Articles | Volume 13, issue 10
https://doi.org/10.5194/se-13-1631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1631-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of structural setting of source volume on rock avalanche mobility and deposit morphology
Zhao Duan
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Qing Zhang
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Zhen-Yan Li
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Lin Yuan
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Kai Wang
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Yang Liu
Institute of Ecological Environment Restoration in Mine Areas of
West China, Xi'an University of Science and Technology, Xi'an, 710054, China
College of Geology and Environment, Xi'an
University of Science and Technology, Xi'an, 710054, China
Related authors
Yan-Bin Wu, Zhao Duan, Jian-Bing Peng, and Qing Zhang
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-38, https://doi.org/10.5194/esurf-2022-38, 2022
Preprint withdrawn
Short summary
Short summary
Landslides as a kind of natural hazards are often observed on the earth. The slope angle is a key influence to their motion characteristics and deposit morphologies. In the paper, the different surface morphologies of the deposits were explained by combining their motion process. A theoretical relationship between landslides' mobility and slope angle is re-deduced based on energy conservation. The curve plotted by this formula is approximating to the experimental data of this and other studies.
Yan-Bin Wu, Zhao Duan, Jian-Bing Peng, and Qing Zhang
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-38, https://doi.org/10.5194/esurf-2022-38, 2022
Preprint withdrawn
Short summary
Short summary
Landslides as a kind of natural hazards are often observed on the earth. The slope angle is a key influence to their motion characteristics and deposit morphologies. In the paper, the different surface morphologies of the deposits were explained by combining their motion process. A theoretical relationship between landslides' mobility and slope angle is re-deduced based on energy conservation. The curve plotted by this formula is approximating to the experimental data of this and other studies.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Geomorphology
The Münsterdorf sinkhole cluster: void origin and mechanical failure
Georg Kaufmann, Douchko Romanov, Ulrike Werban, and Thomas Vienken
Solid Earth, 14, 333–351, https://doi.org/10.5194/se-14-333-2023, https://doi.org/10.5194/se-14-333-2023, 2023
Short summary
Short summary
We discuss collapse sinkholes occuring since 2004 on the sports field of Münsterdorf, a village north of Hamburg. The sinkholes, 2–5 m in size and about 3–5 m deep, develop in peri-glacial sand, with a likely origin in the Cretaceous chalk, present at about 20 m depth. The area has been analyzed with geophysical and direct-push-based methods, from which material properties of the subsurface have been derived. The properties have been used for mechanical models, predicting the subsidence.
Cited articles
Asteriou, P., Saroglou, H., and Tsiambaos, G.: Geotechnical and kinematic
parameters affecting the coefficients of restitution for rock fall analysis,
Int. J. Rock Mech. Min., 54, 103–113,
https://doi.org/10.1016/j.ijrmms.2012.05.029, 2012.
Baker, J., Gray, N., and Kokelaar, P.: Particle Size-Segregation and
Spontaneous Levee Formation in Geophysical Granular Flows,
International Journal of Erosion Control Engineering, 9, 174–178, https://doi.org/10.13101/ijece.9.174,
2016.
Bartali, R., Rodríguez Liñán, G. M., Torres-Cisneros, L. A.,
Pérez-Ángel, G., and Nahmad-Molinari, Y.: Runout transition and
clustering instability observed in binary-mixture avalanche deposits,
Granul. Matter, 22, 30, https://doi.org/10.1007/s10035-019-0989-0, 2020.
Bowman, E. T. and Take, W. A.: The runout of chalk cliff collapses in
England and France – case studies and physical model experiments,
Landslides, 12, 225–239, https://doi.org/10.1007/s10346-014-0472-2, 2015.
Brideau, M.-A., Yan, M., and Stead, D.: The role of tectonic damage and
brittle rock fracture in the development of large rock slope failures,
Geomorphology, 103, 30–49, https://doi.org/10.1016/j.geomorph.2008.04.010, 2009.
