Articles | Volume 13, issue 11
https://doi.org/10.5194/se-13-1697-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1697-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak
CORRESPONDING AUTHOR
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-205 Sosnowiec, Poland
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland
Lesław Teper
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-205 Sosnowiec, Poland
Florian Wellmann
Computational Geoscience and Reservoir Engineering, RWTH Aachen, Wüllnerstr. 2, 52056 Aachen, Germany
Jerzy Żaba
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-205 Sosnowiec, Poland
Krzysztof Gaidzik
Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60, 41-205 Sosnowiec, Poland
Marcin Kostur
Faculty of Science and Technology, University of Silesia in Katowice, 75. Pułku Piechoty, 41-500 Chorzów, Poland
Yuriy P. Maystrenko
The Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7040 Trondheim, Norway
Paulina Leonowicz
Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
Related authors
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025, https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Short summary
Using geometric features of synthetic triangulated models of subsurface homoclinal interfaces, we applied machine learning to detect faults. Testing on real borehole data validated its effectiveness across various fault orientations. The supervised approach represents a significant improvement over older methods that relied on simpler clustering techniques which were capable of identifying fewer orientations of potential faults.
Michał P. Michalak, Janusz Morawiec, and Peter Menzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3327, https://doi.org/10.5194/egusphere-2024-3327, 2025
Short summary
Short summary
This study analyzes geological faults using triangular surface data to model displaced horizons, considering scenarios with and without elevation uncertainties. Formal proofs and computational experiments show that without elevation errors, identical dip directions occur. Even with uncertainties, the expected dip direction remains consistent. The findings offer insights for predicting fault geometry in data-sparse environments, improving fault modeling with imprecise elevation data.
Friedrich Carl, Peter Achtziger-Zupančič, Jian Yang, Marlise Colling Cassel, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3203, https://doi.org/10.5194/egusphere-2025-3203, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
A method for shape quantification based on geometrical parameters is proposed alongside a set of regular geometries established as geomodeling benchmarks. Dimensions, gradient and curvature data is obtained on cross-sections. Data analyses provide insight into the main geometrical characteristics of the benchmark models and visualizes geometrical dis-/similarities between bodies. The method and benchmarks are usable in geomodeling workflows and structural comparisons based on sparse data.
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025, https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Short summary
Using geometric features of synthetic triangulated models of subsurface homoclinal interfaces, we applied machine learning to detect faults. Testing on real borehole data validated its effectiveness across various fault orientations. The supervised approach represents a significant improvement over older methods that relied on simpler clustering techniques which were capable of identifying fewer orientations of potential faults.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Michał P. Michalak, Janusz Morawiec, and Peter Menzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3327, https://doi.org/10.5194/egusphere-2024-3327, 2025
Short summary
Short summary
This study analyzes geological faults using triangular surface data to model displaced horizons, considering scenarios with and without elevation uncertainties. Formal proofs and computational experiments show that without elevation errors, identical dip directions occur. Even with uncertainties, the expected dip direction remains consistent. The findings offer insights for predicting fault geometry in data-sparse environments, improving fault modeling with imprecise elevation data.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Michael Hillier, Florian Wellmann, Eric A. de Kemp, Boyan Brodaric, Ernst Schetselaar, and Karine Bédard
Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023, https://doi.org/10.5194/gmd-16-6987-2023, 2023
Short summary
Short summary
Neural networks can be used effectively to model three-dimensional geological structures from point data, sampling geological interfaces, units, and structural orientations. Existing neural network approaches for this type of modelling are advanced by the efficient incorporation of unconformities, new knowledge inputs, and improved data fitting techniques. These advances permit the modelling of more complex geology in diverse geological settings, different-sized areas, and various data regimes.
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579, https://doi.org/10.5194/gmd-16-3565-2023, https://doi.org/10.5194/gmd-16-3565-2023, 2023
Short summary
Short summary
In this work, we propose a flexible framework to generate and interact with geological models using explicit surface representations. The essence of the work lies in the determination of the flexible control mesh, topologically similar to the main geological structure, watertight and controllable with few control points, to manage the geological structures. We exploited the subdivision surface method in our work, which is commonly used in the animation and gaming industry.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Cited articles
Abramovitz, T. and Thybo, H.:
Seismic images of Caledonian, lithosphere-scale collision structures in the southeastern North Sea along Mona Lisa Profile 2, Tectonophysics, 317, 27–54, https://doi.org/10.1016/S0040-1951(99)00266-8, 2000.
