Articles | Volume 13, issue 6
https://doi.org/10.5194/se-13-1003-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1003-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing post-Jurassic overburden in central Europe: new insights from mudstone compaction and thermal history analyses of the Franconian Alb, SE Germany
Simon Freitag
CORRESPONDING AUTHOR
GeoZentrum Nordbayern, Friedrich-Alexander University (FAU)
Erlangen–Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Michael Drews
Geothermal Technologies, Technical University of Munich (TUM),
Arcisstraße 21, 80333 Munich, Germany
Wolfgang Bauer
GeoZentrum Nordbayern, Friedrich-Alexander University (FAU)
Erlangen–Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Florian Duschl
Geothermal Technologies, Technical University of Munich (TUM),
Arcisstraße 21, 80333 Munich, Germany
David Misch
Department für Angewandte Geowissenschaften und Geophysik,
Montanuniversität Leoben, Peter-Tunner-Straße 5, 8700 Leoben,
Austria
Harald Stollhofen
GeoZentrum Nordbayern, Friedrich-Alexander University (FAU)
Erlangen–Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
Related authors
No articles found.
Saeed Mahmoodpour, Florian Duschl, and Michael C. Drews
EGUsphere, https://doi.org/10.5194/egusphere-2024-3134, https://doi.org/10.5194/egusphere-2024-3134, 2024
Short summary
Short summary
In some situations where the crust plates collide to each other, they deform by creating folds and thrusts. Based on thrusts development direction, they are categorized into fore- or back-thrusts. We use numerical simulation to investigate their development over geological time-scales. We examine the importance of rock strength, friction, displacement type and geometry on back-thrusting with regard to the final geometry of the deformation, as well as the distribution of porosity and stresses.
Peter Obermeier, Florian Duschl, and Michael C. Drews
EGUsphere, https://doi.org/10.5194/egusphere-2024-2692, https://doi.org/10.5194/egusphere-2024-2692, 2024
Short summary
Short summary
We investigate geophysical properties and the distribution of vertical stress, which is defined by the weight of the rock column above a certain location in the subsurface, in the upper 5 km of the North Alpine Foreland Basin in Germany. Our results help to understand the present-day geological configuration and to improve safety for subsurface use, such as deep geothermal energy production in the study area.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Sanja Vranjes, David Misch, Thomas Schöberl, Daniel Kiener, Doris Gross, and Reinhard F. Sachsenhofer
Adv. Geosci., 45, 73–83, https://doi.org/10.5194/adgeo-45-73-2018, https://doi.org/10.5194/adgeo-45-73-2018, 2018
Short summary
Short summary
Macerals are the constituents of coal and usually have a small size (e.g. micro-scaled). Therefore, we used nanoindentation to determine material parameters like hardness and reduced elastic modulus from macerals in well examined coals from the Ukrainian Donets Basin. Our main goal was to study the relationship of these parameters with increasing rank of coal. The results indicate that multiple factors control the mechanical properties of macerals (e.g. microstructure, depositional environment).
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Mineral and rock physics
Hydromechanical processes and their influence on the stimulation effected volume: observations from a decameter-scale hydraulic stimulation project
Bilinear pressure diffusion and termination of bilinear flow in a vertically fractured well injecting at constant pressure
A multi-phasic approach for estimating the Biot coefficient for Grimsel granite
Stress characterization and temporal evolution of borehole failure at the Rittershoffen geothermal project
Geomechanical modelling of sinkhole development using distinct elements: model verification for a single void space and application to the Dead Sea area
Enhanced pore space analysis by use of μ-CT, MIP, NMR, and SIP
Hannes Krietsch, Valentin S. Gischig, Joseph Doetsch, Keith F. Evans, Linus Villiger, Mohammadreza Jalali, Benoît Valley, Simon Löw, and Florian Amann
Solid Earth, 11, 1699–1729, https://doi.org/10.5194/se-11-1699-2020, https://doi.org/10.5194/se-11-1699-2020, 2020
Patricio-Ignacio Pérez Donoso, Adrián-Enrique Ortiz Rojas, and Ernesto Meneses Rioseco
Solid Earth, 11, 1423–1440, https://doi.org/10.5194/se-11-1423-2020, https://doi.org/10.5194/se-11-1423-2020, 2020
Short summary
Short summary
This work studies intensively the flow in fractures with finite hydraulic conductivity intersected by a well injecting/producing at constant pressure. We demonstrated that during the bilinear flow regime the transient propagation of isobars along the fracture is proportional to the fourth root of time. Moreover, we present relations to calculate the termination time of bilinear flow under constant injection/production well pressure. Our results can be utilized to estimate the fracture length.