Carter, G.: Rock avalanche scars in the geological record: an example from
Little Loch Broom, NW Scotland, Proc. Geol. Assoc., 126, 698–711, https://doi.org/10.1016/j.pgeola.2015.09.003, 2015.
Charrière, M., Humair, F., Froese, C., Jaboyedoff, M., Pedrazzini, A.,
and Longchamp, C.: From the source area to the deposit: Collapse,
fragmentation, and propagation of the Frank Slide, GSA Bull., 128,
332–351, https://doi.org/10.1130/B31243.1, 2016.
Cole, P. D., Calder, E. S., Sparks, R. S. J., Clarke, A. B., Druitt, T. H.,
Young, S. R., Herd, R. A., Harford, C. L., and Norton, G. E.: Deposits from
dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills
Volcano, Montserrat, Geological Society, London, Memoirs, 21, 231,
https://doi.org/10.1144/GSL.MEM.2002.021.01.11, 2002.
Corominas, J.: The angle of reach as a mobility index for small and large
landslides, Can. Geotech. J., 33, 260–271, https://doi.org/10.1139/t96-005, 1996.
Crosta, G. B., Blasio, F. V. D., Locatelli, M., Imposimato, S., and
Roddeman, D.: Landslides falling onto a shallow erodible substrate or water
layer: an experimental and numerical approach, IOP Conference Series: Earth
and Environmental Science, https://doi.org/10.1088/1755-1315/26/1/012004, 2015.
Crosta, G. B., Blasio, F. V. D., Caro, M. D., Volpi, G., Imposimato, S., and
Roddeman, D.: Modes of propagation and deposition of granular flows onto an
erodible substrate: experimental, analytical, and numerical study,
Landslides, 14, 47–68, https://doi.org/10.1007/s10346-016-0697-3, 2017.
Dasgupta, P. and Manna, P.: Geometrical mechanism of inverse grading in
grain-flow deposits: An experimental revelation, Earth Sci. Rev., 104,
186–198, https://doi.org/10.1016/j.earscirev.2010.10.002, 2011.
Deganutti, A. M.: The Hypermobility of Rock Avalanches, thesis, Dipartimento di
Geoscienze, Università degli Studi di Padova, Dipartimento di Geoscienze, Università degli Studi di Padova, 99 pp., 2008.
Delannay, R., Valance, A., Roche, O., and Richard, P.: Granular and
particle-laden flows: from laboratory experiments to field observations,
J. Phys. D, 50, 40, https://doi.org/10.1088/1361-6463/50/5/053001, 2017.
Duan, Z. and Wu, Y.-B.: Effect of structural setting of source volume on rock avalanche mobility and deposit morphology, Zenodo [data set], https://doi.org/10.5281/zenodo.7234580, 2022.
Duan, Z., Cheng, W.-C., Peng, J.-B., Wang, Q.-Y., and Chen, W.:
Investigation into the triggering mechanism of loess landslides in the south
Jingyang platform, Shaanxi province, Bull. Eng. Geol. Environ., 78,
4919–4930, https://doi.org/10.1007/s10064-018-01432-8, 2019.
Duan, Z., Wu, Y. B., Tang, H., Ma, J. Q., and Zhu, X. H.: An Analysis of
Factors Affecting Flowslide Deposit Morphology Using Taguchi Method, Adv.
Civ. Eng., 2020, 1–14, https://doi.org/10.1155/2020/8844722, 2020.
Duan, Z., Cheng, W.-C., Peng, J.-B., Rahman, M. M., and Tang, H.:
Interactions of landslide deposit with terrace sediments: Perspectives from
velocity of deposit movement and apparent friction angle, Eng. Geol., 280,
105913, https://doi.org/10.1016/j.enggeo.2020.105913, 2021.
Duan, Z., Wu, Y.-B., Peng, J.-B., and Xue, S.-Z.: Characteristics of sand
avalanche motion and deposition influenced by proportion of fine particles,
Acta Geotech., https://doi.org/10.1007/s11440-022-01653-y, 2022.