Allmendinger, R. W.:
GMDE: Extracting quantitative information from geologic maps, Geosphere, 16, 1495–1507, https://doi.org/10.1130/GES02253.1, 2020.
Baldschuhn, R., Binot, S., Fleig, S., and Kockel, F.:
Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor — Strukturen, Struckurenwicklung, Paläogeographie, Geol. Jahrb., A153, 1–88, 2001.
Bardziński, W., Lewandowski, J., Więckowski, R., and Zieliński, T.:
Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000, ark. Częstochowa (845), Wydawnictwa Geologiczne, Warszawa, 72 pp., 1986.
Bednarek, J., Haisig, J., Lewandowski, J., and Wilanowski, S.:
Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, Arkusz Kłobuck (808), PIG, Warszawa, 66 pp., 1992.
Bell, R. E., Jackson, C. A. L., Elliott, G. M., Gawthorpe, R. L., Sharp, I. R., and Michelsen, L.:
Insights into the development of major rift-related unconformities from geologically constrained subsidence modelling: Halten Terrace, offshore mid Norway, Basin Res., 26, 203–224, https://doi.org/10.1111/bre.12049, 2014.
Benek, R., Kramer, W., McCann, T., Scheck, M., Negendank, J. F. W., Korich, D., Huebscher, H. D., and Bayer, U.:
Permo–Carboniferous magmatism of the Northeast German Basin, Tectonophysics, 266, 379–404, https://doi.org/10.1016/S0040-1951(96)00199-0, 1996.
Bergen, K. J., Johnson, P. A., De Hoop, M. V., and Beroza, G. C.:
Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019.
Betz, D., Führer, F., Greiner, G., and Plein, E.:
Evolution of the Lower Saxony Basin, Tectonophysics, 137, 127–170, https://doi.org/10.1016/0040-1951(87)90319-2, 1987.
Bond, C. E.:
Uncertainty in structural interpretation: Lessons to be learnt, J. Struct. Geol., 74, 185–200, https://doi.org/10.1016/j.jsg.2015.03.003, 2015.
Brink, H., Franke, D., Hoffmann, N., Horst, W., and Oncken, O.:
Structure and evolution of the North German Basin, in: The European Geotraverse: Integrative Studies, edited by: Freeman, R., Giese, P., and Mueler, S., European Science Foundation, Strasbourg, 195–212 pp., 1990.
Buła, Z., Habryn, R., Jachowicz-Zdanowska, M., and Żaba, J.:
The precambrian and lower paleozoic of the brunovistulicum (eastern part of the upper silesian block, southern Poland) – The state of the art, Geol. Q., 59, 123–134, https://doi.org/10.7306/gq.1203, 2015.
Carmichael, T. and Ailleres, L.:
Method and analysis for the upscaling of structural data, J. Struct. Geol., 83, 121–133, https://doi.org/10.1016/j.jsg.2015.09.002, 2016.
Caumon, G., Collon-Drouaillet, P., Le Carlier De Veslud, C., Viseur, S., and Sausse, J.:
Surface-based 3D modeling of geological structures, Math. Geosci., 41, 927–945, https://doi.org/10.1007/s11004-009-9244-2, 2009.
Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W. H., and Totake, Y.:
LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models, J. Struct. Geol., 98, 67–82, https://doi.org/10.1016/j.jsg.2017.04.004, 2017.
Choi, J., Cho, H., Kwac, J., and Davis, L. S.:
Toward sparse coding on cosine distance, in: 2014 22nd International Conference on Pattern Recognition, 24–28 August 2014, Stockholm, Sweden, https://doi.org/10.1109/ICPR.2014.757, 2014.
Clausen, O. R. and Korstgård, J. A.:
Planar detaching faults in the southern Horn Graben, Danish North Sea, Mar. Petrol. Geol., 13, 537–548, https://doi.org/10.1016/0264-8172(96)00001-3, 1996.
Collon, P., Steckiewicz-Laurent, W., Pellerin, J., Laurent, G., Caumon, G., Reichart, G., and Vaute, L.:
3D geomodelling combining implicit surfaces and Voronoi-based remeshing: A case study in the Lorraine Coal Basin (France), Comput. Geosci., 77, 29–43, https://doi.org/10.1016/j.cageo.2015.01.009, 2015.
