Articles | Volume 13, issue 8
https://doi.org/10.5194/se-13-1353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1353-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The timing of the Svalbardian Orogeny in Svalbard: a review
Jean-Baptiste P. Koehl
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, NO-0316 Oslo, Norway
John E. A. Marshall
School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, SO143ZH Southampton, UK
Gilda Lopes
CIMA – Centre for Marine and Environmental Research, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
School of Biosciences, University of Sheffield, Western Bank, S102TN Sheffield, UK
Related authors
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl
Solid Earth Discuss., https://doi.org/10.5194/se-2019-200, https://doi.org/10.5194/se-2019-200, 2020
Revised manuscript not accepted
Short summary
Short summary
Svalbard is thought to have been involved into a contractional event ca. 360 Ma, the Ellesmerian Orogeny. New field data and interpretation of seismic data instead suggest that Svalbard was affected by an episode of continuous extension in the Devonian–Carboniferous (ca. 420–300 Ma) with exhumation of basement ridges, followed by an episode of contraction in the early Cenozoic (ca. 65–45 Ma), the Eurekan tectonic event, and that the Ellesmerian Orogeny did not affect Svalbard.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl and Jhon M. Muñoz-Barrera
Solid Earth, 9, 1535–1558, https://doi.org/10.5194/se-9-1535-2018, https://doi.org/10.5194/se-9-1535-2018, 2018
Short summary
Short summary
This research is dedicated to the study of poorly understood coal-bearing Mississippian (ca. 360–325 Ma) sedimentary rocks in central Spitsbergen. Our results suggest that these rocks were deposited during a period of widespread extension involving multiple fault trends, including faults striking subparallel to the extension direction, while overlying Pennsylvanian rocks (ca. 325–300 Ma) were deposited during extension localized along fewer, larger faults.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Klaus Wemmer
Solid Earth, 9, 923–951, https://doi.org/10.5194/se-9-923-2018, https://doi.org/10.5194/se-9-923-2018, 2018
Short summary
Short summary
We dated the formation of large faults in order to constrain the tectonic and exhumation history of the Barents Sea and northern Norway. Some of the dated faults formed apprx. 1 Ga and are much older than expected. However, most dated faults were active during two periods of extension: 375–325 and 315–265 Ma. The study of minerals along these cracks shows that exposed rocks in Finnmark were exhumed from deep (> 10 km) to shallow depth (< 3.5 km) during the two periods of extension.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Steffen G. Bergh, Tormod Henningsen, and Jan Inge Faleide
Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, https://doi.org/10.5194/se-9-341-2018, 2018
Short summary
Short summary
The goal of this work is to study large cracks in the Earth's crust called faults near the coast of northern Norway in the SW Barents Sea. We interpreted seismic data (equivalent to X-ray diagram of the Earth) that showed the presence of a large fault near the coast of Norway, which contributed to building the mountain chain observed in Norway and later helped open the North Atlantic Ocean, separating Greenland from Norway.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl
Solid Earth Discuss., https://doi.org/10.5194/se-2019-200, https://doi.org/10.5194/se-2019-200, 2020
Revised manuscript not accepted
Short summary
Short summary
Svalbard is thought to have been involved into a contractional event ca. 360 Ma, the Ellesmerian Orogeny. New field data and interpretation of seismic data instead suggest that Svalbard was affected by an episode of continuous extension in the Devonian–Carboniferous (ca. 420–300 Ma) with exhumation of basement ridges, followed by an episode of contraction in the early Cenozoic (ca. 65–45 Ma), the Eurekan tectonic event, and that the Ellesmerian Orogeny did not affect Svalbard.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl and Jhon M. Muñoz-Barrera
Solid Earth, 9, 1535–1558, https://doi.org/10.5194/se-9-1535-2018, https://doi.org/10.5194/se-9-1535-2018, 2018
Short summary
Short summary
This research is dedicated to the study of poorly understood coal-bearing Mississippian (ca. 360–325 Ma) sedimentary rocks in central Spitsbergen. Our results suggest that these rocks were deposited during a period of widespread extension involving multiple fault trends, including faults striking subparallel to the extension direction, while overlying Pennsylvanian rocks (ca. 325–300 Ma) were deposited during extension localized along fewer, larger faults.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Klaus Wemmer
Solid Earth, 9, 923–951, https://doi.org/10.5194/se-9-923-2018, https://doi.org/10.5194/se-9-923-2018, 2018
Short summary
Short summary
We dated the formation of large faults in order to constrain the tectonic and exhumation history of the Barents Sea and northern Norway. Some of the dated faults formed apprx. 1 Ga and are much older than expected. However, most dated faults were active during two periods of extension: 375–325 and 315–265 Ma. The study of minerals along these cracks shows that exposed rocks in Finnmark were exhumed from deep (> 10 km) to shallow depth (< 3.5 km) during the two periods of extension.
This article is included in the Encyclopedia of Geosciences
Jean-Baptiste P. Koehl, Steffen G. Bergh, Tormod Henningsen, and Jan Inge Faleide
Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, https://doi.org/10.5194/se-9-341-2018, 2018
Short summary
Short summary
The goal of this work is to study large cracks in the Earth's crust called faults near the coast of northern Norway in the SW Barents Sea. We interpreted seismic data (equivalent to X-ray diagram of the Earth) that showed the presence of a large fault near the coast of Norway, which contributed to building the mountain chain observed in Norway and later helped open the North Atlantic Ocean, separating Greenland from Norway.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aakvik, R.: Fasies analyse av Undre Karbonske kullførende sedimenter,
Billefjorden, Spitsbergen, PhD Thesis, University of Bergen, Bergen,
Norway, 219 p., 1981.
Allen, K. C.: Lower and Middle Devonian spores of north and central
Vestspitsbergen, Palaeontology, 8, 678–748, 1965.
Allen, K. C.: Further information on the Lower and Middle Devonian spores
from Dickson Land, Spitsbergen, Norsk Polarinstitutt Årbok 1971, 7–15, https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/172763/Aarbok_1971.pdf?sequence=1&isAllowed=y (last access: 25 August 2022), 1973.
Andresen, A., Bergh, S. G., Hansen, H., Kløvjan, O., Kristensen, S. E.,
Livbjerg, F., Lund, T., Mair, B. F., Midbøe, P. and Nøttvedt, A.:
Geometry and structural development of the Billefjorden and Lomfjorden Fault
Zones in the Isfjorden-Sabine Land Area, Spitsbergen, Abstract 18, Nordiske
Geologiske Vintermøde, København, 33–34, 1988.
Andresen, A., Haremo, P., Swensson, E. and Bergh, S. G.: Structural geology
around the southern termination of the Lomfjorden Fault Complex,
Agardhdalen, east Spitsbergen, Norsk Geol. Tidsskr., 72, 83–91, 1992.