Dufresne, A.: Granular flow experiments on the interaction with stationary
runout path materials and comparison to rock avalanche events, Earth Surf.
Proc. Landf., 37, 1527–1541, 2012.
Dufresne, A.: Rock Avalanche Sedimentology–Recent Progress, in: Advancing Culture of Living with Landslides, edited by: Mikos, M., Tiwari, B., Yin, Y., and Sassa, K., Springer, Cham, Germany, 117–122, https://doi.org/10.1007/978-3-319-53498-5_14, 2017.
Dufresne, A. and Dunning, S. A.: Process dependence of grain size
distributions in rock avalanche deposits, Landslides, 14, 1555–1563,
https://doi.org/10.1007/s10346-017-0806-y, 2017.
Dufresne, A., Bösmeier, A., and Prager, C.: Sedimentology of rock
avalanche deposits – Case study and review, Earth Sci. Rev., 163, 234–259,
https://doi.org/10.1016/j.earscirev.2016.10.002, 2016.
Dufresne, A., Zernack, A., Bernard, K., Thouret, J.-C., and Roverato, M.:
Sedimentology of Volcanic Debris Avalanche Deposits, in: Volcanic Debris
Avalanches: From Collapse to Hazard, edited by: Roverato, M., Dufresne, A.,
and Procter, J., Springer International Publishing, Cham, 175–210,
https://doi.org/10.1007/978-3-030-57411-6_8, 2021.
Fan, X. y., Tian, S. j., and Zhang, Y. y.: Mass-front velocity of dry
granular flows influenced by the angle of the slope to the runout plane and
particle size gradation, J. Mountain Sci., 13, 234–245,
https://doi.org/10.1007/s11629-014-3396-3, 2016.
Felix, G. and Thomas, N.: Evidence of two effects in the size segregation
process in dry granular media, Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys., 70,
051307, https://doi.org/10.1103/PhysRevE.70.051307, 2004.
Fisher, R. V. and Heiken, G.: Mt. Pelée, martinique: may 8 and 20, 1902,
pyroclastic flows and surges, J. Volcanol. Geotherm. Res., 13, 339–371,
https://doi.org/10.1016/0377-0273(82)90056-7, 1982.
Getahun, E., Qi, S.-W., Guo, S.-f., Zou, Y., and Liang, N.: Characteristics
of grain size distribution and the shear strength analysis of Chenjiaba long
runout coseismic landslide, J. Mountain Sci., 16, 2110–2125,
https://doi.org/10.1007/s11629-019-5535-3, 2019.
Glicken, H. and Survey: Rockslide-debris avalanche of May 18,
1980, Mount St. Helens Volcano, Washington, Open-File Report, 98 pp.,
https://doi.org/10.3133/ofr96677, 1996.
Goujon, C., Thomas, N., and Dalloz-Dubrujeaud, B.: Monodisperse dry granular
flows oninclined planes: Role of roughness, European Phys. J. E,
11, 147–157, https://doi.org/10.1140/epje/i2003-10012-0, 2003.
Gray, J. M. N. T. and Hutter, K.: Pattern formation in granular avalanches,
Continuum Mech. Thermodyn., 9, 341–345, https://doi.org/10.1007/s001610050075, 1997.
Huang, R. Q. and Liu, W. H.: In-situ test study of characteristics of
rolling rock blocks based on orthogonal design, Chinese Journal of Rock
Mechanics Engineering Geology, 28, 882–891, 2009 (in Chinese).
Hungr, O.: Rock avalanche occurrence, process and modelling, in: Landslides from Massive Rock Slope Failure, edited by: Evans, S. G., Mugnozza, G. S., Strom, A., and Hermanns, R. L., NATO Science Series, Springer, Dordrecht, 243–266, https://doi.org/10.1007/978-1-4020-4037-5_14, 2006.