Patrick Selvadurai, Paul A. Selvadurai, and Morteza Nejati
Solid Earth, 10, 2001–2014, https://doi.org/10.5194/se-10-2001-2019, https://doi.org/10.5194/se-10-2001-2019, 2019
Short summary
Short summary
The paper presents an alternative technique for estimating the Biot coefficient, which governs the partitioning of stresses between a porous skeleton and the saturating pore fluid of a fluid-saturated rock.
Jérôme Azzola, Benoît Valley, Jean Schmittbuhl, and Albert Genter
Solid Earth, 10, 1155–1180, https://doi.org/10.5194/se-10-1155-2019, https://doi.org/10.5194/se-10-1155-2019, 2019
Short summary
Short summary
In projects based on enhanced geothermal system (EGS) technology, knowledge of the in situ stress state is of central importance to predict the response of the rock mass to different stimulation programs. We propose a characterization of the in situ stress state from the analysis of ultrasonic borehole imager (UBI) data acquired at different key moments of the reservoir. We discuss a significant stress rotation at depth and the absence of a significant change in the stress magnitude.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Zeyu Zhang, Sabine Kruschwitz, Andreas Weller, and Matthias Halisch
Solid Earth, 9, 1225–1238, https://doi.org/10.5194/se-9-1225-2018, https://doi.org/10.5194/se-9-1225-2018, 2018
Short summary
Short summary
We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions. The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space geometry is proposed that is based on a combination of the results from all of these methods.
Cited articles
Aplin, A. C., Matenaar, I. F., McCarty, D. K., and van der Pluijm, B. A.:
Influence of mechanical compaction and clay mineral diagenesis on the
microfabric and pore-scale properties of deep-water Gulf of Mexico
mudstones, Clay. Clay Miner., 54, 500–514, 2006.
Athy, L. F.: Density, Porosity, and Compaction of Sedimentary Rocks, AAPG
Bull., 14, 1–24, 1930.
Bachmann, G. H. and Müller, M.: Sedimentary and structural evolution of
the German Molasse Basin, Eclogae Geol. Helv., 85, 519–530,
https://doi.org/10.5169/SEALS-167019, 1992.
Bachmann, G. H., Müller, M., and Weggen, K.: Evolution of the Molasse
Basin (Germany, Switzerland), Tectonophysics, 137, 77–92, 1987.
Bachmann, G. H., Hiltmann, W., and Lerche, I.: Inkohlung des Unteren Keupers
in Südwestdeutschland, N. Jb. Geol. Paläont. Abh., 226, 271–288,
2002.
Bader, K.: Der Grundgebirgsrücken in Mittelfranken (südlich von
Nürnberg) nach refraktionsseismischen Messungen, Geologisches Jahrbuch,
58, 7–33, 2001.
Baig, I., Faleide, J. I., Mondol, N. H., and Jahren, J.: Burial and
exhumation history controls on shale compaction and thermal maturity along
the Norwegian North Sea basin margin areas, Mar. Petrol. Geol.,
104, 61–85, https://doi.org/10.1016/j.marpetgeo.2019.03.010, 2019.
Baran, R., Friedrich, A. M., and Schlunegger, F.: The late Miocene to
Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab
unloading beneath the western Alps rather than global climate change,
Lithosphere, 6, 124–131, https://doi.org/10.1130/L307.1, 2014.
Bauer, W.: Geothermische Verhältnisse des Fränkischen Beckens,
Julius-Maximilians-Universität, Würzburg, ISSN 09309-3757, 2000.
Bjørlykke, K.: Principal aspects of compaction and fluid flow in
mudstones, in: Muds and mudstones: physical and fluid-flow properties, vol.
158, edited by: Aplin, A. C., Fleet, A. J., and Macquaker, J. H. S.,
Geological Society of London, 73–78, 1999.
Bjørlykke, K.: Petroleum Geoscience, 2nd ed., Springer Berlin Heidelberg,
Oslo, ISBN 978-3-642-34131-1,
https://doi.org/10.1007/978-3-642-34132-8, 2015.