Andresen, A., Bergh, S. G. and Haremo., P.: Basin inversion and thin-skinned
deformation associated with the Tertiary transpressional west Spitsbergen
Orogen, in: Proceedings of the International Conference on Arctic Margins,
edited by: Thurston, D. K. and Fujita, K., Anchorage, Alaska, USA, September
1992, 161–166, https://www.boem.gov/sites/default/files/about-boem/BOEM-Regions/Alaska-Region/ICAM/1994-ICAM/ICAM92-161.pdf (last access: 25 August 2022), 1994.
Augland, L. E., Andresen, A. and Corfu, F.: Age, structural setting, and
exhumation of the Liverpool Land eclogite terrane, East Greenland
Caledonides, Lithosphere, 2, 267–286, 2010.
Augland, L. E., Andresen, A. and Corfu, F.: Terrane transfer during the
Caledonian orogeny: Baltican affinities of the Liverpool Land Eclogite
Terrane in East Greenland, Geol. Soc. London, 168, 15–26, 2011.
Barnes, C. J., Walczak, K., Janots, E., Schneider, D. and Majka, J.: Timing
of Paleozoic Exhumation and Deformation of the High-Pressure
Vestgötabreen Complex at the Motalafjella Nunatak, Svalbard, Minerals,
10, 125, https://doi.org/10.3390/min10020125, 2020.
Bergh, S. G. and Andresen, A.: Structural development of the Tertiary
fold-and-thrust belt in east Oscar II Land, Spitsbergen, Polar Res., 8,
217–236, 1990.
Bergh, S. G. and Grogan, P.: Tertiary structure of the Sørkapp–Hornsund
Region, South Spitsbergen, and implications for the offshore southern
continuation of the fold-thrust Belt, Norsk Geol. Tidsskr., 83, 43–60,
2003.
Bergh S. G., Braathen, A., and Andresen, A.: Interaction of Basement-Involved
and Thin-Skinned Tectonism in the Tertiary Fold-Thrust Belt of Central
Spitsbergen, Svalbard, AAPG Bulletin, 81, 637–661, 1997.
Bergh, S. G., Maher Jr., H. D., and Braathen, A.: Tertiary divergent thrust
directions from partitioned transpression, Brøggerhalvøya,
Spitsbergen, Norsk Geol. Tidsskr., 80, 63–82, 2000.
Bergh, S. G., Maher Jr., H. D. and Braathen, A.: Late Devonian
transpressional tectonics in Spitsbergen, Svalbard, and implications for
basement uplift of the Sørkapp–Hornsund High, J. Geol. Soc. London, 168,
441–456, 2011.
Berry, C. M. and Marshall, J. E. A.: Lycopsid forests in the early Late
Devonian paleoequatorial zone of Svalbard, Geology, 43, 1043–1046, 2015.
Birkenmajer, K.: Devonian, Carboniferous and Permian formations of Hornsund,
Vestspitsbergen, Studia Geologica Polonica, 11, 47–123, 1964.
Birkenmajer, K. and Morawski, T.: Dolerite intrusions of Wedel-Jarlsberg
Land Vestspitsbergen, Stud. Geol. Polon., 4, 103–123, 1960.
Birkenmayer, K. and Turnau, E.: Lower Carboniferous age of the so-called
Wijde Bay Series in Hornsund, Vestspitsbergen, Nor. Polarinst. Årb.,
1961, 41–61, 1962.
Braathen, A., Bælum, K., Maher Jr., H. D. and Buckley, S. J.: Growth of
extensional faults and folds during deposition of an evaporite-dominated
half-graben basin; the Carboniferous Billefjorden Trough, Svalbard, Norsk
Geol. Tidsskr., 91, 137–160, 2011.
Braathen, A., Osmundsen, P. T., Maher Jr., H. D. and Ganerød, M.: The
Keisarhjelmen detachment records Silurian–Devonian extensional collapse in
Northern Svalbard, Terra Nova, 30, 34–39, 2018.
Braathen, A., Ganerød, M., Maher Jr., H., Myhre, P. I., Osmundsen, P. T.,
Redfield, T. and Serck, C.: Devonian extensional tectonicsin Svalbard;
Raudfjorden's synclinal basin above the Keisarhjelmen detachment, 34th
Nordic Geological Winter Meeting, 8–10 January 2020, Oslo,
Norway, https://www.geologi.no/konferanser/foredrag-abstracts/file/206-abstract-ngwm20 (last access: 25 August 2022), 2020.
Brinkmann, L.: Geologie des östlichen zentralen Dickson Landes und
Palynologie der Mimerdalen Formation (Devon), Spitzbergen. (Geology of
eastern–central Dickson Land and palynology of the Mimerdalen Formation
[Devonian], Spitsbergen.), unpublished Master's Thesis, University of
Münster, Münster, Germany, 94 p., 1997.
Buggisch, W., Piepjohn, K., Thiedig, F. and von Gosen, W.: A Middle
Carboniferous Conodont Fauna from Blomstrandhalvøya (NW-Spitsbergen):
Implications on the Age of Post-Devonian Karstification and the Svalbardian
Deformation, Polarforschung, 62, 83–90, 1994.
Chalmers, J. A. and Pulvertaft, T. C. R.: Development of the continental
margins of the Labrador Sea: a review, in: Non-Volcanic Rifting of
Continental Margins: A Comparison of Evidence from Land and Sea, edited by:
Wilson, R. C. L., Taylor, R. B. and Froitzheim, N., Geol. Soc. London, Spec.
Publi., 187, 77–105, 2001.
Chauvet, A. and Séranne, M.: Extension-parallel folding in he
Scandinavian Caledonides: implications for late-orogenic processes,
Tectonophys., 238, 31–54, 1994.
Chorowicz, J.: Gravity-induced detachment of Devonian basin sediments in
northern Svalbard, Norsk Geol. Tidsskr., 72, 21–25 1992.
Clayton, G.: Mississippian miospores, in: Palynology: principles and
applications, edited by: Jansonius, J. and McGregor, D.C., AASP Foundation,Salt Lake City, Utah, USA, 2, 589–596, http://www.worldcat.org/title/889720416 (last access: 25 August 2022), 1996.
Clayton, G., Coquel, R., Doubinger, J., Gueinn, K. J., Loboziak, S., Owens,
B. and Streel, M.: Carboniferous Miospores of Western Europe: illustration
and zonation, Meded. Rijks Geol. Dienst, 29, 1–71, 1977.
