Articles | Volume 13, issue 2
https://doi.org/10.5194/se-13-271-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-271-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Sara Raič
CORRESPONDING AUTHOR
Geological Survey of Finland, Espoo, 02151, Finland
Ferenc Molnár
Geological Survey of Finland, Espoo, 02151, Finland
current address: Department of Mineralogy, Institute of Geography and
Earth Sciences, Eötvös Loránd University, Budapest, 1117,
Hungary
Nick Cook
Mawson Gold Ltd., Vancouver, V6E 3V7, Canada
School of Earth and Environmental Sciences, University of St Andrews,
St Andrews KY16 9TS, UK
Hugh O'Brien
Geological Survey of Finland, Espoo, 02151, Finland
Yann Lahaye
Geological Survey of Finland, Espoo, 02151, Finland
Related authors
No articles found.
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024, https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Squirt flow due to interfacial water films in hydrate bearing sediments
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Marc Campeny, Inmaculada Menéndez, Luis Quevedo, Jorge Yepes, Ramón Casillas, Agustina Ahijado, Jorge Méndez-Ramos, and José Mangas
Solid Earth, 15, 639–656, https://doi.org/10.5194/se-15-639-2024, https://doi.org/10.5194/se-15-639-2024, 2024
Short summary
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023, https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Aitchison, J.: Principal component analysis of compositional data,
Biometrika, 70, 57–65, https://doi.org/10.1093/biomet/70.1.57, 1983.
Aitchison, J.: The statistical analysis of geochemical compositions, Math.
Geol., 16, 531–564, https://doi.org/10.1007/BF01029316, 1984.
Aitchison, J.: The Statistical Analysis of Compositional Data, J. Roy. Stat.
Soc. B Met., 44, 139–160,
https://doi.org/10.1111/j.2517-6161.1982.tb01195.x, 1986.
Aitchison, J. and Greenacre, M.: Biplots of compositional data, J. Roy.
Stat. Soc. C App., 51, 375–392, https://doi.org/10.1111/1467-9876.00275,
2002.
Armstrong, J. G. T., Parnell, J., Bullock, L. A., Perez, M., Boyce, A. J., and
Feldmann, J.: Tellurium, selenium and cobalt enrichment in Neoproterozoic
black shales, Gwna Group, UK: Deep marine trace element enrichment during
the Second Great Oxygenation Event, Terra Nova, 30, 244–253, https://doi.org/10.1111/ter.12331, 2018.
Barker, S. L. L., Hickey, K. A., Cline, J. S., Dipple, G. M., Kilburn, M. R.,
Vaughan, J. R., and Longo, A. A.: Uncloaking invisible gold: Use of NanoSIMS
to evaluate gold, trace elements, and sulfur isotopes in pyrite from
Carlin-type gold deposits, Econ. Geol., 104, 897–904,
https://doi.org/10.2113/econgeo.104.7.897, 2009.
Bedrock of Finland – DigiKP: Digital Map Database, Geological Survey of
Finland (GTK), available at: https://gtkdata.gtk.fi/kalliopera/index.html#, last access: 6 December 2021.
Bierlein, F. P. and Crowe, D. E.: Phanerozoic orogenic lode gold deposits,
Rev. Econ. Geol., 13, 103–139, https://doi.org/10.5382/Rev.13.03, 2000.
Brugger, J., Liu, W., Etschmann, B., Mei, Y., Sherman, D. M., and Testemale, D.: A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?, Chem. Geol., 447, 219–253, https://doi.org/10.1016/j.chemgeo.2016.10.021, 2016.
Cook, N. D. and Hudson, M.: Progress Report On The Geology, Mineralization
And Exploration Activities On The Rompas-Rajapalot Gold – Cobalt Project,
Peräpohja belt, Mawson Resources Ltd, 97 pp., 2018.
Cook, N. J., Ciobanu, C. L., and Mao, J.: Textural control on gold
distribution in As-free pyrite from Dongping, Huangtuliang and Hougou gold
deposits, North China Craton (Hebei Province, China), Chem. Geol., 264,
101–121, https://doi.org/10.1016/j.chemgeo.2009.02.020, 2009.
Cook, N. J., Ciobanu, C. L., George, L., Zhu, Z.-Y., Wade, B., and Ehrig,
K.: Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by
Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and
Opportunities, Minerals, 6, 111, https://doi.org/10.3390/min6040111,
2016.
Dare, S. A. S., Barnes, S. J., and Beaudoin, G.: Variation in trace element
content of magnetite crystallized from fractionating sulfide liquid,
Sudbury, Canada: Implications for provenance discrimination, Geochim.
Cosmochim. Ac., 88, 27–50, https://doi.org/10.1016/j.gca.2012.04.032, 2012.
Deditius, A., Utsunomiya, S., Ewing, R. C., Chryssoulis, S. L., Venter, D.,
and Kesler, S. E.: Decoupled geochemical behavior of As and Cu in
hydrothermal systems, Geology, 37, 707–710,
https://doi.org/10.1130/G25781A.1, 2009.