Bohnsack, D., Potten, M., Pfrang, D., Wolpert, P., and Zosseder, K.:
Porosity–permeability relationship derived from Upper Jurassic carbonate
rock cores to assess the regional hydraulic matrix properties of the Malm
reservoir in the South German Molasse Basin, Geoth. Energ., 8, 12,
https://doi.org/10.1186/s40517-020-00166-9, 2020.
Bohnsack, D., Potten, M., Freitag, S., Einsiedl, F., and Zosseder, K.:
Stress sensitivity of porosity and permeability under varying hydrostatic
stress conditions for different carbonate rock types of the geothermal Malm
reservoir in Southern Germany, Geoth. Energ., 9, 15,
https://doi.org/10.1186/s40517-021-00197-w, 2021.
Buness, H.-A. and Bram, K.: Die Muschelkalkoberfläche und die permische
Peneplain in Mittelfranken abgeleitet aus seismischen Messungen,
Geologisches Jahrbuch, [data set], 58, 35–60, 2001.
Čermák, V. and Brodi, L.: A heat production model of the crust and
upper mantle, Tectonophysics, 194, 307–323, 1991.
Commission, G. S.: Stratigraphic Table of Germany 2016, German Research
Centre for Geosciences, Potsdam, ISBN 978-3-9816597-7-1, 2016.
Corcoran, D. v and Doré, A. G.: A review of techniques for the
estimation of magnitude and timing of exhumation in offshore basins,
Earth-Sci. Rev., 72, 129–168,
https://doi.org/10.1016/j.earscirev.2005.05.003, 2005.
De Wall, H., Schaarschmidt, A., Kämmlein, M., Gabriel, G., Bestmann, M.,
and Scharfenberg, L.: Subsurface granites in the Franconian Basin as the
source of enhanced geothermal gradients: a key study from gravity and
thermal modeling of the Bayreuth Granite, Int. J. Earth
Sci., 108, 1913–1936, https://doi.org/10.1007/s00531-019-01740-8, 2019.
Deutsches Institut für Normung: Baugrund und Grundwasser; Benennen und
Beschreiben von Boden und Fels; Schichtenverzeichnis für Bohrungen ohne
durchgehende Gewinnung von gekernten Proben im Boden und im Fels, 1987.
Dewhurst, D. N., Aplin, A. C., Sarda, J.-P., Jean-P., and Yang, Y.:
Compaction-driven evolution of porosity and permeability in natural
mudstones: An experimental study, J. Geophys. Res., 103,
651–661, 1998.
Dill, H.: Heavy mineral response to the progradation of an alluvial fan:
implications concerning unroofing of source area, chemical weathering and
palaeo-relief (Upper Cretaceous Parkstein fan complex, SE Germany),
Sediment. Geol., 95, 39–56, 1995.
Drews, M. C., Bauer, W., Caracciolo, L., and Stollhofen, H.: Disequilibrium
compaction overpressure in shales of the Bavarian Foreland Molasse Basin:
Results and geographical distribution from velocity-based analyses, Mar. Petrol. Geol., 92, 37–50,
https://doi.org/10.1016/j.marpetgeo.2018.02.017, 2018.
Drews, M. C., Hofstetter, P., Zosseder, K., Straubinger, R., Gahr, A., and
Stollhofen, H.: Predictability and controlling factors of overpressure in
the North Alpine Foreland Basin, SE Germany: an interdisciplinary postdrill
analysis of the Geretsried GEN-1 deep geothermal well, Geoth. Energ., 8,
20, https://doi.org/10.1186/s40517-019-0121-z, 2020.
Earth Resources Observation And Science Center: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global [data set], https://doi.org/10.5066/F7PR7TFT, 2017.
Eberle, J., Eitel, B., Blümel, W. D., and Wittmann, P.: Deutschlands
Süden – vom Erdmittelalter zur Gegenwart, Springer Berlin Heidelberg,
Berlin, Heidelberg, 203 pp., https://doi.org/10.1007/978-3-662-54381-8,
2017.
Fawad, M., Mondol, N. H., Jahren, J., and Bjørlykke, K.: Microfabric and
rock properties of experimentally compressed silt-clay mixtures, Mar. Petrol. Geol., 27, 1698–1712, 2010.
Freudenberger, W. and Schwerd, K.: Erläuterungen zur Geologischen Karte
von Bayern 1:500000, 4th ed., Bayerisches Geologisches Landesamt,
München, 1996.