Cutbill, J. L. and Challinor, A.: Revision of the Stratigraphical Scheme for
the Carboniferous and Permian of Spitsbergen and Bjørnøya, Geol. Mag.,
102, 418–439, 1965.
Cutbill, J. L., Henderson, W. G., and Wright, N. J. R.: The Billefjorden
Group (Early Carboniferous) of central Spitsbergen, Norsk Polarinst. Skr.,
164, 57–89, 1976.
Dallmann, W. K.: The structure of the Berzeliustinden area: evidence for
thrust wedge tectonics in the Tertiary fold-and-thrust belt of Spitsbergen,
Polar Res., 6, 141–154, 1988.
Dallmann, W. K.: Multiphase tectonic evolution of the Sørkapp–Hornsund
mobile zone (Devonian, Carboniferous, Tertiary), Svalbard, Norsk Geol.
Tidsskr., 72, 49–66, 1992.
Dallmann, W. K. and Piepjohn, K.: The structure of the Old Red Sandstone and
the Svalbardian Orogenic Event (Ellesmerian Orogeny) in Svalbard, Norg.
Geol. Unders. B., 15, 106 p., https://www.ngu.no/publikasjon/special-publication-152020 (last access: 25 August 2022), 2020.
Dallmann, W. K., Ohta, Y. and Andresen, A.: Tertiary Tectonics of Svalbard,
Norsk Polarinstitutt Rapportserie, 46, 112 p., https://brage.npolar.no/npolar-xmlui/handle/11250/173348 (last access: 25 August 2022), 1988.
Dallmann, W. K., Andresen, A., Bergh, S. G., Maher Jr., H. D. and Ohta, Y.:
Tertiary fold-and-thrust belt of Spitsbergen Svalbard, Norsk Polarinstitutt
Meddelelser, 128, 51 p., https://brage.npolar.no/npolar-xmlui/handle/11250/2396840 (last access: 25 August 2022), 1993.
Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen,
E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S.,
Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pcelina,
T. M., Steel, R. J. and Worsley, D.: Lithostratigraphic Lexicon of Svalbard,
edited by: Dallmann, W. K., Norwegian Polar Institute, Polar Environmental
Centre, Tromsø, Norway, http://mmtk.ginras.ru/pdf/Dallmann%20et%20al.,1999_Svalbard.pdf and https://timescalefoundation.org/resources/NW_Europe_Lex/litho/svalbard/index.htm (last access: 25 August 2022), 1999.
Dallmeyer, R. D., Peucat, J. J., Hirajima, T. and Ohta, Y.: Tectonothermal
chronology within a blueschist–eclogite complex, west-central Spitsbergen,
Svalbard: Evidence from 40Ar/39Ar and Rb–Sr mineral ages, Lithos,
24, 291–304, 1990.
Eide, J. R., Ree, R. and Rockman, P. O.: Final well report – 7816/12-1 July
1991, Norsk Hydro A. S., Harstad, Norway, available upon request to Equinor and Store Norske Spitsbergen Kulkompani (SNSK), 1991.
Embry, A. F.: Middle-Upper Devonian Clastic Wedge of the Arctic islands, in:
Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland,
edited by: Trettin, H. P., Geological Survey of Canada, Geology of Canda, Geological Society of America, The Geology of North America, 3, https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=133959 (last access: 25 August 2022), 1991.
Embry, A. F. and Klovan, J. E.: The Middle-Upper Devonian Clastic Wedge of
the Franklinian Geosyncline, Bull. Can. Petrol. Geol., 24, 485–639, 1976.
Evdokimov, A. N., Burnaeva, M. Yu., Radina, E. S. and Sirotkin, A. N.: The
First Find of Kimberlitic Accessory Minerals in Mafic–Ultramafic Dikes in
Spitsbergen, Doklady Earth Sciences, 407, 275–279, 2006.
Faehnrich, K., Schneider, D., Manecki, M., Czerny, J., Myhre, P. I., Majka,
J., Kośmińska, K., Barnes, C. and Maraszewska, M.: Eurekan
deformation on Prins Karls Forland, Svalbard – new insights from
Ar40/Ar39 muscovite dating, Geophys. Res. Abstracts, 19, EGU
General Assembly 23–28 April 2017, Vienna, Austria, https://meetingorganizer.copernicus.org/EGU2017/EGU2017-642.pdf (last access: 25 August 2022), 2017.
Faehnrich, K., Majka, J., Schneider, D., Mazur, S., Manecki, M., Ziemniak,
G., Wala, V. T. and Strauss, J. V.: Geochronological constraints on
Caledonian strike-slip displacement in Svalbard, with implications for the
evolution of the Arctic, Terra Nova, 32, 290–299, 2020.
Fossen, H., Teyssier, C. and Whitney, D. L.: Transtensional folding, J. Struct. Geol., 56, 89–102, 2013.
Friend, P. F. and Moody-Stuart, M.: Sedimentation of the Wood Bay Formation
(Devonian) of Spitsbergen: Regional analysis of a late orogenic basin, Norsk
Polarinst. Skr., 157, 80 p., https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/173898/Skrifter157.pdf?sequence=1&isAllowed=y (last access: 25 August 2022), 1972.
Friend, P. F., Heintz, N. and Moody-Stuart, M.: New unit terms for the
Devonian of Spitsbergen and a new stratigraphical scheme for the Wood Bay
Formation, Polarinst. Årbok, 1965, 59–64, 1966.
Friend, P. F., Harland, W. B., Rogers, D. A., Snape, I., and Thornley, R. S.:
Late Silurian and Early Devonian stratigraphy and probable strike-slip
tectonics in northwestern Spitsbergen, Geol. Mag., 134, 459–479, 1997.
Gasser, D. and Andresen, A.: Caledonian terrane amalgamation of Svalbard:
detrital zircon provenance of Mesoproterozoic to Carboniferous strata from
Oscar II Land, western Spitsbergen, Geol. Mag., 150, 1103–1126, 2013.
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R.,
Wallis, R. H. and Winsnes, T. S.: Radiometric age determinations on rocks
from Spitsbergen, Norsk Polarinstitutt Skrifter, 137, 43 p., https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/173922/Skrifter137.pdf?sequence=1&isAllowed=y (last access: 25 August 2022), 1966.
Gee, D. G. and Moody-Stuart, M.: The base of the Old Red Sandstone in
central north Haakon VII Land, Vestspitsbergen, Polarinst. Årbok, 1964,
57–68, 1966.
Gee, D. G. and Page, L. M.: Caledonian terrane assembly on Svalbard: New
evidence from 40Ar/39Ar dating in Ny Friesland, Am. J. Sci., 294, 1166–1186, 1994.
Gilotti, J. A., Nutman, A. P., and Brueckner, H. K.: Devonian to
Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd
ages of high-pressure and ultrahigh-pressure metamorphism, Contrib. Mineral
Petrol., 148, 216–235, 2004.