Jaboyedoff, M., Couture, R., and Locat, P.: Structural analysis of Turtle
Mountain (Alberta) using digital elevation model: Toward a progressive
failure, Geomorphology, 103, 5–16, https://doi.org/10.1016/j.geomorph.2008.04.012, 2009.
Ji, Z.-M., Chen, Z.-J., Niu, Q.-H., Wang, T.-J., Song, H., and Wang, T.-H.:
Laboratory study on the influencing factors and their control for the
coefficient of restitution during rockfall impacts, Landslides, 16,
1939–1963, https://doi.org/10.1007/s10346-019-01183-x, 2019.
Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G.,
and Gray, J. M. N. T.: Grain-size segregation and levee formation in
geophysical mass flows, J. Geophys. Res.-Earth Surf., 117, F01032, https://doi.org/10.1029/2011JF002185, 2012.
Jomelli, V. and Bertran, P.: Wet snow avalanche deposits in the french alps:
structure and sedimentology, Geografiska Annaler: Series A, Physical
Geography, 83, 15–28, https://doi.org/10.1111/j.0435-3676.2001.00141.x, 2001.
Lan, H., Zhang, Y., Macciotta, R., Li, L., Wu, Y., Bao, H., and Peng, J.:
The role of discontinuities in the susceptibility, development, and runout
of rock avalanches: a review, Landslides, 19, 1391–1404,
https://doi.org/10.1007/s10346-022-01868-w, 2022.
Li, H., Duan, Z., Wu, Y., Dong, C., and Zhao, F.: The Motion and Range of
Landslides According to Their Height, Front. Earth Sci., 9, 811, 736280, https://doi.org/10.3389/feart.2021.736280, 2021.
Li, L. P., Sun, S. Q., Li, S. C., Zhang, Q. Q., Hu, C., and Shi, S. S.:
Coefficient of restitution and kinetic energy loss of rockfall impacts, KSCE
J. Civ. Eng., 20, 2297–2307, https://doi.org/10.1007/s12205-015-0221-7, 2015.
Locat, P., Couture, R., Leroueil, S., Locat, J., and Jaboyedoff, M.:
Fragmentation energy in rock avalanches, Can. Geotech. J., 43, 830–851,
https://doi.org/10.1139/t06-045, 2006.
Lucas, A. and Mangeney, A.: Mobility and topographic effects for large
Valles Marineris landslides on Mars, Geophys. Res. Lett., 34, L10201,
https://doi.org/10.1029/2007GL029835, 2007.
Magnarini, G., Mitchell, T. M., Goren, L., Grindrod, P. M., and Browning,
J.: Implications of longitudinal ridges for the mechanics of ice-free long
runout landslides, Earth Planet. Sci. Lett., 574, 117177, https://doi.org/10.1016/j.epsl.2021.117177, 2021.
Makris, S., Manzella, I., Cole, P., and Roverato, M.: Grain size
distribution and sedimentology in volcanic mass-wasting flows: implications
for propagation and mobility, Int. J. Earth Sci., 109, 2679–2695,
https://doi.org/10.1007/s00531-020-01907-8, 2020.
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., and Lucas,
A.: Erosion and mobility in granular collapse over sloping beds, J. Geophys.
Res., 115, F03040, https://doi.org/10.1029/2009jf001462, 2010.
Mangold, N., Mangeney, A., Migeon, V., Ansan, V., Lucas, A., Baratoux, D.,
and Bouchut, F.: Sinuous gullies on Mars: Frequency, distribution, and
implications for flow properties, J. Geophys. Res., 115, E11001,
https://doi.org/10.1029/2009je003540, 2010.
Manzella, I. and Labiouse, V.: Flow experiments with gravel and blocks at
small scale to investigate parameters and mechanisms involved in rock
avalanches, Eng. Geol., 109, 146–158, 2009.
Manzella, I. and Labiouse, V.: Empirical and analytical analyses of
laboratory granular flows to investigate rock avalanche propagation,
Landslides, 10, 23–26, https://doi.org/10.1007/s10346-011-0313-5, 2013a.