Freudenberger, W., Geyer, G., and Schröder, B.: Der Buntsandstein in
Bayern (nordwestliches Franken, Bruchschollenland und Randfazies im
Untergrund), in: Stratigraphie von Deutschland XI, Buntsandstein, vol. 68,
edited by: Lepper, J. and Röhling, H.-G., Schweizerbart'sche
Verlagsbuchhandlung, Stuttgart, 547–582,
https://doi.org/10.1127/sdgg/69/2014/547, 2013.
Giles, M. R., Indrelid, S. L., and James, D. M. D.: Compaction – the great
unknown in basin modelling, J. Geol. Soc. London, 141, 15–43, https://doi.org/10.1144/GSL.SP.1998.141.01.02,
1998.
Glaser, S., Lagally, U., Schenk, P., Eichhorn, R., Brandt, S., Loth, G., and
Loth, R.: Geotope in Mittelfranken, 2., edited by: Glaser, S., Bayerisches
Geologisches Landesamt, München, 128 pp., 2001.
Goulty, N. R.: Relationships between porosity and effective stress in
shales, First Break, 413–419, 1998.
Gusterhuber, J., Dunkl, I., Hinsch, R., Linzer, H.-G., and Sachsenhofer, R.
F.: Neogene uplift and erosion in the Alpine Foreland Basin (Upper Austria
and Salzburg), Geol. Carpath., 63, 295–305,
https://doi.org/10.2478/v10096-012-0023-5, 2012.
Hedenblad, G.: The use of mercury intrusion porosimetry or helium porosity
to predict the moisture transport properties of hardened cement paste,
Adv. Cem. Based Mater., 6, 123–129,
https://doi.org/10.1016/S1065-7355(97)90019-5, 1997.
Hejl, E., Coyle, D. A., Lal, N., van den Haute, P., and Wagner, G. A.:
Fission-track dating of the western border of the Bohemian massif –
thermochronology and tectonic implications, Geol. Rundsch., 86,
210–219, 1997.
Henk, A.: Mächtigkeit und Alter der erodierten Sedimente im
Saar-Nahe-Becken (SW-Deutschland), Geol. Rundsch., 81, 323–331,
https://doi.org/10.1007/BF01828601, 1992.
Heppard, P. D., Cander, H. S., and Eggertson, E. B.: Abnormal Pressure and
the Occurrence of Hydrocarbons in Offshore Eastern Trinidad, West Indies,
AAPG Memoir., 70, 215–246, 1998.
Hertle, M. and Littke, R.: Coalification pattern and thermal modelling of
the Permo-Carboniferous Saar Basin (SW-Germany), Int. J. Coal Geol., 42, 273–296, 2000.
Hillis, R. R.: Quantification of Tertiary Exhumation in the United Kingdom
Southern North Sea Using Sonic Velocity Data, AAPG Bull., 79, 130–152,
1995.
Homuth, S., Götz, A. E., and Sass, I.: Lithofacies and depth dependency
of thermo- and petrophysical rock parameters of the Upper Jurassic
geothermal carbonate reservoirs of the Molasse Basin, Z. Dtsch. Ges. Geowiss., 165, 469–486,
https://doi.org/10.1127/1860-1804/2014/0074, 2014
Horpibulsuk, S., Rachan, R., Chinkulkijniwat, A., Raksachon, Y., and
Suddeepong, A.: Analysis of strength development in cement-stabilized silty
clay from microstructural considerations, Construct. Build. Mater., 24, 2011–2021,
https://doi.org/10.1016/j.conbuildmat.2010.03.011, 2010.
Hunt, J. M.: Petroleum Geochemistry and Geology, W. H. Freeman and Company, ISBN 0-7167-1005-6,
1979.
Issler, D. R.: A New Approach to Shale Compaction and Stratigraphic
Restoration, Beaufort-Mackenzie Basin and Mackenzie Corridor, Northern
Canada, AAPG Bull., 76, 1170–1189, 1992.
Jin, J., Aigner, T., Luterbacher, H. P., Bachmann, G. H., and Müller,
M.: Sequence stratigraphy and depositional history in the south-eastern
German Molasse Basin, Mar. Petrol. Geol., 12, 929–940, 1995.