Gjelberg, J. G.: Early–Middle Carboniferous sedimentation on Svalbard. A
study of ancient alluvial and coastal marine sedimentation in rift- and
strike-slip basins, PhD Thesis, University of Bergen, Bergen, Norway, 306 p., https://bora.uib.no/bora-xmlui/handle/1956/20981 (last access: 25 August 2022), 1984.
Grantz, A. and May, S. D.: Summary Geologic Report for Barrow Arch Outer
Continental Shelf (OCS) Planning Area, Chukchi Sea, Alaska, United States
Department of the Interior, Geological Survey, 84–395, https://pubs.er.usgs.gov/publication/ofr84395 (last access: 25 August 2022), 1984.
Haremo, P. and Andresen, A.: Tertiary décollements thrusting and
inversion structures along Billefjorden and Lomfjorden Fault Zones, East
Central Spitsbergen, in: Structural and Tectonic Modelling and its
Apllication to Petroleum Geology, edited by: Larsen, R. M., Brekke, H.,
Larsen, B. T. and Talleraas, E., Norwegian Petroleum Society (NPF) Special
Publications, 1, 481–494, 1992.
Haremo, P., Andresen, A., Dypvik, H., Nagy, J., Elverøi, A., Eikeland, T.
A. and Johansen, H.: Structural development along the Billefjorden Fault
Zone in the area between Kjellströmdalen and Adventdalen/Sassendalen,
central Spitsbergen, Polar Res., 8, 195–216, 1990.
Harland, W. B.: Contribution of Spitsbergen to understanding of tectonic
evolution of North Atlantic region, AAPG Memoirs, 12, 817–851, 1969.
Harland, W. B. and Horsfield, W. T.: West Spitsbergen Orogen, in:
Mesozoic–Cenozoic orogenic belts, edited by: Spencer, A. M., Geol. Soc.
London Spec. Publ., 4, 747–755, 1974.
Harland, W. B. and Wright, N. J. R.: Alternative hypothesis for the
pre-Carboniferous evolution of Svalbard, Norsk Polarinst. Skr., 167,
89–117, 1979.
Harland, W. B., Cutbill, L. J., Friend, P. F., Gobbett, D. J., Holliday, D.
W., Maton, P. I., Parker, J. R. and Wallis, R. H.: The Billefjorden Fault
Zone, Spitsbergen – the long history of a major tectonic lineament, Norsk
Polarinst. Skr., 161, 1–72, 1974.
Harland, W. B., Scott, R. A., Auckland, K. A. and Snape, I.: The Ny
Friesland Orogen, Spitsbergen, Geol. Mag., 129, 679–708, 1992.
Harisson, J. C.: Melville Island's salt-based fold belt, Arctic Canada,
Geological Survey of Canada Bulletin, 472, 344 p., https://doi.org/10.4095/203576, 1995.
Harisson, J. C. and Brent, T. A.: Basins and fold belts of Prince Patrick
Island and adjacent area, Canadian Arctic Islands, Geological Survey of
Canada Bulletin, 560, 208 p., https://doi.org/10.4095/220345, 2005.
Higgins, A. K., Soper, N. J. and Leslie, A. G.: The Ellesmerian and
Caledonian Orogenic Belts of Greenland, Polarforschung, 68, 141–151, 2000.
Horsfield, W. T.: Glaucophane schists of Caledonian age from Spitsbergen,
Geol. Mag., 109, 29–36, 1972.
Hughes, N. F. and Playford, G.: Palynological reconnaissance of the Lower
Carboniferous of Spitsbergen, Micropaleontology, 7, 27–44, 1961.
Jakobsson, M., Mayer, L., Coackley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M.,
Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.
M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V.,
Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C.,
Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G.,
and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean
(IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609,
https://doi.org/10.1029/2012GL052219, 2012.
Johansson, Å., Larionov, A. N., Gee, D. G., Ohta, Y., Tebenkov, A. M.
and Sandelin, S.: Greenvillian and Caledonian tectono-magmatic activity in
northeasternmost Svalbard, in: The Neoproterozoic Timanide Orogen of Eastern
Baltica, edited by: Gee, D. G. and Pease, V., Geol. Soc. London Memoirs, 30,
207–232, 2004.
Johansson, Å., Gee, D. G., Larionov, A. N., Ohta, Y. and Tebenkov, A.
M.: Greenvillian and Caledonian evolution of eastern Svalbard – a tale of
two orogenies, Terra Nova, 17, 317–325, 2005.
Kaiser, H.: Die Oberdevon-Flora der Bäreninsel 3. Mikoflora des hoheren
Oberdevons und des Unterkarbons, Palaeontographica Abt. B, 129, 71–124,
1970.
Kempe, M., Niehoff, U., Piepjohn, K. and Thiedig, F.: Kaledonische und
svalbardische Entwicklung im Grundgebirge aud der Blomstrandhalvøya,
NW-Spitzbergen, Münster. Forsch. Geol. Paläont., 82, 121–128, 1997.
Koehl, J.-B. P.: Devonian–Mississippian collapse and core complex exhumation, and partial decoupling and partitioning of Eurekan deformation as alternatives to the Ellesmerian Orogeny in Spitsbergen, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2019-200, 2020a.
Koehl, J.-B. P.: Impact of Timanian thrusts on the Phanerozoic tectonic
history of Svalbard, Keynote lecture, EGU General Assembly, 3–8 May
2020, Vienna, Austria, https://meetingorganizer.copernicus.org/EGU2020/displays/34748 (last access: 25 August 2022), 2020b.
Koehl, J.-B. P.: Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard, Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, 2021.
Koehl, J.-B. P. and Muñoz-Barrera, J. M.: From widespread Mississippian to localized Pennsylvanian extension in central Spitsbergen, Svalbard, Solid Earth, 9, 1535–1558, https://doi.org/10.5194/se-9-1535-2018, 2018.
Koehl, J.-B. P., Collombin, M., Taule, C., Christophersen, G., and Allaart,
L.: Influence of WNW–ESE-striking faults on Devonian–Permian sedimentary
rocks in Billefjorden and implications for Ellesmerian and Eurekan tectonic
events, https://doi.org/10.13140/RG.2.2.35857.97129, 2020.
Koehl, J.-B. P., Cooke, F. A., and Plaza-Faverola, A. A.: Formation of a
transform-parallel oceanic core complex along an inherited Timanian thrust,
and impact on gas seepage in the Fram Strait, TSG Annual Meeting,
5–8 January, https://doi.org/10.13140/RG.2.2.28315.49446, 2021.