Cracknell, M. J. and Reading, A. M.:
Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information, Comput. Geosci., 63, 22–33, https://doi.org/10.1016/j.cageo.2013.10.008, 2014.
Curtis, A.:
The science of subjectivity, Geology, 40, 95–96, https://doi.org/10.1130/focus012012.1, 2012.
Dadlez, R.:
Mesozoic thickness pattern in the Mid-Polish Trough, Geol. Q., 47, 223–240, 2003.
Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., and van Wees, J. D.:
Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology, Tectonophysics, 252, 179–195, https://doi.org/10.1016/0040-1951(95)00104-2, 1995.
Davis, J. C.:
Statistics and data analysis in geology, 3rd edn., Wiley, New York, ISBN 978-0-471-17275-8, 656 pp., 2002.
Davison, I., Alsop, G. I., Evans, N. G., and Safaricz, M.:
Overburden deformation patterns and mechanisms of salt diapir penetration in the Central Graben, North Sea, Mar. Petrol. Geol., 17, 601–618, https://doi.org/10.1016/S0264-8172(00)00011-8, 2000.
De Berg, M., Cheong, O., Van Kreveld, M., and Overmars, M.:
Computational Geometry: Algorithms and Applications, 3rd edn., Springer, 364 pp., https://doi.org/10.2307/3620533, 2008.
Di, H. and Gao, D.:
3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization, Pure Appl. Geophys., 174, 747–761, https://doi.org/10.1007/s00024-016-1406-9, 2017.
Doornenbal, J. C., Abbink, O. A., Pagnier, H. J. M., and Van Wees, J. D.:
Petroleum geological atlas of the southern permian basin area -Overview SPB-atlas project-organisation and results, in: Tunis 2009 – 4th North African/Mediterranean Petroleum and Geosciences Conference and Exhibition, 2–4 March 2009, Tunis, Tunisia, https://doi.org/10.3997/2214-4609.20145798, 2009.
Erlström, M., Thomas, S. A., Deeks, N., and Sivhed, U.:
Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area, Tectonophysics, 271, 191–215, https://doi.org/10.1016/S0040-1951(96)00247-8, 1997.
Erratt, D., Thomas, G. M., and Wall, G. R. T.:
The evolution of the Central North sea rift, in: Petroleum Geology Conference Proceedings, Geol. Soc. Spec. Publ., 63–82, https://doi.org/10.1144/0050063, 1999.
Evans, D., Graham, C., Armour, A., and Bathurst, P.:
The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, The Geological Society of London, London, ISBN 10 186239119X, ISBN 13 9781862391192, 2003.
Fisher, N. I.:
Statistical analysis of circular data, Cambridge University Press, 277 pp., https://doi.org/10.1017/cbo9780511564345, 1993.
Fisher, N. I., Huntington, J. F., Jacket, D. R., Willcox, M. E., and Creasey, J. W.:
Spatial analysis of two-dimensional orientation data., J. Int. Ass. Math. Geol., 17, 177–194, https://doi.org/10.1007/BF01033153, 1985.
Fossen, H.:
Structural geology, 2nd edn., Cambridge University Press, Cambridge, ISBN 10 1107057647, ISBN 13 978-1107057647, 2006.
Fossen, H., Khani, H. F., Faleide, J. I., Ksienzyk, A. K., and Dunlap, W. J.:
Post-Caledonian extension in the West Norway-northern North Sea region: The role of structural inheritance, Geol. Soc. Spec. Publ., 439, 465–486, https://doi.org/10.1144/SP439.6, 2017.
Frederiksen, S., Nielsen, S. B., and Balling, N.:
Post-Permian evolution of the Central North Sea: A numerical model, Tectonophysics, 343, 185–203, https://doi.org/10.1016/S0040-1951(01)00224-4, 2001.
Frey, P. J. and Borouchaki, H.:
Surface mesh quality evaluation, Int. J. Numer. Methods Eng., 45, 101–118, https://doi.org/10.1002/(SICI)1097-0207(19990510)45:1<101::AID-NME582>3.0.CO;2-4, 1999.