Deditius, A. P., Utsunomiya, S., Reich, M., Kesler, S. E., Ewing, R. C.,
Hough, R., and Walshe, J.: Trace metal nanoparticles in pyrite, Ore Geol.
Rev., 42, 32–46, https://doi.org/10.1016/j.oregeorev.2011.03.003, 2011.
Deditius, A. P., Reich, M., Kesler, S. E., Utsunomiya, S., Chryssoulis, S.
L., Walshe, J., and Ewing, R. C.: The coupled geochemistry of Au and As in
pyrite from hydrothermal ore deposits, Geochim. Cosmochim. Ac., 140,
644–670, https://doi.org/10.1016/j.gca.2014.05.045, 2014.
Dmitrijeva, M., Cook, N. J., Ehrig, K., Ciobanu, C. L., Metcalfe, A. V.,
Kamenetsky, M., Kamenetsky, V. S., and Gilber, S.: Multivariate Statistical
Analysis of Trace Elements in Pyrite: Prediciton, Bias and Artefacts in
Defining Minerals Signatures, Minerals, 10, 61,
https://doi.org/10.3390/min10010061, 2020.
D'Orazio, M., Biagioni, C., Dini, A., and Vezzoni, S.: Thallium-rich pyrite
ores from the Apuan Alps, Tuscany, Italy: constraints for their origin and
environmental concerns, Miner. Deposita, 52, 687–707,
https://doi.org/10.1007/s00126-016-0697-1, 2017.
Dubé, B. and Gosselin, P.: Greenstone-hosted quartz-carbonate vein
deposits, in: Mineral deposits of Canada: a synthesis of major
deposit-types, district metallogeny, the evolution of geological provinces,
and exploration methods, edited by: Goodfellow, W. D., Geological
Association of Canada, Mineral Deposits Division, Special Publication 5,
49–73, 2007.
Duran, C. J., Barnes, S. J., and Corkery, J. T.: Chalcophile and
platinum-group element distribution in pyrites from the sulfide-rich pods of
the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for
post-cumulus re-equilibration of the ore and the use of pyrite compositions
in exploration, J. Geochem. Explor., 158, 223–242,
https://doi.org/10.1016/j.gexplo.2015.08.002, 2015.
Duuring, P., Cassidy, K. F., and Hagemann, S. G.: Granitoid-associated
orogenic, intrusion related, and porphyry style metal deposits in the
Archaean Yilgarn Craton, Western Australia, Ore Geol. Rev., 32, 157–186,
https://doi.org/10.1016/j.oregeorev.2006.11.001, 2007.
Eilu, P.: Overview on gold deposits in Finland, in: Mineral Deposits of
Finland, edited by: Maier, W. D., O'Brien, H., and Lahtinen, R., Elsevier,
Amsterdam, 377–403, https://doi.org/10.1016/C2012-0-02750-0, 2015.
Eilu, O., Sorjonen-Ward, P., Nurmi, P., and Niiranen, T.: A Review of Gold
Mineralization Styles in Finland, Econ. Geol., 98, 1329–1353,
https://doi.org/10.2113/gsecongeo.98.7.1329, 2003.
Farajewicz, M. and Cook, N. D.: Sample Selection for Geometallurgical
Characterization in the Rajapalot Deposit. BATCircle Project Report 02 –
WP1 Task 1.2, Geol. S. Finl., Rep. of Inves., 9/2021, 29 pp., 2021.
Filzmoser, P., Hron, K., and Reimann, C.: The bivariate statistical analysis
of environmental (compositional) data, Sci. Total Environ., 408, 4230–4238,
https://doi.org/10.1016/j.scitotenv.2010.05.011, 2010.
Garofalo, P. S., Fricker, M. B., Günther, D., Bersani, D., and Lottici,
P. P.: Physical–chemical properties and metal budget of Au-transporting
hydrothermal fluids in orogenic deposits, Geol. Soc. Lond. Spec. Publ., 402,
71–102, https://doi.org/10.1144/SP402.8, 2014.
George, L. L., Biagioni, C., D'Orazio, M., and Cook, N. J.: Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): Influence on the formation of Tl-rich sulfosalt melt, Ore Geol. Rev.,102, 59–105, https://doi.org/10.1016/j.oregeorev.2018.08.032, 2008.
George, L. L., Biagioni, C., D'Orazio, M., and Cook, N. J.: Textural and
trace element evolution of pyrite during greenschist facies metamorphic
recrystallization in the southern Apuan Alps (Tuscany, Italy): Influence on
the formation of Tl-rich sulfosalt melt, Ore Geol. Rev., 102, 59–105,
https://doi.org/10.1016/j.oregeorev.2018.08.032, 2018.
Gilbert, S. E., Danyushevsky, L. V., Rodermann, T., Shimizu, A., Gurenko,
A., Meffre, S., Thomas, H., Larger, R. R., and Death, D.: Optimisation of
laser parameters for the analysis of sulphur isotopes in sulphide minerals
by laser ablation ICP-MS, J. Anal. Atom. Spectrom., 29, 1042–1051,
https://doi.org/10.1039/C4JA00011K, 2014.