Manzella, I. and Labiouse, V.: Empirical and analytical analyses of
laboratory granular flows to investigate rock avalanche propagation,
Landslides, 10, 23–26, https://doi.org/10.1007/s10346-011-0313-5, 2013b.
Mavrouli, O., Corominas, J., and Jaboyedoff, M.: Size Distribution for
Potentially Unstable Rock Masses and In Situ Rock Blocks Using
LIDAR-Generated Digital Elevation Models, Rock Mech. Rock Eng., 48,
1589–1604, https://doi.org/10.1007/s00603-014-0647-0, 2015.
McDougall, S.: 2014 Canadian Geotechnical Colloquium: Landslide runout
analysis – current practice and challenges, Can. Geotech. J., 54, 605–620,
https://doi.org/10.1139/cgj-2016-0104, 2016.
Moreiras, S. M.: The Plata Rock Avalanche: Deciphering the Occurrence of
This Huge Collapse in a Glacial Valley of the Central Andes (33∘
S), 8, 267, https://doi.org/10.3389/feart.2020.00267, 2020.
Pánek, T., Hradecký, J., Smolková, V., and Šilhán, K.:
Gigantic low-gradient landslides in the northern periphery of the Crimean
Mountains (Ukraine), Geomorphology, 95, 449–473, https://doi.org/10.1016/j.geomorph.2007.07.007, 2008.
Pedrazzini, A., Jaboyedoff, M., Loye, A., and Derron, M.-H.: From deep
seated slope deformation to rock avalanche: Destabilization and
transportation models of the Sierre landslide (Switzerland), Tectonophysics,
605, 149–168, https://doi.org/10.1016/j.tecto.2013.04.016,
2013.
Phillips, J. C., Hogg, A. J., Kerswell, R. R., and Thomas, N. H.: Enhanced
mobility of granular mixtures of fine and coarse particles, Earth Planet.
Sci. Lett., 246, 466–480, https://doi.org/10.1016/j.epsl.2006.04.007, 2006.
Reznichenko, N. V., Davies, T. R. H., and Alexander, D. J.: Effects of rock
avalanches on glacier behaviour and moraine formation, Geomorphology, 132,
327–338, https://doi.org/10.1016/j.geomorph.2011.05.019, 2011.
Schwarzkopf, L. M., Schmincke, H.-U., and Cronin, S. J.: A conceptual model
for block-and-ash flow basal avalanche transport and deposition, based on
deposit architecture of 1998 and 1994 Merapi flows, J. Volcanol. Geotherm.
Res., 139, 117–134, https://doi.org/10.1016/j.jvolgeores.2004.06.012, 2005.
Shea, T. and van Wyk de Vries, B.: Structural analysis and analogue modeling
of the kinematics and dynamics of rockslide avalanches, Geosphere, 4,
657–686, https://doi.org/10.1130/GES00131.1, 2008.
Shugar, D. H. and Clague, J. J.: The sedimentology and geomorphology of rock
avalanche deposits on glaciers, Sedimentology, 58, 1762–1783, https://doi.org/10.1111/j.1365-3091.2011.01238.x, 2011.
Ui, T., Kawachi, S., and Neall, V. E.: Fragmentation of debris avalanche
material during flowage – Evidence from the Pungarehu Formation, Mount
Egmont, New Zealand, J. Volcanol. Geotherm. Res., 27, 255–264, https://doi.org/10.1016/0377-0273(86)90016-8, 1986.
Voight, B. and Pariseau, W. G.: Rockslides and Avalanches: An Introduction,
in: Developments in Geotechnical Engineering, edited by: Voight, B.,
Elsevier, 67 pp., https://doi.org/10.1016/B978-0-444-41507-3.50008-8, 1978.
Wang, Y., Jiang, W., Cheng, S., Song, P., and Mao, C.: Effects of the impact angle on the coefficient of restitution in rockfall analysis based on a medium-scale laboratory test, Nat. Hazards Earth Syst. Sci., 18, 3045–3061, https://doi.org/10.5194/nhess-18-3045-2018, 2018.