Geluk, M. C.:
Late Permian (Zechstein) carbonate-facies maps, the Netherlands, Neth. J. Geosci., 79, 17–27, https://doi.org/10.1017/S0016774600021545, 2000.
Graversen, O.:
A structural transect between the central North Sea Dome andthe South Swedish Dome: Middle Jurassic – quaternary uplift – subsidence reversal and exhumation across the eastern North Sea Basin, Geol. Soc. Spec. Publ., 196, 67–83, https://doi.org/10.1144/GSL.SP.2002.196.01.05, 2002.
Groshong, R. H.:
3-D Structural Geology, Springer, Berlin, Heidelberg, 400 pp., https://doi.org/10.1007/978-3-540-31055-6, 2006.
Hammah, R. E. and Curran, J. H.:
On distance measures for the fuzzy K-means algorithm for joint data, Rock Mech. Rock Eng., 32, 1–27, https://doi.org/10.1007/s006030050041, 1999.
Hansen, D. L., Nielsen, S. B., and Lykke-Andersen, H.:
The post-Triassic evolution of the Sorgenfrei–Tornquist Zone – Results from thermo-mechanical modelling, Tectonophysics, 328, 245–267, https://doi.org/10.1016/S0040-1951(00)00216-X, 2000.
Harding, T. P. and Tuminas, A. C.:
Structural interpretation of hydrocarbon traps sealed by basement normal block faults at stable flank of foredeep basins and at rift basins, Am. Assoc. Petr. Geol. B., 73, 812–840, https://doi.org/10.1306/44b4a276-170a-11d7-8645000102c1865d, 1989.
Hastie, T., Tibshirani, R., and Friedman, J.:
The Elements of Statistical Learning – Data Mining, Inference and Prediction, Springer New York, NY, https://doi.org/10.1007/978-0-387-84858-7, 2009.
Heeremans, M., Faleide, J. I., and Larsen, B. T.:
Late Carboniferous-Permian of NW Europe: An introduction to a new regional map, Geol. Soc. Spec. Publ., 223, 75, https://doi.org/10.1144/GSL.SP.2004.223.01.04, 2004.
Hornik, K., Feinerer, I., Kober, M., and Buchta, C.:
Spherical k-means clustering, J. Stat. Softw., 50, 1–22, https://doi.org/10.18637/jss.v050.i10, 2012.
James, G., Witten, D., Hastie, T., and Tibshirani, R.:
An Introduction to Statistical Learning with Applications in R, Springer, New York, 426 pp., https://doi.org/10.1007/978-1-4614-7138-7, 2013.
Jarosiński, M., Poprawa, P., and Ziegler, P. A.:
Cenozoic dynamic evolution of the Polish Platform, Geol. Q., 53, 3–26, 2009.
Johnson, P. A., Rouet-Leduc, B., Pyrak-Nolte, L. J., Beroza, G. C., Marone, C. J., Hulbert, C., Howard, A., Singer, P., Gordeev, D., Karaflos, D., Levinson, C. J., Pfeiffer, P., Puk, K. M., and Reade, W.:
Laboratory earthquake forecasting: A machine learning competition, P. Natl. Acad. Sci. USA, 118, https://doi.org/10.1073/pnas.2011362118, 2021.
Kania, M. and Szczęch, M.:
Geometry and topology of tectonolineaments in the Gorce Mts. (Outer Carpathians) in Poland, J. Struct. Geol., 141, 104186, https://doi.org/10.1016/j.jsg.2020.104186, 2020.
Karlo, J. F., Van Buchem, F. S. P., Moen, J., and Milroy, K.:
Triassic-age salt tectonics of the Central North Sea, Interpretation, 2, SM19–SM28, https://doi.org/10.1190/INT-2014-0032.1, 2014.
Karnkowski, P. H.:
Regionalizacja tektoniczna Polski – Niż Polski, Prz. Geol., 56, 895–903, 2008.
Kockel, F.:
Rifting processes in NW-Germany and the German North Sea sector, Neth. J. Geosci., 81, 149–158, https://doi.org/10.1017/S0016774600022381, 2002.
Kopik, J.:
Lower and Middle Jurassic of the north-eastern margin of the Upper Silesian Coal Basin (in Polish with English summary), Biul. Państwowego Inst. Geol., 378, 67–129, 1998.