GLITTER Team: Data reduction software for the laser ablation microprobe, GLITTER™ [code], available at:
http://www.glitter-gemoc.com/GLITTER-45_p_12.html, last access: 3 September 2021.
Godel, B., Barnes, S. J., and Maier, W. D.: Platinum-group elements in
sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky
Reef (Bushveld Complex, South Africa): Implications for the formation of the
reef, J. Petrol., 48, 1569–1604, https://doi.org/10.1093/petrology/egm030,
2007.
Goldfarb, R. J. and Groves, D. I.: Orogenic gold: Common or evolving fluid
and metal sources through time, Lithos, 223, 2–26,
https://doi.org/10.1016/j.lithos.2015.07.011, 2015.
Goldfarb, R. J., Leach, D. L., Miller, M. L., and Pickthorn, W. J.: Geology,
metamorphic setting, and genetic constraints of epigenetic lode-gold
mineralization within the Cretaceous Valdez Group, south-central Alaska,
Geological Association of Canada, Special Paper, 32, 87–105, 1986.
Goldfarb, R. J., Leach, D. L., Pickthorn, W. J., and Paterson, C. J.: Origin
of lode-gold deposits of the Juneau gold deposit, southeastern Alaska,
Geology, 16, 440–443, https://doi.org/10.1130/0091-7613(1988)016<0440:OOLGDO>2.3.CO;2, 1988.
Goldfarb, R. J., Leach, D. L., Rose, S. C., and Landis, G. P.: Fluid
inclusion geochemistry of gold-bearing quartz veins of the Juneau Gold Belt,
southeastern Alaska; implications for ore genesis, Econ. Geol. Monogr., 6,
363–375, https://doi.org/10.5382/Mono.06.28, 1989.
Goldfarb, R. J., Groves, D. I., and Gardoll, S.: Orogenic gold and geologic
time: a global synthesis, Ore Geol. Rev., 18, 1–75,
https://doi.org/10.1016/S0169-1368(01)00016-6, 2001.
Goldfarb, R. J., Baker T., Dubé, B., Groves, D. I., Hart, C. J. R., and
Gosselin, P.: Distribution, character, and genesis of gold deposits in
metamorphic terranes, Econ. Geol., 100th Anniv. Vol., 407–450,
https://doi.org/10.5382/AV100.14, 2005.
Gregory, D. D., Lyons, T. W., Large, R. R., Jiang, G., Stepanov, A. S., Diamond,
C. W., Figueroa, M. C., and Olin, P.: Whole rock and discrete pyrite
geochemistry as complementary tracers of ancient ocean chemistry: An example
from the Neoproterozoic Doushantuo Formation, China, Geochim. Cosmochim.
Ac., 216, 201–220, https://doi.org/10.1016/j.gca.2017.05.042,
2017.
Groves, D. I., Phillips, G. N., Ho, S. E., Houstoun, S. M., and Standing, C. A.: Craton-scale distribution of Archean greenstone gold deposits; predictive capacity of the metamorphic model, Econ. Geol., 82, 2045–2058, https://doi.org/10.2113/gsecongeo.82.8.2045, 1987.
Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., and Robert, F.: Orogenic gold deposits. A proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 13, 7–27, https://doi.org/10.1016/S0169-1368(97)00012-7, 1998.
Groves, D. I., Santosh, M., Deng, J., Wang, Q., Yang, L., and Zhang, L.: A
holistic model for the origin of orogenic gold deposits and its implications
for exploration, Miner. Deposita, 55, 275–292,
https://doi.org/10.1007/s00126-019-00877-5, 2019.
Hanski, E.: Synthesis of the geological evolution and metallogeny of
Finland, in: Mineral Deposits of Finland, edited by: Maier, W. D., O'Brien,
H., Lahtinen, R., Elsevier, Amsterdam, 39–71,
https://doi.org/10.1016/B978-0-12-410438-9.00002-9, 2015.
Hanski, E., Huhma, H., and Perttunen, V.: SIMS U-Pb, Sm-Nd isotope and
geochemical study of an arkosite-amphibolite suite, Peräpohja Schist
Belt: evidence for ca. 1.98 Ga A-type felsic magmatism in northern Finland,
B. Geol. Soc. Finland, 77, 5–29, https://doi.org/10.17741/BGSF/77.1.001,
2005.
Hodkiewicz, P. F., Groves, D. I., Davidson, G. J., Weinberg, R. F., and Hagemann, S. G.: Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits, Eastern Goldfields Province, Yilgarn, Western Australia, Miner. Deposita, 44, 129–150, https://doi.org/10.1007/s00126-008-0211-5, 2009.
Holland, S. M.: Principal Components Analysis (PCA), in: Encyclopedia of Environmental Change, edited by: Matthews, J. A., SAGE Publications, Ltd., 1–12, https://doi.org/10.4135/9781446247501.n3114, 2019.