Koehl, J.-B. P., Magee, C., and Anell, I. M.: Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard, Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, 2022a.
Koehl, J.-B. P., Stokmo, E. M. B., and Muñoz-Barrera, J. M.: On the
Billefjorden Fault Zone in Garmdalen, central Spitsbergen, Carboniferous Basins in Svalbard, Canada and the Barents Sea,
https://doi.org/10.13140/RG.2.2.28031.33448, 2022b.
Kośmińska, K., Spear, F. S., Majka, J., Faehnrich, K., Manecki, M.,
Piepjohn, K., and Dallmann, W. K.: Deciphering late Devonian–early
Carboniferous path of mylonitized garnet-mica schists from Prins Karls
Forland, Svalbard, J. Metamorph., Geol., 38, 471–493, 2020.
Krabbendam, M. and Dewey, J. F.: Exhumation of UHP rocks by transtension in
the Western Gneiss Region, Scandinavian Caledonides, in: Continental
Transpressional and Transtensional Tectonics, edited by: Holdsworth, R. E.,
Strachan, R. A. and Dewey, J. F., Geol. Soc. London, Spec. Publi., 135,
159–181, 1998.
Krajewski, K. P. and Stempien-Salek, M.: Overthrust Carboniferous strata
(Sergeijevfjellet Formation) at Lidfjellet, NW Sørkapp Land, Spitsbergen,
Polish Polar Res., 24, 61–72, 2003.
Kumar, N., Granath, J. W., Emmet, P. A., Helwig, J. A., and Dinkelman, M. G.:
Stratigraphic and Tectonic Framework of the US Chukchi Shelf: Exploration
Insights from a New Regional Deep-seismic Reflection Survey, in: Arctic
Petroleum Geology, edited by, Spencer, A. M., Gautier, D., Stoupakova, A.,
Embry, A. F. and Sørensen, K., Geol. Soc. London Memoirs, 35, 501–508, 2011.
Lane, L. S.: Devonian–Carboniferous paleogeography and orogenesis, northern
Yukon and adjacent Arctic Alaska, Can. J. Earth Sci., 44, 679–694, 2007.
Larsen, B. T.: Tertiary thrust tectonics in the east of Spitsbergen, and
implications for the plate-tectonic development of the North-Atlantic, in:
Tertiary Tectonics of Svalbard, edited by: Dallmann, W. K., Ohta, Y. and
Andresen, A., Norsk Polarinstitutt Rapportserie, 46, 85–88, 1988.
Larsen, P.-H. and Bengaard, H.-J.: Devonian basin initiation in East
Greenland: a result of sinistral wrench faulting and Caledonian extensional
collapse, J. Geol. Soc. London, 148, 355–368, 1991.
Larsen, P.-H., Olsen, H., and Clack, J. A.: The Devonian basin in East
Greenland–Review of basin evolution and vertebrate assemblages, GSA Bull.
Mem., 202, 273–292, 2008.
Lindemann, F.-J., Volohonsky, E., and Marshall, J. E.: A bonebed in the
Hørbybreen Formation (Famennian-Viséan) on Spitsbergen, NGF Abstracts
and Proceedings, 1, Winter Meeting, Oslo, 8–10 January, https://www.geologi.no/images/Konferanser/Vinterkonferansen2013_Abstracts.pdf (last access: 25 August 2022), 2013.
Lister, G. S. and Davis, G. A.: The origin of metamorphic core complexes and
detachment faults formed during Tertiary continental extension in the
northern Colorado River region, USA, J. Struct. Geol., 11, 65–94, 1989.
Lopes, G., Mangerud, G., and Clayton, G.: The palynostratigraphy of the
Mississippian Birger Johnsonfjellet section, Spitsbergen, Svalbard,
Palynology, 43, 631–649, 2019.
Lopes, G., Mangerud, G., Clayton, G., and Vigran, J. O.: Palynostratigraphic
reassessment of the Late Devonian of Bjørnøya, Svalbard, Rev.
Palaeobot. Palynol., 286, 104376, https://doi.org/10.1016/j.revpalbo.2020.104376, 2021.
Lowell, J. D.: Spitsbergen Tertiary Orogenic Belt and the Spitsbergen
Fracture Zone, Geol. Soc. Am. Bul., 83, 3091–3102, 1972.
Luchitskaya, M. V., Sokolov, S. D., Kotov, A. B., Natapov, L. M., Belousova,
E. A., and Katkov, S. M.: Late Paleozoic Granitic Rocks of the Chukchi
Penisula: Composition and Location in the Structure of the Russian Arctic,
Geotectonics, 49, 243–266, 2015.
Maher, H. D.: Structure and stratigraphy of the Midterhuken peninsula,
Bellsund, west Spitsbergen, PhD Thesis, University of Wisconsin–Madison,
Madison, USA, Norwegian Polar Institute, Saga Petroleum, 437, 1984.
Maher Jr., H. D.: Atypical rifting during the Carboniferous of the NW
Barents Shelf, Report for Saga Petroleum, November 1996, Saga Petroleum, 1996.
Maher Jr., H. D., Craddock, C. and Maher, K.: Kinematics of Tertiary
structures in upper Paleozoic and Mesozoic strata on Midterhuken, west
Spitsbergen, GSA Bulletin, 97, 1411–1421, 1986.
Maher Jr., H. D., Ringset, N. and Dallmann, W. K.: Tertiary structures in
the platform cover strata of Nordenskiöld Land, Svalbard, Polar Res.,
7, 83–93, 1989.
Maher, H., Braathen, A., Ganerod, M., Osmundsen, P. T., Redfield, T., Myhre,
P. I., Serck, C. and Parcher, S.: Core complex fault rocks of the Silurian
to Devonian Keisarhjelmen detachment in NW Spitsbergen, in: New Developments
in the Appalachians-Caledonian –Variscan Orogen, edited by: Kuiper, Y. D.,
Murphy, J. B., Nance, R. D., Strachan, R. A. and Thompson, M. D., GSA Spec.
Paper, 54, 265–286, 2022.
Majka, J. and Kośmińska, K.: Magmatic and metamorphic events
recorded within the Southwestern basement province of Svalbard, Arktos, 3, 1–7, https://doi.org/10.1007/s41063-017-0034-7, 2017.
Malyshev, N. A., Obmetko, V. V., Barinova, E. M. and Ikhsanov, B. I.:
Tectonics of the sedimentary basins in the Russian sector of the Chuckchi
Sea, in: Proceedings of the International Conference on Arctic Margins VI,
edited by: Stone, D. B., Grikurov, G. E., Glough, J. G., Oakey, G. N. and
Thurston, D. K., May 2011, Fairbanks, Alaska, USA, 203–209, 2011.