Krokowski, J.:
Mezoskopowe studia strukturalne w osadach permsko-mezozoicznych południowo-wschodniej części Wyżyny Śląsko–Krakowskiej, Ann. Soc. Geol. Pol., 54, 79–121, 1984.
Krzywiec, P.:
Triassic evolution of the Kłodawa salt structure: Basement-controlled salt tectonics within the Mid-Polish Trough (Central Poland), Geol. Q., 48, 123–134, 2004.
Krzywiec, P.:
Triassic-Jurassic evolution of the Pomeranian segment of the Mid-Polish Trough – Basement tectonics and subsidence patterns, Geol. Q., 50, 139–150, 2006.
Krzywiec, P.:
Mesozoic and Cenozoic evolution of salt structures within: The Polish Basin: An overview, Geol. Soc. Spec. Publ., 363, 381–394, https://doi.org/10.1144/SP363.17, 2012.
Krzywiec, P., Kufrasa, M., Poprawa, P., Mazur, S., Koperska, M., and Ślemp, P.:
Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland, Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, 2022.
Kuhn, S., Cracknell, M. J., and Reading, A. M.:
Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia, Geophysics, 83, B183–B193, https://doi.org/10.1190/geo2017-0590.1, 2018.
Kutek, J. and Głazek, J.:
The Holy Cross area, central Poland, in the Alpine cycle, Acta Geol. Pol., 22, 603–651, 1972.
Kyrkjebø, R., Gabrielsen, R. H., and Faleide, J. I.:
Unconformities related to the Jurassic-Cretaceous synrift-post-rift transition of the northern North Sea, J. Geol. Soc. London, 161, 1–17, https://doi.org/10.1144/0016-764903-051, 2004.
Lamarche, J. and Scheck-Wenderoth, M.:
3D structural model of the Polish Basin, Tectonophysics, 397, 73–91, https://doi.org/10.1016/j.tecto.2004.10.013, 2005.
Lassen, A. and Thybo, H.:
Neoproterozoic and Palaeozoic evolution of SW Scandinavia based on integrated seismic interpretation, Precambrian Res., 204, 75–104, https://doi.org/10.1016/j.precamres.2012.01.008, 2012.
Matyszkiewicz, J. and Krajewski, M.:
Lithology and sedimentation of Upper Jurassic massive limestones near Bolechowice, Kraków-Wieluń Upland, south Poland, Ann. Soc. Geol. Pol., 66, 285–301, 1996.
Maystrenko, Y., Bayer, U., and Scheck-Wenderoth, M.:
The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe, Tectonophysics, 397, 113–126, https://doi.org/10.1016/j.tecto.2004.10.004, 2005.
Maystrenko, Y., Bayer, U., and Scheck-Wenderoth, M.:
3D reconstruction of salt movements within the deepest post-Permian structure of the Central European Basin System – The Glueckstadt Graben, Neth. J. Geosci., 85, 181–196, https://doi.org/10.1017/S0016774600021466, 2006.
Maystrenko, Y., Bayer, U., Brink, H. J., and Littke, R.:
The central european basin system-An overview, in: Dynamics of Complex Sedimentary Basins. The Example of the Central European Basin System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer-Verlag, Berlin, Heidelberg, 307–322, https://doi.org/10.1007/978-3-540-85085-4_2, 2008.
Maystrenko, Y. P. and Scheck-Wenderoth, M.:
3D lithosphere-scale density model of the Central European Basin System and adjacent areas, Tectonophysics, 601, 53–77, https://doi.org/10.1016/j.tecto.2013.04.023, 2013.
Maystrenko, Y. P., Bayer, U., and Scheck-Wenderoth, M.:
Regional-scale structural role of permian salt within the Central European Basin System, Geol. Soc. Spec. Publ., 363, 409–430, https://doi.org/10.1144/SP363.19, 2012.
Maystrenko, Y. P., Bayer, U., and Scheck-Wenderoth, M.:
Salt as a 3D element in structural modeling – Example from the central european basin system, Tectonophysics, 591, 62–82, https://doi.org/10.1016/j.tecto.2012.06.030, 2013.
Maystrenko, Y. P., Scheck-Wenderoth, M., and Anikiev, D.:
3D-CEBS: Three-dimensional lithospheric-scale structural model of the Central European Basin System and adjacent areas, GFZ Data Services, Potsdam, https://doi.org/10.5880/GFZ.4.5.2020.006, 2020.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.:
Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins, Int. J. Earth Sci., 94, 782–798, https://doi.org/10.1007/s00531-005-0016-z, 2005.
Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M., and Buffenmyer, V.:
Pomeranian Caledonides, NW Poland – A collisional suture or thin-skinned fold-and-thrust belt?, Tectonophysics, 692, 29–43, https://doi.org/10.1016/j.tecto.2016.06.017, 2016.
Mazur, S., Malinowski, M., Maystrenko, Y. P., and Gągała, Ł.:
Pre-existing lithospheric weak zone and its impact on continental rifting – The Mid-Polish Trough, Central European Basin System, Global Planet. Change, 198, 103417, https://doi.org/10.1016/j.gloplacha.2021.103417, 2021.
McLellan, M. and Audet, P.:
Uncovering the physical controls of deep subduction zone slow slip using supervised classification of subducting plate features, Geophys. J. Int., 223, 94–110, https://doi.org/10.1093/gji/ggaa285, 2020.
Medhus, A. B., Balling, N., Jacobsen, B. H., Weidle, C., England, R. W., Kind, R., Thybo, H., and Voss, P.:
Upper-mantle structure beneath the Southern Scandes Mountains and the Northern Tornquist Zone revealed by P-wave traveltime tomography, Geophys. J. Int., 189, 1315–1334, https://doi.org/10.1111/j.1365-246X.2012.05449.x, 2012.
Michalak, M.:
Numerical limitations of the attainment of the orientation of geological planes, Open Geosci., 10, 395–402, https://doi.org/10.1515/geo-2018-0031, 2018.
Michalak, M.:
Clustering has a meaning: optimization of angular similarity to detect geometric anomalies in geological terrains – Input and processed data, Zenodo [data set], https://doi.org/10.5281/zenodo.6405496, 2021a.
Michalak, M.:
GeoAnomalia, GitHub [code], https://github.com/michalmichalak997/SurfaceCompare/blob/master/orientation_maps.cpp (last access: 27 October 2022), 2021b.
Michalak, M. P., Bardziński, W., Teper, L., and Małolepszy, Z.:
Using Delaunay triangulation and cluster analysis to determine the orientation of a sub-horizontal and noise including contact in Kraków–Silesian Homocline, Poland, Comput. Geosci., 133, 104322, https://doi.org/10.1016/j.cageo.2019.104322, 2019.
Michalak, M. P., Kuzak, R., Gładki, P., Kulawik, A., and Ge, Y.:
Constraining uncertainty of fault orientation using a combinatorial algorithm, Comput. Geosci., 154, 104777, https://doi.org/10.1016/j.cageo.2021.104777, 2021.
Mizerski, W.:
Geologia Polski, VI., PWN, Warszawa, 312 pp., ISBN 978-83-01-21242-1, 2020.
Mogensen, T. E. and Jensen, L. N.:
Cretaceous subsidence and inversion along the Tornquist Zone from Kattegat to the Egersund Basin, First Break, 12, 211–222, https://doi.org/10.3997/1365-2397.1994016, 1994.
Møller, J. J. and Rasmussen, E. S.:
Middle Jurassic–Early Cretaceous rifting of the Danish Central Graben, Geol. Surv. Den. Greenl., 1, 247–264, https://doi.org/10.34194/geusb.v1.4654, 2003.
Narkiewicz, M.:
Geologiczna historia Polski, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, 279 pp., https://doi.org/10.31338/uw.9788323542667, 2020.
NITG: Geological Atlas of the Netherlands – onshore (1:1 000 000), Netherlands Institute for Applied Geoscience TNO – National Geological Survey, Utrecht, 2004.
Odinsen, T., Christiansson, P., Gabrielsen, R. H., Faleide, J. I., and Berge, A. M.:
The geometries and deep structure of the northern North Sea rift system, Geol. Soc. Spec. Publ., 167, 41–57, https://doi.org/10.1144/GSL.SP.2000.167.01.03, 2000.
Osika, R., Pożaryski, W., Rühle, E., and Znosko, J.:
Geological map of Poland without Cainozoic formations, 1:500 000, Wydawnictwa Geologiczne, Warszawa, 1972.
Otto, V.:
Inversion-related features along the southeastern margin of the North German Basin (Elbe Fault System), Tectonophysics, 373, 107–123, https://doi.org/10.1016/S0040-1951(03)00287-7, 2003.