Hölttä, P., Väisänen, M., Väänänen, J., and
Manninen, T.: Paleoproterozoic metamorphism and deformation in Central
Lapland, Geol. S. Finl., 44, 109–120, 2007.
Hölttä, P. and Heilimo, E.: Metamorphic map of Finland, in: Bedrock
of Finland at the scale 1 : 1 000 000 – Major stratigraphic units,
metamorphism and tectonic evolution, edited by: Nironen, M., Geol. S. Finl.,
60, 77–128, 2017.
Hron, K., Engle, M., Filzmoser, P., and Fišerová, E.: Weighted
Symmetric Pivot Coordinates for Compositional Data with Geochemical
Applications, Math. Geosci., 53, 655–674,
https://doi.org/10.1007/s11004-020-09862-5, 2020.
Huhma, H., Cliff, R. A., Perttunen, V., and Sakko, M.: Sm–Nd and Pb isotopic
study of mafic rocks associated with early Proterozoic continental rifting:
the Peräpohjaschist belt in northern Finland, Contrib. Mineral. Petr.,
104, 369–379, https://doi.org/10.1007/BF00321491, 1990.
Iljina, M. and Hanski, E.: Layered mafic intrusions of the Tornio-Näränkävaara belt, in: Precambrian Geology of Finland: Key to the Evolution of the Fennoscandian Shield, edited by: Lehtinen, M., Nurmi, P. A., and Rämö, O. T., Developments in Precambrian Geology, 14, Elsevier, Amsterdam, 101–138, ISBN 044451421X (hd.bd.), 2005.
IMDEX ioGAS™: Exploratory data analysis software application, Version 7.2, ioGAS™ [code], available at: https://reflexnow.com/product/iogas/, last access: 3 September 2021.
Johnson, S. C., Large, R. R., Coveney, R. M., Kelley, K. D., Slack, J. F.,
Steadman, J. A., Gregory, D. D., Sack, P. J., and Meffre, S.: Secular
distribution of highly metalliferous black shales correspond with peaks in
past atmosphere oxygenation, Miner. Deposita, 52, 791–798, https://doi.org/10.1007/s00126-017-0735-7, 2017.
Jolliffe, I. T.: Principal Component Analysis, 2nd Edn., in: Springer
Series in Statistics, edited by: Bickel, P., Diggle, S., Fienberg,
Krickerberg, K., Olkin, I., Wermuth, N., and Zeger, S., Springer, New York, USA,
487 pp., ISBN 0-387-95442-2, 2002.
Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review and
recent developments, Philos. T. Roy. Soc. A., 374, 20150202,
https://doi.org/10.1098/rsta.2015.0202, 2016.
Kaiser, H. F.: The application of electronic computers to factor analysis,
Educ. Psychol. Meas., 20, 141–151, https://doi.org/10.1177/001316446002000116, 1960.
Keith, M., Smith, D. J., Jenkin, G. R. T., Holwell, D. A., and Dye, M. D.: A
review of Te and Se systematics in hydrothermal pyrite from precious metal
deposits: Insights into ore-forming processes, Ore Geol. Rev., 96, 269–282,
https://doi.org/10.1016/j.oregeorev.2017.07.023, 2018.
King, K., Williams-Jones, A. E., van Hinsberg, V., and Williams-Jones, G.: High-Sulfidation Epithermal Pyrite-Hosted Au (Ag-Cu) Ore Formation by Condensed Magmatic Vapors on Sangihe Island, Indonesia, Econ. Geol., 109, 1705–1733, https://doi.org/10.2113/econgeo.109.6.1705, 2014.
Kitney, K. E., Olivo, G. R., Davis, D. W., Desrochers, J.-P., and Tessier,
A.: The Barry gold deposit, Abitibi Subprovince, Canada: A greenstone
belt-hosted gold deposit coeval with Late Archaean deformation and
magmatism, Econ. Geol., 106, 1129–1154,
https://doi.org/10.2113/econgeo.106.7.1129, 2011.
Köykkä, J., Lahtinen, R., and Huhma, H.: Provenance evolution of the
Paleoproterozoic metasedimentary cover sequences in northern Fennoscandia:
Age distribution, geochemistry, and zircon morphology, Precambrian Res.,
331, 105364, https://doi.org/10.1016/j.precamres.2019.105364, 2019.
Koistinen, T., Stephens, M. B., Bogatchev, V., Nordgulen, Ø.,
Wennerström, M., and Korhonen, J.: Geological map of the
Fennoscandian Shield, scale 1 : 2 000 000, Trondheim: Geological Survey of
Norway, Uppsala: Geological Survey of Sweden, Moscow: Ministry of Natural
Resources of Russia, Espoo: Geological Survey of Finland, available at: https://gtkdata.gtk.fi/kalliopera/index.html# (last access: 3 September 2021), 2001.