Kämmlein, M., Bauer, W., and Stollhofen, H.: The Franconian Basin
thermal anomaly, SE Germany revised: New thermal conductivity and uniformly
corrected temperature data, Z. Dtsch. Ges. Geowiss., 171, 21–44, https://doi.org/10.1127/zdgg/2020/0204,
2020.
Klaver, J., Desbois, G., Urai, J. L., and Littke, R.: BIB-SEM study of the
pore space morphology in early mature Posidonia Shale from the Hils area,
Germany, Int. J. Coal Geol., 103, 12–25,
https://doi.org/10.1016/j.coal.2012.06.012, 2012.
Klaver, J., Hemes, S., Houben, M., Desbois, G., Radi, Z., and Urai, J. L.:
The connectivity of pore space in mudstones: insights from high-pressure
Wood's metal injection, BIB-SEM imaging, and mercury intrusion porosimetry,
Geofluids, 15, 577–591, https://doi.org/10.1111/gfl.12128, 2015.
Koch, R. and Munnecke, A.: Fazielle Entwicklung und Korrelation des Oberjura
in den Bohrungen Bad Waldsee GB2 und Altensteig 1 (Süddeutschland;
Molasse-Becken; Impressamergel- bis hangende Bankkalk-Formation),
Geologische Blätter NO-Bayern, 66, 165–203, 2016.
Kröner, F., Koch, R., and Munnecke, A.: Aufschlussmodelle zur
Fazies-Interpretation des Oberjura im östlichen Molasse-Becken (Workshop
und Exkursion; 7. und 8. August 2017; Erlangen), Geologische Blätter
NO-Bayern, 67, 167–208, 2017.
Krumm, H.: Mineralbestand und Genese fränkischer Keuper- und Lias-Tone,
Beiträge zur Mineralogie und Petrographie, 11, 91–137, 1965.
Krus, M., Hansen, K. K., and Künzel, H. M.: Porosity and liquid
absorption of cement paste, Mater. Struct., 30, 394–398, 1997.
Kuhlemann, J. and Kempf, O.: Post-Eocene evolution of the North Alpine
Foreland Basin and its response to Alpine tectonics, Sediment. Geol.,
152, 45–78, https://doi.org/10.1016/S0037-0738(01)00285-8, 2002.
Le Bayon, R., Brey, G. P., Ernst, W. G., and Mählmann, R. F.:
Experimental kinetic study of organic matter maturation: Time and pressure
effects on vitrinite reflectance at 400 ∘C, Org. Geochem.,
42, 340–355, https://doi.org/10.1016/j.orggeochem.2011.01.011, 2011.
Lindholm, R. C.: A practical approach to sedimentology, Springer Science
& Business Media, ISBN 978-94-011-7685-9,
https://doi.org/10.1007/978-94-011-7683-5, 2012.
Liu, B., Teng, J., Mastalerz, M., and Schieber, J.: Assessing the thermal
maturity of black shales using vitrinite reflectance: Insights from Devonian
black shales in the eastern United States, Int. J. Coal
Geol., 220, 1–10, https://doi.org/10.1016/j.coal.2020.103426, 2020.
Lützner, H. and Kowalczyk, G.: Paläogeographie und Beckengliederung,
Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 61,
58–70, https://doi.org/10.1127/sdgg/61/2012/58, 2012.
Marion, D., Nur, A., Yin, H., and Han, D.: Compressional Velocity and
porosity in Sand-Clay-Mixtures, Geophysics, 57, 554–563, 1992.
Mavromatidis, A. and Hillis, R. R.: Quantification of exhumation in the
Eromanga Basin and its implications for hydrocarbon exploration, Petrol. Geosci., 11, 79–92, 2005.
Menpes, R. J. and Hillis, R. R.: Quantification of Tertiary exhumation from
sonic velocity data, Celtic Sea/South-Western Approaches, J. Geol. Soc. London, 191–207, 1995.
Meyer, R. K. F.: Kreide nördlich der Alpen, in: Erläuterungen zur
Geologischen Karte 1:500 000 Bayern, edited by: Landesamt, B. g.,
Bayerisches Geologisches Landesamt, München, 68–78, 1981.
Meyer, R. K. F.: Die Entwicklung der Pfahl-Störungszone und des
Bodenwöhrer Halbgrabens auf Blatt Wackersdorf, Erlanger geologische
Abhandlungen, 117, 1–24, 1989a.