PGS: North Sea Digital Atlas – Version 2.0 (NSDA-2.0), GS Reservoir, Berks, UK, 2003.
Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A. L., Bell, R. E., Faleide, J. I., and Rotevatn, A.:
The Influence of Structural Inheritance and Multiphase Extension on Rift Development, the Northern North Sea, Tectonics, 38, 4099–4126, https://doi.org/10.1029/2019TC005756, 2019.
Plein, E.:
The southern Permian Basin and its paleogeography, in: The Southern Permian Basin and its Paleogeography, in: Sediments and Environmental Geochemistry, edited by: Heling D., Rothe P., Förstner U., Stoffers P., Springer, Berlin, Heidelberg, 124–133, https://doi.org/10.1007/978-3-642-75097-7_7, 1990.
Rank-Friend, M. and Elders, C. F.:
The Evolution and Growth of Central Graben Salt Structures, Salt Dome Province, Danish North Sea, Geol. Soc. Mem., 29, 149, https://doi.org/10.1144/GSL.MEM.2004.029.01.15, 2004.
Roberts, A.:
Curvature attributes and their application to 3D interpreted horizons, First Break, 19, 85–100, https://doi.org/10.1046/j.0263-5046.2001.00142.x, 2001.
Rousseeuw, P. J.:
Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, 1987.
Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D., and Pharaoh, T. T.:
The Elbe fault system in North Central Europe- a basement controlled zone of crustal weakness, Tectonophysics, 360, 281–299, https://doi.org/10.1016/S0040-1951(02)00357-8, 2002.
Scheck, M., Bayer, U., and Lewerenz, B.:
Salt movement in the Northeast German Basin and its relation to major post-Permian tectonic phases – results from 3D structural modelling, backstripping and reflection seismic data, Tectonophysics, 361, 277–299, https://doi.org/10.1016/S0040-1951(02)00650-9, 2003.
Scheck-Wenderoth, M. and Lamarche, J.:
Crustal memory and basin evolution in the Central European Basin System – New insights from a 3D structural model, Tectonophysics, 397, 143–165, https://doi.org/10.1016/j.tecto.2004.10.007, 2005.
Schneeberger, R., de La Varga, M., Egli, D., Berger, A., Kober, F., Wellmann, F., and Herwegh, M.:
Methods and uncertainty estimations of 3-D structural modelling in crystalline rocks: a case study, Solid Earth, 8, 987–1002, https://doi.org/10.5194/se-8-987-2017, 2017.
Seydoux, L., Balestriero, R., Poli, P., Hoop, M. de, Campillo, M., and Baraniuk, R.:
Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning, Nat. Commun., 11, 1–12, https://doi.org/10.1038/s41467-020-17841-x, 2020.
Słonka, Ł. and Krzywiec, P.:
Upper Jurassic carbonate buildups in the Miechów Trough, southern Poland – insights from seismic data interpretations, Solid Earth, 11, 1097–1119, https://doi.org/10.5194/se-11-1097-2020, 2020.
Srinivasan, G., Hyman, J. D., Osthus, D. A., Moore, B. A., O'Malley, D., Karra, S., Rougier, E., Hagberg, A. A., Hunter, A., and Viswanathan, H. S.:
Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning, Sci. Rep.-UK, 8, 1–11, https://doi.org/10.1038/s41598-018-30117-1, 2018.
Stemmerik, L., Ineson, J. R., and Mitchell, J. G.:
Stratigraphy of the Rotliegend group in the Danish part of the Northern Permian Basin, North Sea, J. Geol. Soc. London, 157, 1127–1136, https://doi.org/10.1144/jgs.157.6.1127, 2000.
Stupnicka, E. and Stempień-Sałek, M.:
Geologia regionalna Polski, Wydawn. Uniw. Warszawskiego, Warszawa, https://doi.org/10.31338/uw.9788323522515, 2016.
Thiele, S. T., Jessell, M. W., Lindsay, M., Ogarko, V., Wellmann, J. F., and Pakyuz-Charrier, E.:
The topology of geology 1: Topological analysis, J. Struct. Geol., 91, 27–38, https://doi.org/10.1016/j.jsg.2016.08.009, 2016.