Kyläkoski, M., Hanski, E., and Huhma, H.: The Petäjäskoski
Formation, a new lithostratigraphic unit in the Paleoproterozoic
Peräpohja belt, northern Finland, B. Geol. Soc. Finland, 84, 85–120,
https://doi.org/10.17741/bgsf/84.2.001, 2012.
Laajoki, K.: Karelian supracrustal rocks, in: Precambrian geology of
Finland, Chap. 7, in: Key to the evolution of the Fennoscandian shield,
edited by: Lehtinen, M., Nurmi, P. A., and Rämö, O. T., Developments
in Precambrian Geology, Elsevier, Vol. 14, Amsterdam, 279–341,
https://doi.org/10.1016/S0166-2635(05)80008-8, 2005.
Lahtinen, R.: Main geological features of Fennoscandia, in: Mineral deposits and metallogeny of Fennoscandia, edited by: Eilu, P., Geol. S. Finl., Special Paper, 53, 13–18, 2012.
Lahtinen, R., Korja, A., and Nironen, M.: Paleoproterozoic tectonic
evolution, Chap. 11, in: Precambrian geology of Finland: Key to the
evolution of the Fennoscandian shield, edited by: Lehtinen, M., Nurmi, P.
A., and Rämö, O. T., Developments in Precambrian Geology, Elsevier,
Vol. 14, Amsterdam, 481–531, https://doi.org/10.1016/S0166-2635(05)80012-X,
2005.
Lahtinen, R., Huhma, H., Lahaye, Y., Jonsson, E., Manninen, T., Lauri, L.,
Bergman, S., Hellström, F., Niiranen, T., and Nironen, M.: New
geochronological and Sm–Nd constraints across the Pajala shear zone of
northern Fennoscandia: Reactivation of a Paleoproterozoic suture,
Precambrian Res., 256, 102–119,
https://doi.org/10.1016/j.precamres.2014.11.006, 2015.
Large, R. R., Danyushevsky, L. V., Hollit, C., Maslennikov, V., Meffre, S.,
Gilbert, S. E., Bull, S., Scott, R. J., Emsbo, P., Thomas, H., Singh, B.,
and Foster, J.: Gold and trace element zonation in pyrite using a laser
imaging technique: implications of the timing of gold in orogenic and
Carlin-style sediment-hosted deposits, Econ. Geol., 104, 635–668,
https://doi.org/10.2113/gsecongeo.104.5.635, 2009.
Large, R. R., Halpin, J. A., Danyushevsky, L. V., Maslennikov, V. V., Bull,
S. W., Long, J. A., Gregory, D. G., Lounejeva, E., Lyons, T. W., Sack, P. J.,
McGoldrick, P. J., and Calver, C. R.: Trace element content of sedimentary
pyrite as a new proxy for deep-time ocean-atmosphere evolution, Earth
Planet. Sc. Lett., 389, 209–220, https://doi.org/10.1016/j.epsl.2013.12.020, 2014.
Large, R. R., Gregory, D. D., Steadman, J. A., Tomkins, A. G., Lounejeva, A.,
Danyushevsky, L. V., Halpin, J. A., Maslennikov, V., Sack, P. J., Mukherjee,
I., Berry, R., and Hickman, A.: Gold in the oceans through time, Earth
Planet. Sc. Lett., 428, 139–150, https://doi.org/10.1016/j.epsl.2015.07.026, 2015.
Large, R. R., Mukherjee, I., Gregory, D. D., Steadman, J. A., Maslennikov, V.,
and Meffre, S.: Ocean and Atmosphere Geochemical Proxies Derived from Trace
Elements in Marine Pyrite: Implications for Ore Genesis in Sedimentary
Basins, Econ. Geol., 112, 423–450,
https://doi.org/10.2113/econgeo.112.2.423, 2017.
Le Maitre, R. W. (Ed.): Numerical Petrology, Elsevier Scientific Publishing
Company, Amsterdam, the Netherlands, 281 pp., ISBN 978-0-444-42098-5, 1982.
Liu, A.-L., Jiang, M.-R., Ulrich, T., Zhang, J., and Zhang, X.-J.: Ore
genesis of the Bake gold deposit, southeastern Guizhou province, China:
Constraints from mineralogy, in-situ trace element and sulfur isotope
analysis of pyrite, Ore Geol. Rev., 102, 740–756,
https://doi.org/10.1016/j.oregeorev.2018.09.018, 2018.
Macheyeki, A., Li, X., Kafumu, D., and Yuan, F. (Eds.): Applied Geochemistry,
Advances in Mineral Exploration Techniques, Elsevier, 196 pp.,
https://doi.org/10.1016/C2019-0-00202-6, 2020.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in
Earth's early ocean and atmosphere, Nature, 506, 307–315, https://doi.org/10.1038/nature13068, 2014.
Madeisky, H. E. and Stanley, C. R.: Lithogeochemical exploration for
metasomatic zones associated with hydrothermal mineral deposits using molar
element ratio analysis, Int. Geol. Rev., 35, 1121–1148,
https://doi.org/10.1080/00206819309465580, 1993.