Manby, G. M. and Lyberis, N.: Tectonic evolution of the Devonian Basin of
northern Spitsbergen, Norsk Geol. Tidsskr., 72, 7–19, 1992.
Manby, G. M. and Lyberis, N.: State of stress and tectonic evolution of the
West Spitsbergen Fold Belt, Tectonophys., 267, 1–29, 1996.
Manby, G. M., Lyberis, N., Chorowicz, J. and Thiedig, F.: Post-Caledonian
tectonics along the Billefjorden fault zone, Svalbard, and implications for
the Arctic region, Geol. Soc. Am. Bul., 105, 201–216, 1994.
Marshall, J., Lindemann, F. J., Finney, S. and Berry, C.: A Mid Famennian
(Late Devonian) spore assemblage from Svalbard and its significance, CIMP
Meeting, Bergen, Norway, 17–18 September, https://cimp.weebly.com/uploads/6/4/0/5/6405206/cimp2015_abstract_book.pdf (last access: 25 August 2022), 2015.
McCann, A. J.: Deformation of the Old Red Sandstone of NW Spitsbergen; links
to the Ellesmerian and Caledonian orogenies, in: New Perspectives on the Old
Red Sandstone, edited by: Friends, P. F. and Williams, B. P. J., Geol. Soc.
London, 180, 567–584, https://doi.org/10.1144/GSL.SP.2000.180.01.30, 2000.
McCann, A. J. and Dallmann, W. K.: Reactivation of the long-lived
Billefjorden Fault Zone in north central Spitsbergen, Svalbard, Geol. Mag.,
133, 63–84, 1996.
McClelland, W. C., Power, S. E., Gilotti, J. A., Mazdab, F. K. and Wopenka,
B.: U-Pb SHRIMP geochronology and trace-element geochemistry of
coesite-bearing zircons, North-East Greenland Caledonides, GSA, Spec. Paper,
403, 23–43, 2006.
Michaelsen, B.: Strukturgeologie des svalbardischen Überschiebungs- und
Faltengürtels im zentralen, östlichen Dickson Land, Spizbergen
(Structural geology of the Svalbardian fold-and-thrust belt in
central–eastern Dickson Land, Spitsbergen), Master's Thesis, University of
Münster, Münster, Germany, available from the Norwegian Polar Institute, 134 p., 1998.
Michaelsen, B., Piepjohn, K. and Brinkmann, L.: Struktur und Entwicklung der
svalbardischen Mimerelva Synkline im zentralen Dickson Land, Spitzbergen,
Münster. Forsch. Geol. Paläont., 82, 203–214, 1997.
Michalski, K.: Palaeomagnetism of metacarbonates and fracture fills of
Kongsfjorden islands (western Spitsbergen): Towards a better understanding
of late- to post-Caledonian tectonic rotations, Polish Polar Res., 39,
51–75, 2018.
Michalski, K., Lewandowski, M., and Manby, G.: New palaeomagnetic,
petrographic and 40Ar/39Ar data to test palaeogeographic
reconstructions of Caledonide Svalbard, Geol. Mag., 149, 696–721, 2012.
Michalski, K., Manby, G., Nejbert, K., Domanska-Siuda, J., and Burzynski, M.:
Using palaeomagnetism and isotopic data to investigate late to
post-Caledonian tectonothermal processes within the Western Terrane of
Svalbard, J. Geol. Soc., London, 174, 572–590, 2017.
Murascov, L. G. and Mokin, Ju. I.: Stratigraphic subdivision of the Devonian
deposits of Spitsbergen, Polarinst. Skr., 167, 249–261, 1979.
Newman, M. J., Burrow, C. J., and den Blaauwen, J. L.: The Givetian
vertebrate fauna from the Fiskekløfta Member (Mimerdalen Subgroup),
Svalbard, Part I. Stratigraphic and faunal review, Part II. Acanthodii,
Norw. J. Geol., 99, 1–16, 2019.
Newman, M. J., Burrow, C. J., and den Blaauwen, J. L.: A new species of
ischnacanthiform acanthodian from the Givetian of Mimerdalen, Svalbard,
Norw. J. Geol., 99, 619–631, 2020.
Newman, M. J., Burrow, C. J., den Blaauwen, J. L., and Giles, S.: A new
actinopterygian Cheirolepis jonesi nov. sp. from the Givetian of Spitsbergen, Svalbard, Norw. J. Geol., 101, 202103, https://doi.org/10.17850/njg101-1-3, 2021.
Oakey, G. N. and Chalmers, J. A.: A new model for the Paleogene motion of
Greenland relative to North America: Plate reconstructions of the Davis
Strait and Nares Strait regions between Canada and Greenland, J. of Geophys.
Res., 117, B10401, https://doi.org/10.1029/2011JB008942, 2012.
Ohta, Y., Dallmeyer, R. D., and Peucat, J. J.: Caledonian terranes in
Svalbard, GSA Spec. Paper, 230, 1–15, 1989.
Ohta, Y., Krasil'ščikov, A. A., Lepvrier, C., and Teben'kov, A. M.:
Northern continuation of Caledonian high-pressure metamorphic rocks in
central-western Spitsbergen, Polar Res., 14, 303–315, 1995.
Osmundsen, P. T. and Andersen, T. B.: Caledonian compressional and
late-orogenic extensional deformation in the Staveneset area, Sunnfjord,
Western Norway, J. Struct. Geol., 16, 1385–1401, 1994.
Osmundsen, P. T., Andersen, T. B., Markussen, S., and Svendby, A. K.:
Tectonics and sedimentation in the hangingwall of a major extensional
detachment: the Devonian Kvamshesten basin, western Norway, Basin Res., 10,
213–234, 1998.
Petersen, T. G., Thomsen, T. B., Olaussen, S., and Stemmerik, L.: Provenance
shifts in an evolving Eurekan foreland basin: the Tertiary Central Basin,
Spitsbergen, J. Geol. Soc., 173, 634–648, 2016.
Piepjohn, K.: The Svalbardian–Ellesmerian deformation of the Old Red
Sandstone and the pre-Devonian basement in NW Spitsbergen (Svalbard), in:
New Perspectives on the Old Red Sandstone, edited by: Friend, P. F. and
Williams, B. P. J., Geol. Soc. London Spec. Publi., 180, 585–601, https://doi.org/10.1144/GSL.SP.2000.180.01.31, 2000.
Piepjohn, K. and Dallmann, W. K.: Stratigraphy of the uppermost Old Red
Sandstone of Svalbard (Mimerdalen Subgroup), Polar Res., 33, 19998, 2014.