Trusheim, F.:
Mechanism of Salt Migration in Northern Germany, Am. Assoc. Petr. Geol. B., 44, 1519–1540, 1960.
Usaityte, D.:
The geology of the southeastern Baltic Sea: A review, Earth Sci. Rev., 50, 137–225, https://doi.org/10.1016/S0012-8252(00)00002-7, 2000.
Valera, M., Guo, Z., Kelly, P., Matz, S., Cantu, V. A., Percus, A. G., Hyman, J. D., Srinivasan, G., and Viswanathan, H. S.:
Machine learning for graph-based representations of three-dimensional discrete fracture networks, Comput. Geosci., 22, 695–710, https://doi.org/10.1007/s10596-018-9720-1, 2018.
Vejbæk, O. V.:
The Horn Graben, and its relationship to the Oslo Graben and the Danish Basin, Tectonophysics, 178, 29–49, https://doi.org/10.1016/0040-1951(90)90458-K, 1990.
Vejbæk, O. V. and Andersen, C.:
Post mid-cretaceous inversion tectonics in the Danish Central Graben – regionally synchronous tectonic events?, B. Geol. Soc. Denmark, 49, 129–144, https://doi.org/10.37570/bgsd-2003-49-11, 2002.
Voigt, T., Reicherter, K., von Eynatten, H., Littke, R., Voigt, S., and Kley, J.:
Sedimentation during basin inversion, in: Dynamics of Complex Sedimentary Basins. The Example of the Central European Basin System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer-Verlag, Berlin, Heidelberg, 211–232, ISBN 978-3-540-85085-4, 2008.
Wang, Y., Ksienzyk, A. K., Liu, M., and Brönner, M.:
Multi-geophysical data integration using cluster analysis: Assisting geological mapping in Trøndelag, Mid-Norway, Geophys. J. Int., 225, 1142–1157, https://doi.org/10.1093/gji/ggaa571, 2020.
Warsitzka, M., Jähne-Klingberg, F., Kley, J., and Kukowski, N.:
The timing of salt structure growth in the Southern Permian Basin (Central Europe) and implications for basin dynamics, Basin Res., 31, 337–360, https://doi.org/10.1111/bre.12323, 2019.
Wiest, J. D., Wrona, T., Bauck, M. S., Fossen, H., Gawthorpe, R. L., Osmundsen, P. T., and Faleide, J. I.:
From Caledonian Collapse to North Sea Rift: The Extended History of a Metamorphic Core Complex, Tectonics, 39, e2020TC006178, https://doi.org/10.1029/2020TC006178, 2020.
Xiong, Y. and Zuo, R.:
A positive and unlabeled learning algorithm for mineral prospectivity mapping, Comput. Geosci., 147, 104667, https://doi.org/10.1016/j.cageo.2020.104667, 2021.
Yvinec, M.:
2D Triangulation, https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2 (last access: 27 October 2022), The CGAL project, 2021.
Zakrzewski, M.:
Charakterystyka geologiczna spągowego poziomu rud syderytowych w obszarze częstochowskim, Wydawnictwa Geologiczne, Warszawa, 61 pp., 1976.
Zhan, J., Chen, J., Xu, P., Zhang, W., Han, X., and Zhou, X.:
Automatic Identification of Rock Fracture Sets Using Finite Mixture Models, Math. Geosci., 49, 1021–1056, https://doi.org/10.1007/s11004-017-9702-1, 2017a.
Zhan, J., Xu, P., Chen, J., Wang, Q., Zhang, W., and Han, X.:
Comprehensive characterization and clustering of orientation data: A case study from the Songta dam site, China, Eng. Geol., 225, 3–18, https://doi.org/10.1016/j.enggeo.2017.01.010, 2017b.
Zhang, D., Li, Y., and Zhang, Z.:
Deep metric learning with spherical embedding, in: Advances in Neural Information Processing Systems, 33, 18772–18783, 2020.
Ziegler, P. A.:
Collision related intra-plate compression deformations in Western and Central Europe, J. Geodyn., 11, 357–388, https://doi.org/10.1016/0264-3707(90)90017-O, 1990a.
Ziegler, P. A.:
Geological Atlas of western and central Europe, Shell International Petroleum Maatschappij BV, The Hague, the Netherlands, 1990b.
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
When characterizing geological/geophysical surfaces, various geometric attributes are...