Mawson Gold Limited: Mawson doubles gold-cobalt resource at Rajapalot,
Finland 9.0 million tonnes @ 2.5 g/t for 716,000 oz gold equivalent, News
Release, available at:
https://www.mawsongold.com/news/news-releases/2020/mawson-doubles-gold-cobalt-resource-at-rajapalot-finland (last access: 6 December 2021),
2020.
Mawson Gold Limited: Mawson announces over 1 million ounces gold equivalent
at Rajapalot, Finland gold ounces up 47 %, gold grade up 19 %, available at:
https://www.mawsongold.com/news/news-releases/2021/mawson-announces-over-1-million-ounces-gold-equivalent-at-rajapalot-finland-gold-ounces-up-47-gold-grade-up-19 (last access: 6 December 2021),
2021.
Melezhik, V. A., Kump, L. R., Hanski, E. J., Fallick, A. E., and Prave, A.
R.: Tectonic evolution and major global Earth-surface palaeoenvironmental
events in the Palaeoproterozoic, in: Reading the archive of Earth's
oxygenation Vol. 1: The Palaeoproterozoic of Fennoscandia as context for the
Fennoscandian Arctic Russia – Drilling Early Earth Project, edited by:
Melezhik, V. A., Prave, A. R., Hanski, E. J., Fallick, A. E., Lepland, A.,
Kump, L. R., and Strauss, H., Front. Earth. Sci., Springer, Berlin, Heidelberg, 3–24,
https://doi.org/10.1007/978-3-642-29682-6_1, 2013.
Meng, X., Li, X., Chu, F., Zhu, J., Lei, J., Li, Z., Wang, H., Chen, L., and
Zhu, Z.: Trace element and sulfur isotope compositions for pyrite across the
mineralization zones of a sulfide chimney from the East Pacific Rise
(1–2∘ S), Ore Geol. Rev., 116, 103209, https://doi.org/10.1016/j.oregeorev.2019.103209, 2020.
Molnár, F., Oduro, H., Cook, N. D., Pohjolainen, E., Takacs, A.,
O'Brien, H., Pakkanen, L., Johanson, B., and Wirth, R.:
Association of gold with uraninite and pyrobitumen in the metavolcanic rock
hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist
Belt, northern Finland, Miner. Deposita, 51, 681–702,
https://doi.org/10.1007/s00126-015-0636-6, 2016a.
Molnár, F., Mänttäri, I., O'Brien, H., Lahaye, Y., Pakkanen, L.,
Johanson, B., Käpyaho, A., Sorjonen-Ward, P., Whitehouse, M., and
Sakellaris, G.: Boron, sulphur and copper isotope systematics in the
orogenic gold deposits of the Archean Hattu schist belt, eastern Finland,
Ore Geol. Rev., 77, 133–162,
https://doi.org/10.1016/j.oregeorev.2016.02.012, 2016b.
Molnár, F., O'Brien, H., Stein, H., and Cook, N. D.: Geochronology of
hydrothermal processes leading to the formation of the Au-U mineralization
at the Rompas prospect, Perapohja belt, northern Finland: Application of
paired U-Pb dating of uraninite and Re-Os dating of molybdenite to the
identification of multiple hydrothermal events in a metamorphic terrane,
Minerals, 7, 171, https://doi.org/10.3390/min7090171, 2017.
Molnár, F., Middleton, A., Stein, H., O'Brien, H., Lahaye, Y., Huhma,
H., Pakkanen, L., and Johanson, B.: Repeated syn- and post-orogenic gold
mineralization events between 1.92 and 1.76 Ga along the Kiistala Shear Zone
in the Central Lapland Greenstone Belt, northern Finland, Ore Geol.
Rev., 101, 936–959, https://doi.org/10.1016/j.oregeorev.2018.08.015, 2018.
Müller, W., Shelley, M., Miller, P., and Broude, S.: Initial performance
metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a
two-volume laser-ablation cell, J. Anal. Atom. Spectrom., 24, 209–214,
https://doi.org/10.1039/B805995K, 2009.
Mukherjee, I., Large, R. R., Bull, S., Gregory, D. G., Stepanov, A. S.,
Ávila, J., Ireland, T. R., and Corkrey, R.: Pyrite trace-element and
sulfur isotope geochemistry of paleo-mesoproterozoic McArthur Basin: Proxy
for oxidative weathering, Am. Mineral., 104, 1256–1272, https://doi.org/10.2138/am-2019-6873, 2019.
Nironen, M.: Structural interpretation of the Peräpohja und Kuusamo belts and Central Lapland, and a tectonic model for northern Finland, Geol. S. Finl., Rep. of Inves., 234, 54 pp., 2017.