Wang, Y., Cheng, Q., Lin, Q., Li, K., and Shi, A.: Observations on the
sedimentary structure of prehistoric rock avalanches on the Tibetan Plateau,
China, Earth Science Frontiers, 28, 106–124, 2021 (in Chinese).
Wang, Y. F., Cheng, Q. G., Lin, Q. W., Li, K., and Yang, H. F.: Insights
into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan
Plateau, China) based on its complex surface landforms, Geomorphology, 317,
170–183, https://doi.org/10.1016/j.geomorph.2018.05.025, 2018.
Wang, Y.-F., Cheng, Q.-G., Shi, A.-W., Yuan, Y.-Q., Yin, B.-M., and Qiu,
Y.-H.: Sedimentary deformation structures in the Nyixoi Chongco rock
avalanche: implications on rock avalanche transport mechanisms, Landslides,
16, 523–532, https://doi.org/10.1007/s10346-018-1117-7, 2019.
Welkner, D., Eberhardt, E., and Hermanns, R. L.: Hazard investigation of the
Portillo Rock Avalanche site, central Andes, Chile, using an integrated
field mapping and numerical modelling approach, Eng. Geol., 114, 278–297,
https://doi.org/10.1016/j.enggeo.2010.05.007, 2010.
Yang, Q., Cai, F., Ugai, K., Yamada, M., Su, Z., Ahmed, A., Huang, R., and
Xu, Q.: Some factors affecting mass-front velocity of rapid dry granular
flows in a large flume, Eng. Geol., 122, 249–260, https://doi.org/10.1016/j.enggeo.2011.06.006, 2011.
Zeng, Q., Wei, R., McSaveney, M., Ma, F., Yuan, G., and Liao, L.: From
surface morphologies to inner structures: insights into hypermobility of the
Nixu rock avalanche, southern Tibet, China, Landslides, 18, 125–143,
https://doi.org/10.1007/s10346-020-01503-6, 2020.
Zhang, G., Tang, H., Xiang, X., Murat, K., and Wu, J.: Theoretical study of
rockfall impacts based on logistic curves, Int. J. Rock Mech. Min. Sci., 78,
133–143, https://doi.org/10.1016/j.ijrmms.2015.06.001, 2015.
Zhang, M., Wu, L., Zhang, J., and Li, L.: The 2009 Jiweishan rock avalanche,
Wulong, China: deposit characteristics and implications for its
fragmentation, Landslides, 16, 893–906, https://doi.org/10.1007/s10346-019-01142-6, 2019.
Zhao, B., Zhao, X., Zeng, L., Wang, S., and Du, Y.: The mechanisms of
complex morphological features of a prehistorical landslide on the eastern
margin of the Qinghai-Tibetan Plateau, Bull. Eng. Geol. Environ., 80,
3423–3437, https://doi.org/10.1007/s10064-021-02114-8, 2021.
Zhu, L., Liang, H., He, S., Liu, W., Zhang, Q., and Li, G.: Failure
mechanism and dynamic processes of rock avalanche occurrence in Chengkun
railway, China, on August 14, 2019, Landslides, 17, 943–957,
https://doi.org/10.1007/s10346-019-01343-z, 2020.
Zhu, Y., Dai, F., and Yao, X.: Preliminary understanding of the emplacement
mechanism for the Tahman rock avalanche based on deposit landforms, Q. J.
Eng. Geol. Hydrogeol., 53, 460–465, https://doi.org/10.1144/qjegh2019-079, 2019.
Short summary
We studied the mobility and sedimentary characteristics of rock avalanches influenced by initial discontinuity sets with experimental methods. In the experiments, we set different initial configurations of blocks. The results revealed that the mobility and surface structures of the mass flows differed significantly. In the mass deposits, the block orientations were affected by their initial configurations and the motion processes of the mass flows.
We studied the mobility and sedimentary characteristics of rock avalanches influenced by initial...