Meyer, R. K. F.: Die Entwicklung der Kreide-Sedimente im Westteil der
Bodenwöhrer Senke, Erlanger geologische Abhandlungen, 117, 53–90, 1989b.
Meyer, R. K. F.: Kreide, in: Erläuterungen zur Geologischen Karte 1:500 000 Bayern, edited by: Landesamt, B. g., Bayerisches Geologisches Landesamt,
München, 112–128, 1996.
Meyer, R. K. F. and Schmidt-Kaler, H.: Paläogeographie und
Schwammriffentwicklung des süddeutschen Malm – ein Überblick,
Facies, 23, 175–184, https://doi.org/10.1007/BF02536712, 1990.
Meyer, R. K. F. and Schmidt-Kaler, H.: Jura, in: Erläuterungen zur
Geologischen Karte 1:500 000 Bayern, edited by: Landesamt, B. g.,
Bayerisches Geologisches Landesamt, München, 90–112, 1996.
Mondol, N. H., Bjørlykke, K., Jahren, J., and Høeg, K.: Experimental
mechanical compaction of clay mineral aggregates – Changes in physical
properties of mudstones during burial, Mar. Petrol. Geol., 24,
289–311, https://doi.org/10.1016/j.marpetgeo.2007.03.006, 2007.
Mondol, N. H., Bjørlykke, K., and Jahren, J.: Experimental compaction of
clays: relationship between permeability and petrophysical properties in
mudstones, Petrol. Geosci., 14, 319–337,
https://doi.org/10.1144/1354-079308-773, 2008.
Mraz, E., Moeck, I., Bissmann, S., and Hild, S.: Multiphase fossil normal
faults as geothermal exploration targets in the Western Bavarian Molasse
Basin: Case study Mauerstetten, Z. Dtsch. Ges. Geowiss., 169, 389–411,
https://doi.org/10.1127/zdgg/2018/0166, 2018.
Nachtmann, W. and Wagner, L.: Mesozoic and Early Tertiary evolution of the
Alpine foreland in upper Austria and Salzburg, Austria, Tectonophysics, 137,
61–76, https://doi.org/10.1016/0040-1951(87)90314-3, 1987.
Niebuhr, B., Pürner, T., and Wilmsen, M.: Lithostratigraphie der
außeralpinen Kreide Bayerns, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften (SDGG), 65, 7–58, 2009.
Niebuhr, B., Wilmsen, M., Chellouche, P., Richardt, N., and Pürner,
T.:Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding
Formation at the southwestern margin of the Bohemian Massif (Southern
Germany, Bavaria), Z. Dtsch. Ges. Geowiss., 162, 295–316,
https://doi.org/10.1127/1860-1804/2011/0162-0295, 2011.
Niebuhr, B., Richardt, N., and Wilmsen, M.: Facies and integrated
stratigraphy of the Upper Turonian (Upper Cretaceous) Großberg Formation
south of Regensburg (Bavaria, southern Germany), Acta Geol. Pol.,
62, 595–615, https://doi.org/10.2478/v10263-012-0032-9, 2012.
Nöth, S., Karg, H., and Littke, R.: Reconstruction of Late Paleozoic
heat flows and burial histories at the Rhenohercynian-Subvariscan boundary,
Germany, Int. J. Earth Sci., 90, 234–256,
https://doi.org/10.1007/s005310000114, 2001.
Peterek, A. and Schröder, B.: Geomorphologic evolution of the cuesta
landscapes around the Northern Franconian Alb – review and synthesis,
Z. Geomorphol., 54, 305–345,
https://doi.org/10.1127/0372-8854/2010/0054-0037, 2010.
Peterek, A., Rauche, H., and Schröder, B.: Die strukturelle Entwicklung
des E-Randes der Süddeutschen Scholle in der Kreide, Z.
Geol. Wissenschaft., 24, 65–77, 1996.
Peterek, A., Rauche, H., Schröder, B., Franzke, H.-J., Bankwitz, P., and
Bankwitz, E.: The late- and post-Variscan tectonic evolution of the Western
Border fault zone of the Bohemian massif, Geol. Rundsch., 86,
191–202, 1997.
Pharaoh, T. C., Dusar, M., Geluk, M. C., Kockel, F., Krawczyk, C. M.,
Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbæk, O. v, and van
Wees, J. D.: Tectonic evolution, in: Petroleum geological atlas of the
Southern Permian Basin Area, edited by: Doornenbal, H. and Stevenson, A.,
TNO Geological Survey of the Netherlands, Utrecht; Houten the Netherlands,
25–57, 2010.