Nurmi, P. A., Sorjonen-Ward, P., and Damstén, M.: Geological setting,
characteristics and exploration history of mesothermal gold occurrences in
the late Archaean Hattu schist belt, Ilomantsi, eastern Finland, in:
Geological development, gold mineralization and exploration methods in the
Late Archean Hattu schist belt, Ilomantsi, eastern Finland, edited by:
Nurmi, P. A. and Sorjonen-Ward, P., Geol. S. Finl., Special Paper 17, 193–231, 1993.
Ohmoto, H.: Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore
Deposits, Econ. Geol., 67, 551–578, 1972.
Ohmoto, H. and Rye, R. O.: Isotopes of Sulfur and Carbon, in: Geochemistry of Hydrothermal Ore Deposits, 2nd Edn., edited by: Barnes, H. L., John Wiley and Sons, New York, 509–567, 1979.
Palenik, C. S., Ustunomiya, S., Reich, M., Kesler, S. E., Wang, L., and
Ewing, R. C.: “Invisible” gold revealed: Direct imagining of gold
nanoparticles in a Carlin-type deposit, Am. Mineral., 89, 1359–1366,
https://doi.org/10.2138/am-2004-1002, 2004.
Pankka, H. S. and Vanhanen, E. J.: Early Proterozoic Au-Co-U mineralization in
the Kuusamo district, northeastern Finland, Precambrian Res., 58, 387–400,
https://doi.org/10.1016/0301-9268(92)90126-9, 1992.
Patten, C. G. C, Pitcairn, I. K., Molnár, F., Kolb, J., Beaudoin, G.,
Guilmette, C., and Peillod, A.: Gold mobilization during metamorphic
devolatilization of Archean and Paleoproterozoic metavolcanic rocks,
Geology, 48, 1110–1114, https://doi.org/10.1130/G47658.1, 2020.
Perttunen, V. and Vaasjoki, M.: U–Pb geochronology of the Peräpohja
Schist Belt, northwestern Finland, in: Radiometric age determinations from
Finnish Lapland and their bearing on the timing of Precambrian
volcano-sedimentary sequences, edited by: Vaasjoki, M., Geol. S. Finl., Special Paper 33,
45–84, 2001.
Perttunen, V., Hanski, E., and Väänänen, J.: Stratigraphical map
of the Peräpohja schist belt, northern Finland, in: Abstracts of oral
and poster sessions, the 22nd Nordic Geological Winter meeting,
Turku-Åbo, Finland, 8–11 January 1996, edited by: Kohonen, T. and
Lindberg, B., 12 pp., 1995.
Phillips, G. N., and Groves, D. I.: The nature of Archean gold-bearing fluids as deduced from gold deposits of Western Australia, J. Geol. Soc. Aust., 30, 25–39, https://doi.org/10.1080/00167618308729234, 1983.
Phillips, G. N. and Powell, R.: Formation of gold deposits-a metamorphic
devolatilization model, J. Metamorph. Geol., 28, 689–718,
https://doi.org/10.1111/j.1525-1314.2010.00887.x, 2010.
Piña, R., Gervilla, F., Barnes, S. J., Ortega, L., and Lunar, R.:
Partition coefficients of platinum group and chalcophile elements between
arsenide and sulfide phases as determined in the Beni Bousera Cr–Ni
mineralization (North Morocco), Econ. Geol., 108, 935–951,
https://doi.org/10.2113/econgeo.108.5.935, 2013.
Powell, R., Will, T. M., and Phillips, G. N.: Metamorphism in Archaean greenstone belts; calculated fluid compositions and implications for gold mineralization, J. Metamorph. Geol., 9, 141–150, https://doi.org/10.1111/j.1525-1314.1991.tb00510.x, 1991.
Ranta, J. P., Lauri, L. S., Hanski, E., Huhma, H., Lahaye, Y., and Vanhanen,
E.: U–Pb and Sm–Nd isotopic constraints on the evolution of the
Paleoproterozoic Peräpohja Belt, northern Finland, Precambrian Res.,
266, 246–259, https://doi.org/10.1016/j.precamres.2015.05.018, 2015.
Ranta, J. P., Hanski, E., Cook, N., and Lahaye, Y.: Source of boron in the
Palokas gold deposit, northern Finland: evidence from boron isotopes and
major element composition of tourmaline, Miner. Deposita, 52, 733–746,
https://doi.org/10.1007/s00126-016-0700-x, 2017.
Ranta, J. P., Molnár, F., Hanski, E., and Cook, N. D.: Epigenetic gold
occurrence in a Paleoproterozoic meta-evaporitic sequence in the
Rompas-Rajapalot Au system, Peräpohja belt, northern Finland, B.
Geol. Soc. Finland, 90, 69–108, https://doi.org/10.17741/bgsf/90.1.004, 2018.
Ranta, J. P., Hanski, E., Stein, H., Goode, M., Mäki, T., and Taivalkoski,
A.: Kivilompolo Mo mineralization in the Peräpohja belt revisited: Trace
element geochemistry and Re-Os dating of molybdenite, B. Geol. Soc.
Finland, 92, 131–150, https://doi.org/10.17741/bgsf/92.2.004,
2020.
