. a, b, c
Schrama, E. J., Wouters, B., and Rietbroek, R.: A mascon approach to assess
ice sheet and glacier mass balances and their uncertainties from GRACE data,
J. Geophys. Res., 119, 6048–6066, https://doi.org/10.1002/2013JB010923,
2014. a, b
Siegert, M. J. and Dowdeswell, J. A.: Numerical Modeling of the Late
Weichselian Svalbard-Barents Sea Ice Sheet, Quaternary Res., 43, 1–13, https://doi.org/10.1006/qres.1995.1001, 1995. a
Siegert, M. J. and Dowdeswell, J. A.: Numerical reconstructions of the
Eurasian Ice Sheet and climate during the Late Weichselian, Quaternary
Sci. Rev., 23, 1273–1283, https://doi.org/10.1016/j.quascirev.2003.12.010, 2004. a, b, c
Simon, K. M., Riva, R. E. M., Kleinherenbrink, M., and Frederikse, T.: The glacial isostatic adjustment signal at present day in northern Europe and the British Isles estimated from geodetic observations and geophysical models, Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, 2018. a, b, c, d, e, f
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R., and Hvidberg, C. S.: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density, The Cryosphere, 5, 173–186, https://doi.org/10.5194/tc-5-173-2011, 2011. a
Steffen, H. and Denker, H.: Glacial isostatic adjustment in Fennoscandia from
GRACE data and comparison with geodynamical models, J. Geodyn.,
46, 155–164, https://doi.org/10.1016/j.jog.2008.03.002, 2008. a, b
Steffen, H. and Kaufmann, G.: Glacial isostatic adjustment of Scandinavia and
northwestern Europe and the radial viscosity structure of the Earth's
mantle, Geophys. J. Int., 163, 801–812,
https://doi.org/10.1111/j.1365-246X.2005.02740.x, 2005. a, b, c
Steffen, H. and Wu, P.: Glacial isostatic adjustment in Fennoscandia – A review
of data and modeling, J. Geodyn., 52, 169–204,
https://doi.org/10.1016/j.jog.2011.03.002, 2011. a
Steffen, H., Wu, P., and Wang, H.: Determination of the Earth's structure in
Fennoscandia from GRACE and implications for the optimal post-processing of
GRACE data, Geophys. J. Int., 182, 1295–1310,
https://doi.org/10.1111/j.1365-246X.2010.04718.x, 2010. a
Steffen, H., Kaufmann, G., and Lampe, R.: Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment, Solid Earth, 5, 447–459, https://doi.org/10.5194/se-5-447-2014, 2014. a, b
Svendsen, J. I., Astakhov, V. I., Bolshiyanov, D. Y. U., Demidov, I.,
Dowdeswell, J. A., Gataullin, V., Hjort, C., Hubberten, H. W., Larsen, E.,
Saarnisto, M., Siegert, M. J., Mangerud, J. A. N., Melles, M., and Mo, P.
E. R.: Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea
region during the Weichselian, Boreas, 28, 234–252,
https://doi.org/10.1111/j.1502-3885.1999.tb00217.x, 1999. a
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in GRACE
data, Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285, 2006. a
Tamisiea, M. E., Mitrovica, J. X., and Davis, J. L.: GRACE Gravity Data
Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia,
Science, 316, 881–883, https://doi.org/10.1126/science.1137157, 2007. a
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W.: A data-calibrated
distribution of deglacial chronologies for the North American ice complex
from glaciological modeling, Earth Planet. Sc. Lett., 315–316, 30–40, https://doi.org/10.1016/j.epsl.2011.09.010, 2012. a, b, c
van der Wal, W. and Ijpelaar, T.: The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations, Solid Earth, 8, 955–968, https://doi.org/10.5194/se-8-955-2017, 2017. a
van der Wal, W., Wu, P., Sideris, M. G., and Shum, C.: Use of GRACE determined
secular gravity rates for glacial isostatic adjustment studies in
North-America, J. Geodyn., 46, 144–154,
https://doi.org/10.1016/j.jog.2008.03.007, 2008. a
van der Wal, W., Kurtenbach, E., Kusche, J., and Vermeersen, B.: Radial and
tangential gravity rates from GRACE in areas of glacial isostatic adjustment,
Geophys. J. Int., 187, 797–812,
https://doi.org/10.1111/j.1365-246X.2011.05206.x, 2011. a, b, c, d
Wahr, J.: 3.08 – Time Variable Gravity from Satellites, in: Treatise on
Geophysics, edited by: Schubert, G., pp. 213–237, Elsevier, Amsterdam,
https://doi.org/10.1016/B978-044452748-6.00176-0, 2007. a
Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity
field: Hydrological and oceanic effects and their possible detection using
GRACE, J. Geophys. Res., 103, 205–229,
https://doi.org/10.1029/98JB02844, 1998. a
Wahr, J., Swenson, S., and Velicogna, I.: Accuracy of GRACE mass estimates,
Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2005GL025305, 2006.
a
Wal, W. V. D., Barnhoorn, A., Stocchi, P., Gradmann, S., Wu, P., Drury, M., and
Vermeersen, B.: Glacial isostatic adjustment model with composite 3-D Earth
rheology for Fennoscandia, Geophys. J. Int., 194, 61–77,
https://doi.org/10.1093/gji/ggt099, 2013. a, b
Wang, L., Shum, C. K., Simons, F. J., Tapley, B., and Dai, C.: Coseismic and
postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by
GRACE gravimetry, Geophys. Res. Lett., 39, L07301,
https://doi.org/10.1029/2012GL051104, 2012. a
Whitehouse, P., Latychev, K., Milne, G. A., Mitrovica, J. X., and Kendall, R.:
Impact of 3-D Earth structure on Fennoscandian glacial isostatic adjustment:
Implications for space-geodetic estimates of present-day crustal
deformations, Geophys. Res. Lett., 33, L13502, https://doi.org/10.1029/2006GL026568, 2006. a
Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A., and Thomas,
I. D.: A new glacial isostatic adjustment model for Antarctica: calibrated
and tested using observations of relative sea-level change and present-day
uplift rates, Geophys. J. Int., 190, 1464–1482,
https://doi.org/10.1111/j.1365-246X.2012.05557.x, 2012. a
Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E. M., Sasgen, I., and
Wahr, J.: GRACE, time-varying gravity, Earth system dynamics and climate
change, Reports on Progress in Physics, 77, 116801,
https://doi.org/10.1088/0034-4885/77/11/116801, 2014. a
Wu, P.: Sensitivity of relative sea levels and crustal velocities in
Laurentide to radial and lateral viscosity variations in the mantle,
Geophys. J. Int., 165, 401–413,
https://doi.org/10.1111/j.1365-246X.2006.02960.x, 2006. a
Yu, Y., Chao, B. F., Garcia-Garcia, D., and Luo, Z.: Variations of the
Argentine Gyre Observed in the GRACE Time-Variable Gravity and Ocean
Altimetry Measurements, J. Geophys. Res.-Oceans, 123,
5375–5387, https://doi.org/10.1029/2018JC014189, 2018. a, b
Short summary
The Barents Sea and Fennoscandia were home to large ice sheets around 20 000 years ago. After the melting of these ice sheets, the land slowly rebounded. The rebound speed is determined by the viscosity of the deep Earth. The rebound is ongoing and causes small changes in the Earth’s gravity field, which can be measured by the GRACE satellite mission. We use these measurements to obtain the viscosity of the upper mantle and find that it is 2 times higher in Fennoscandia than in the Barents Sea.
The Barents Sea and Fennoscandia were home to large ice sheets around 20 000 years ago. After...