Piénkowski, G., Schudack, M. E., Bosák, P., Enay, R.,
Feldman-Olszewska, A., Golonka, J., Gutowski, J., Herngreen, G. F. W.,
Jordan, P., Krobicki, M., Lathuiliere, B., Leinfelder, R. R., Michalík,
J., Mönnig, E., Noe-Nygaard, N., Pálfy, J., Pint, A., Rasser, M. W.,
Reisdorf, A. G., Schmid, D. U., Schweigert, G., Surlyk, F., Wetzel, A., and
Wong, T. E.: Jurassic, in: The Geology of Central Europe, Mesozoic
and Cenozoic, Vol. 2, edited by: McCann, T., Geol. Soc. Lond., 823–922, 2008.
Potter, P. E., Maynard, J. B., and Pryor, W. A.: Sedimentology of Shale, 1 Edn., Springer-Verlag New York Inc., 326 pp., 1980.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: Assessment of the
isostatic state and the load distribution of the European Molasse basin by
means of lithospheric-scale 3D structural and 3D gravity modelling,
Int. J. Earth Sci., 104, 1405–1424,
https://doi.org/10.1007/s00531-014-1132-4, 2015.
Raiga-Clemenceau, J., Martin, J. P., and Nicoletis, S.: The concept of
acoustic formation factor for more accurate porosity determination from
sonic transit time data, SPWLA 27th Annual Logging Symposium, 1986.
Reicherter, K., Froitzheim, N., Jarosiński, M., Badura, J., Franzke,
H.-J., Hansen, M., Hübscher, C., müller, R., Poprawa, P., Reinecker,
J., Stackebrandt, W., Voigt, T., von Eynatten, H., and Zuchiewicz, W.:
Alpine tectonics north of the Alps, in: The Geology of Central Europe,
Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., Geol. Soc. Lond., 1233–1286, 2008.
Rubey, W. W. and Hubbert, M. K.: Role of fluid pressure in mechanics of
overthrust faulting: II. Overthrust belt in geosynclinal area of western
Wyoming in light of fluid-pressure hypothesis, Geol. Soc. Am. Bull., 70, 167–206, 1959.
Sachsenhofer, R. F.: Syn- and post-collisional heat flow in the Cenozoic
Eastern Alps, Int. J. Earth Sci., 90, 579–592,
https://doi.org/10.1007/s005310000179, 2001.
Scheck-Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y., and
Froitzheim, N.: Permian to Cretaceous
tectonics, in: The Geology of Central Europe, Volume 2: Mesozoic and
Cenozoic, edited by: McCann, T., Geol. Soc. Lond., 2,
999–1030, 2008.
Schirmer, W.: Wortgeschichte “Kallmünzer” als Gestein, Geologische
Blätter NO-Bayern, 65, 221–244, 2015.
Schröder, B.: Zur Morphogenese im Ostteil der Süddeutschen Scholle,
Geol. Rundsch., 58, 10–32, 1968.
Schröder, B.: Fränkische Schweiz und Vorland, Sammlung Geologischer
Führer, 86,
ISBN 3443150047, 1970.
Schröder, B.: Inversion tectonics along the western margin of the
Bohemian Massif, Tectonophysics, 137, 93–100, 1987.
Schröder, B., Ahrendt, H., Peterek, A., and Wemmer, K.: Post-Variscan
sedimentary record of the SW margin of the Bohemian massif: a review,
Geol. Rundsch., 86, 178–184, https://doi.org/10.1007/s005310050129,
1997.
Scott, D. and Thomsen, L. A.: Society of Petroleum Engineers SPE 25674 A
Global Algorithm for Pore Pressure Prediction, the SPE Middle East Oil
Technical Conference & Exhibition held in Bahrain, 3–6, 1993.
Steiner, U., Savvatis, A., Böhm, F., and Schubert, A.:
Explorationsstrategie tiefer geothermischer Ressourcen am Beispiel des
süddeutschen Oberjuras (Malm), in: Handbuch Tiefe Geothermie, edited by:
Bauer, M., Freeden, W., Jacobi, H., and Neu, T., Springer Berlin Heidelberg,
Berlin, Heidelberg, 429–462, 2014.