Piepjohn, K. and von Gosen, W.: Structural transect through Ellesmere Island
(Canadian Arctic): superimposed Palaeozoic Ellesmerian and Cenozoic Eurekan
deformation, in: Circum-Arctic Lithosphere Evolution, edited by: Pease, V.
and Coackley, B., Geol. Soc., London, Spec. Publi., 460, 33, https://doi.org/10.1144/SP460.5, 2017.
Piepjohn, K., Brinkmann, L., Dissmann, B., Grewing, A., Michaelsen, B.,
and Kerp, H.: Geologische und strukturelle Entwicklung des Devon sim
zentralen Dickson Land, Spitzbergen, Münster. Forsch. Geol.
Paläont., 82, 175–202, 1997.
Piepjohn, K., Brinkmann, L., Grewing, A., and Kerp, H.: New data on the age
of the uppermost ORS and the lowermost post-ORS strata in Dickson Land
(Spitsbergen) and implications for the age of the Svalbardian deformation,
in: New Perspectives on the Old Red Sandstone, edited by: Friend, P. F. and
Williams, B. P. J., Geol. Soc. London Spec. Publi., 180, 603–609, 2000.
Piepjohn, K., Thiedig, F., and Manby, G. M.: Nappe Stacking on
Brøggerhalvøya, NW Spitsbergen, Geol. Jb, B, 91, 55–79, 2001.
Piepjohn, K., von Gosen, W., Estrada, S., and Tessensohn, F.: Deciphering
superimposed Ellesmerian and Eurekan deformation, Piper Pass area, northern
Ellesmere Island (Nunavut), Can. J. Earth Sci., 44, 1439–1452, 2007.
Piepjohn, K., von Gosen, W., Tessensohn, F., and Saalmann, K.: Ellesmerian
fold-and-thrust belt (northeast Ellesmere Island, Nunavut) and its Eurekan
overprint, in: Geology of Northeast Ellesmere Island Adjacent to Kane Basin
and Kenndy Channel, Nunavut, edited by: Mayr, U., Geological Soc. Can. Bull., 592, 285–303, 2008.
Piepjohn, K., von Gosen, W., Läufer, A., McClelland, W. C., and Estrada,
S.: Ellesmerian and Eurekan fault tectonics at the northern margin of
Ellesmere Island (Canadian High Arctic), Z. Dt. Ges. Geowiss., 164,
81–105, 2013.
Piepjohn, K., von Gosen, W., Tessensohn, F., Reinhardt, L., McClelland, W.
C., Dallmann, W. D., Gaedicke, C., and Harrison, J. C.: Tectonic map of the
Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland, and
the Queen Elizabeth Islands (Canadian Arctic), Arktos, 1, 12, https://doi.org/10.1007/s41063-015-0015-7, 2015.
Platt, J. P.: Dynamics of orogenic wedges and the uplift of high-pressure
metamorphic rocks, GSA Bull., 97, 1037–1053, 1986.
Playford, G.: Lower Carboniferous microfloras of Spitsbergen, Part 1,
Paleontology, 5, 550–618, 1962.
Playford, G.: Lower Carboniferous microfloras of Spitsbergen, Part 2,
Paleontology, 5, 4, 619–678, 1963.
Playford, G.: Plant microfossils from the Upper Devonian and Lower
Carboniferous of the Canning Basin, Western Australia, Palaeontographica
Abt. B, 158, 1–71, 1976.
Pčelina, T. M., Bogač, S. I., and Gavrilov, B. P.: Novye dannye po
litostratigrafii devonskih otloženji rajona Mimerdalen arhipelaga
Špicbergen (New data on the lithostratigraphy of the Devonian deposits
of the region of Mimerdalen of the Svalbard Archipelago), in: Geologija
osadocnogo cehla arhipelaga Špicbergen (Geology of the sedimentary
blanket of the archipelago of Spitsbergen), edited by:
Krasil'ščikov, A. A. and Mirzaev, M. N., Leningrad: Sevmorgeologija,
7–19, 1986.
Rey, P., Vanderhaeghe, O., and Teyssier, C.: Gravitational collapse of the
continental crust: definition, regimes and modes, Tectonophys, 342,
435–449, 2001.
Rey, P., Teyssier, C., Kruckenberg, S. C., and Whitney, D. L.: Viscous
collision in channel explains double domes in metamorphic core complexes,
Geology, 39, 387–390, 2011.
Rippington, S. J., Scott, R. A., Smyth, H., Bogolepova, O. K., and Gubanov,
A. P.: The Ellesmerian Orogeny: Fact of Fiction?, GeoCanada 2010, Working
with the Earth, 10–14 May, Calgary, Alberta, Canada, https://geoconvention.com/wp-content/uploads/abstracts/2010/0411_GC2010_The_Ellesmerian_Orogeny.pdf (last access: 25 August 2022), 2010.
Roberts, D.: Devonian Tectonic Deformation in the Norwegian Caledonides and
Its Regional Perspectives, Norg. Geol. Unders., 380, 85–96 1983.
Roy, J.-C. L. G.: La géologie du fossé des Vieux Grès Rouges du
Spitzberg (archipel du Svalbard, territoire de l'Arctique) – Synthèse
stratigraphique, consequences paléoenvironnementales et tectoniques
synsédimentaires, Mémoires des sciences de la Terre de
l'Université Pierre et Marie Curie, PhD Thesis, Pierre and Marie Curie
University, Paris, France, 2007-15, 242 p., 2007.
Roy, J.-C. L. G.: La saga des vieux grès rouges du Spitzberg (archipel du
Svalbard, Arctique): Une histoire géologique et naturelle,
Charenton-le-pont: Auto-Edition Roy-Poulain, 290 p., 2009.
Roy, J.-C., Chorowicz, J., Deffontaines, B., Lepvrier, C., and Tardy, M.:
Clues of gravity sliding tectonics at the Eifelian–Givetian boundary in the
Old Red Sandstone of the [late Silurian?]-Devonian trough of Andrée Land
(Spitsbergen), in: La saga des vieux grès rouges du Spitzberg (archipel
du Svalbard, Arctique): Une histoire géologique et naturelle, edited by:
Charenton-le-pont: Auto-Edition Roy-Poulain, Norw. J. Geol., 2022, unpublished.
Schaltegger, U., Schmidt, A. K. and Horstwood, M. S. A.: U–Th–Pb zircon
geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes,
interpretations, and opportunities, Chem. Geol., 402, 89–110, 2015.
Scheibner, C., Hartkopf-Fröder, C., Blomeier, D. and Forke, H.: The
Mississippian (Lower Carboniferous) in northeast Spitsbergen (Svalbard) and
a re-evaluation of the Billefjorden Group, Z. Dt. Ges. Geowiss., 163/3,
293–308, 2012.