Suggate, R. P.: Relations between depth of burial, vitrinite reflectance and
geothermal gradient, J. Petrol. Geol., 21, 5–32, 1998.
Sweeney, J. J. and Burnham, A. K.: Evaluation of a simple model of vitrinite
reflectance based on chemical kinetics, Am. Assoc. Petrol. Geol. Bull., 74, 1559–1570, 1990.
Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke,
R., and Robert, P.: Organic petrology, Borntraeger, Berlin, Stuttgart, ISBN 978-3-443-01036-2, 1998.
Valečka, J., Skoček, V.: Late Cretaceous lithoevents in the Bohemian
Cretaceous Basin, Czechoslovakia, Cretaceous Res., 12, 561–577, 1991.
Vamvaka, A., Siebel, W., Chen, F., and Rohrmüller, J.: Apatite fission-track
dating and low-temperature history of the Bavarian Forest (southern Bohemian
Massif), Int. J. Earth Sci., 103, 103–119,
https://doi.org/10.1007/s00531-013-0945-x, 2014.
Vasseur, G., Djéran-Maigre, I., Grunberger, D., Rousset, G., Tessier,
D., and Velde, B.: Evolution of structural and physical parameters of clays
during experimental compaction, Mar. Petrol. Geol., 12, 941–954,
1995.
Voigt, S., Aurag, A., Leis, F., and Kaplan, U.: Late Cenomanian to Middle
Turonian high-resolution carbon isotope stratigraphy: New data from the
Münsterland Cretaceous Basin, Germany, Earth Planet. Sci. Lett., 253, 196–210, https://doi.org/10.1016/j.epsl.2006.10.026, 2007.
Voigt, S., Wagreich, M., Surlyk, F., Walaszczyk, I., Uličný, D.,
Čech, S., Voigt, T., Wiese, F., Wilmsen, M., Niebuhr, B., Reich, M.,
Funk, H., Michalík, J., Jagt, J. W. M., Felder, P. J., and Schulp, A.
S.: Cretaceous, in: The Geology of Central Europe, Volume 2: Mesozoic and
Cenozoic, edited by: McCann, T., Geol. Soc. Lond., 2,
923–998, 2008.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., and Simon, A.: Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift, Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, 2021.
Von Freyberg, B.: Tektonische Karte der Fränkischen Alb und ihrer
Umgebung, Erlanger Geol. Abh., 77, 1969.
Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A.,
Schröder, B., Stöckhert, B., Wemmer, K., Zulauf, G., Ahrendt, H.,
Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Lal, N., van den Haute, P.,
Vercoutere C., and Welzel, B.: Post-Variscan thermal and tectonic evolution
of the KTB site and its surroundings, J. Geophys. Res., 102,
18221–18232, 1997.
Welz, H.: Sedimentologische, petrographische und geophysikalische
Untersuchungen im Lias epsilon (Posidonienschiefer) der Nördlichen
Frankenalb sowie eine wirtschaftsgeologische Bewertung eines
ausgewählten Vorkommens, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, [data set], 1994.
Yang, Y. and Aplin, A. C.: A method for the disaggregation of mudstones,
Sedimentology, 44, 559–562, 1997.
Yang, Y. and Aplin, A. C.: Definition and practical application of mudstone
porosity-effective stress relationship, Petrol. Geosci., 10, 153–162,
2004.
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tectonophysics,
137, 389–420, 1987.
Zulauf, G.: Brittle deformation events at the western border of the Bohemian
Massif (Germany), Geol. Rundsch., 82, 489–504,
https://doi.org/10.1007/BF00212412, 1993.
Zweigel, J., Aigner, T., and Luterbacher, H. P.: Eustatic versus tectonic
controls on Alpine foreland basin fill: sequence stratigraphy and subsidence
analysis in the SE German Molasse, Geol. Soc. Lond., 134, 299–323, 1998.
Short summary
The carbonates of the Malm are the main reservoir rocks for hydrothermal heat and power generation in southern Germany. To better understand these buried rocks, the carbonates exposed in northern Bavaria are often investigated. As the petrophysical properties of carbonates strongly depend on their subsidence history and maximum burial depth, we will investigate this issue by analyzing mudstones, which indirectly store this type of information and are found just below the Malm carbonates.
The carbonates of the Malm are the main reservoir rocks for hydrothermal heat and power...