Schneider, D. A., Faehnrich, K., Majka, J., and Manecki, M.:
40Ar/39Ar geochronologic evidence of Eurekan deformation within
the West Spitsbergen Fold and Thrust Belt, in: Circum-Arctic Structural
Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with
Adjacent Orogens, edited by: Piepjohn, K., Strauss, J. V., Reinhardt, L. and
McClelland, W. C., GSA Special Paper, 541, 1–16, https://doi.org/10.1130/2018.2541(08), 2018.
Schweitzer, H.-J.: Die Devonfloren Spitzbergens (The Devonian flora of
Spitsbergen), Palaeontographica Abteilung B Band, 252, Stuttgart,
Schweizerbart Science Publishers, 1999.
Senger, K., Roy, S., Braathen, A., Buckley, S., Bælum, K., Gernigon, L.,
Mjelde, R., Noormets, R., Ogata, K., Olaussen, S., Planke, S., Ruud, B. O.,
and Tveranger, J.: Geometries of doleritic intrusions in central
Spitsbergen, Svalbard: an integrated study of an onshore-offshore magmatic
province with applications to CO2 sequestration, Norw. J. Geol., 93,
143–166, 2013.
Siedlecki, S.: Culm Beds of the SW. Coast of Hornsund, Studia Geologica
Polonica, 4, 93–102, 1960.
Siedlecki, S. and Turnau, E.: Palynological investigations of Culm in the
area SW of Hornsund, Vestspitsbergen, Studia Geologica Polonica, 11,
125–138, 1964.
Smyrak-Sikora, A. A., Johannessen, E. P., Olaussen, S., Sandal, G., and
Braathen, A.: Sedimentary architecture during Carboniferous rift initiation
– the arid Billefjorden Trough, Svalbard, J. Geol. Soc. Lond., 176,
225–252, 2018.
Snoke, A. W.: Transition from infrastructure to suprastructure in the
northern Ruby Mountains, Nevada, in: Cordilleran Metamorphic Core Complexes,
edited by: Crittenden Jr., M. D., Coney, P. J. and Davis, G. H., GSA
Memoirs, 153, 287–333, https://doi.org/10.1130/MEM153-p287, 1980.
Stemmerik, L., Vigran, J. O., and Piasecki, S.: Dating of late Paleozoic
rifting events in the North Atlantic: New biostratigraphic data from the
uppermost Devonian and Carboniferous of East Greenland, Geology, 19,
218–221, 1991.
Stemmerik, L., Dalhoff, D., Larsen, B. D., Lyck, J., Mathiesen, A., and
Nilsson, I.: Wandel Sea Basin, eastern North Greenland, Geol. Greenland
Bull., 180, 55–62, 1998.
Stemmerik, L.: Late Palaeozoic evolution of the North Atlantic margin of
Pangea, Palaeogeogr., Palaeoclimatol., Palaeoecol., 161, 95–126, 2000.
Strachan, R. A.: Evidence in North-East Greenland for Late Silurian–Early
Devonian regional extension during the Caledonian orogeny, Geology, 22,
913–916, 1994.
Teyssier, C., Ferré, E. C., Whitney, D. L., Norlander, B., Vanderhaeghe,
O. and Parkinson, D.: Flow of partially molten crust and origin of
detachments during collapse of the Cordilleran Orogen, in: High-Strain
Zones: Structrue and Physical Properties, edited by: Bruhn, D. and Burlini,
L., Geol. Soc. London, Spec. Publi., 245, 39–64, 2005.
Thiedig, F. and Manby, G.: Origins and deformation of post-Caledonian
sediments on Blomstrandhalvøya and Lovénøyane, northwest
Spitsbergen, Norsk Geol. Tidsskr., 72, 27–33, 1992.
Thorsteinsson, R. and Tozer, E. T.: Geology of the Arctic Archipelago, in:
Geology and Economic Minerals of Canada (5th edition), edited by:
Douglass, R. J. W., Geological Survey of Canada, Economic Geology Report, 1,
547–590, https://doi.org/10.4095/106153, 1970.
Trettin, H. P.: Early Paleozoic Evolution of Northern Parts of Canadian
Arctic Archipelago, AAPG Memoirs, 19, 57–75, 1973.
Trettin, H. P.: Geology of the Innuitian Orogen and Arctic Platform of
Canada and Greenland, Geological Survey of Canada, Geology of Canada, 3,
GSA, Geological Survey of Canada, Geology of Canada Series no. 3, Geological Society of America, Geology of North America Series E, Canada Communication Group – Publishing Ottawa, Canada KIA OS9, 569 p., https://doi.org/10.4095/133959, 1991.
Vigran, J. O.: Spores from Devonian deposits, Mimerdalen, Spitsbergen, Norsk
Polarinstitutt Skrifter, 132, 49 p., https://brage.npolar.no/npolar-xmlui/handle/11250/173920 (last access: 25 August 2022), 1964.
Vogt, T.: The stratigraphy and tectonics of the Old Red formations of
Spitsbergen, Abstracts of the Proceedings of the Geological Society London,
1343, 88, 1938.
Von Gosen, W. and Piepjohn, K.: Polyphase Deformation in the Eastern
Hornsund Area, Geol. Jb., B91, 291–312, 2001.
Walker, J. D., Geissman, J. W., Bowring, S. A., and Babcock, L. E.: Geologic
Time Scale v. 5.0, Geological Society of America,
https://doi.org/10.1130/2018.CTS005R3C, 2018.
Worsley, D. and Edwards, M. B.: The Upper Palaeozoic succession of
Bjørnøya, Norsk Polarinst. Årbok, 1974, 17–34, 1976.
Worsley, D. and Mørk, A.: The Triassic stratigraphy of southern
Spitsbergen, Polarinst. Årbok, 1977, 43–60, 1978.
Ziemniak, G., Majka, J., Manecki, M., Walczak, K., Jeanneret, P., Mazur, S.,
and Kośmińska, K.: Early Devonian sinistral strike-slip in the
Caledonian basement of Oscar II Land advocates for escape tectonics as a
major mechanism for Svalbard terranes assembly, Geophys. Res. Abstr., EGU
General Assembly, 3–8 May 2020, Vienna, Austria, 2020.https://doi.org/10.1130/2018.CTS005R3C.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(1950 KB) - Full-text XML
Short summary
The paper reviews age constraints for a short-lived episode of deformation in Svalbard (Ellesmerian and Svalbardian orogenies) that is thought to have occurred ca. 380–360 million years ago. The review mostly discusses (but is not limited to) paleontological, palynological, and geochronological evidence. The review finds it most unlikely that the event discussed ever occurred in Svalbard.
The paper reviews age constraints for a short-lived episode of deformation in Svalbard...