Raič, S., Molnár, F., Cook, N. D., Vasilopoulos, M., O'Brien, H.,
and Lahaye, Y.: The powerful vectoring capacities of sulfide trace element
signatures in orogenic Au-deposits in northern Finland, in preparation, 2022.
Rasilainen, K., Lahtinen, R., and Bornhorst, T. J. (Eds.): Chemical Characteristics
of Finnish Bedrock – 1 : 1 000 000 Scale Bedrock Map Units, Geol. S. Finl.,
Report of Investigation, 171, 96 pp., 2008.
Reich, M., Large, R., and Deditius, A. P.: New advances in trace element
geochemistry of ore minerals and accessory phases, Ore Geol. Rev., 81,
1215–1217, https://doi.org/10.1016/j.oregeorev.2016.10.020, 2017.
Reimann, C., Filzmoser, P., Garrett, R., and Dutter, R. (Eds.): Statistical Data
Analysis Explained: Applied Environmental Statistics with R, John Wiley &
Sons, Ltd., West Sussex, England, 343 pp.,
https://doi.org/10.1002/9780470987605, 2008.
Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades,
A., Dinelli, E., Ladenberger, A., and The GEMAS Project Team: The concept of
compositional data analysis in practice – Total major element
concentrations in agricultural and grazing land soils of Europe, Sci. Total
Environ., 426, 196–210, https://doi.org/10.1016/j.scitotenv.2012.02.032,
2012.
Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., and Garrett, R.
G.: A new method for correlation analysis of compositional data – a worked
example, Sci. Total Environ., 607–608, 965–971,
https://doi.org/10.1016/j.scitotenv.2017.06.063, 2017.
Savard, D., Bouchard-Boivin, B., Barnes, S. J., and Garbe-Schönberg, D.: UQAC-FeS: A new series of base metal sulfide quality control reference material for LA-ICP-MS analysis, in: Proceedings of the 10th International Conference on the Analysis of Geological and Environmental Materials, Sydney, Australia, 8–13 July 2018, Sydney, Australia, 2018.
Seal, R. R.: Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral.
Geochem., 61, 633–677, https://doi.org/10.2138/rmg.2006.61.12, 2006.
Skirrow, R. G. and Walshe, J. L.: Reduced and oxidized Au-Cu-Bi iron oxide
deposits of the Tennant Creek inlier, Australia: an integrated geologic and
chemical model, Econ. Geol., 97, 1167–1202,
https://doi.org/10.2113/gsecongeo.97.6.1167, 2002.
Stanley, C. R. (Ed.): Lithogeochemical exploration for metasomatic zones
associated with hydrothermal mineral deposits using molar element ratio
analysis: Advanced topics, Lithogeochemical Exploration Research Project,
Mineral Deposit Research Unit, University of British Columbia, Short Course
Notes, 180 pp., 1998.
Stanley, C. R.: Molar Element Ratio Analysis of Lithogeochemical Data: A
Toolbox for Use in Mineral Exploration and Mining, Geochemistry, Paper 33,
in: Proceedings of Exploration 17: Sixth Decennial International Conference
on Mineral Exploration, edited by: Tschirhart, V. and Thomas, M. D.,
471–494, https://doi.org/10.1144/geochem2019-033, 2017.
Stanley, C. R. and Madeisky, H. E. (Eds.): Lithogeochemical exploration for
metasomatic zones associated with hydrothermal mineral deposits using molar
element ratio analysis: Introduction, Lithogeochemical Exploration Research
Project, Mineral Deposit Research Unit, University of British Columbia,
Short Course Notes, 200 pp., 1996.
Ulrich, T., Long, D. G. F., Kamber, B. S., and Whitehouse, M. J.: In situ
trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic
gold placer deposit, Pardo and Clement Townships, Ontario, Canada, Econ.
Geol., 106, 667–686, https://doi.org/10.2113/econgeo.106.4.667, 2011.
Van Achterbergh, E., Ryan, C. G., Jackson, S. E., and Griffin, W.: Appendix 3, Data reduction software for LA-ICP-MS, in: Laser-Ablation–ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Mineralogical Association of Canada Short Course Series, edited by: https://doi.org/10.1016/S0277-3791(02)00016-1, 2001.
Vanhanen, E.: Geology, mineralogy and geochemistry of the Fe-Co-Au-(U)
deposits in the Paleoproterozoic Kuusamo schist belt, northeastern Finland,
Geol. S. Finl., 399, 229 pp., 2001.
Vanhanen, E., Cook, N. D., Hudson, M. R., Dahlenborg, L., Ranta, J.-P.,
Havela, T., Kinnunen, J., Molnár, F., Prave, A. R., and Oliver, N. H.
S.: Chapter 5.4 – The Rompas prospect, Peräpohja schist belt, northern
Finland, in: Mineral Deposits of Finland, edited by: Maier, W. D., Lahtinen,
R., and O'Brien, H, Elsevier, 467–484,
https://doi.org/10.1016/B978-0-12-410438-9.00018-2, 2015.
Vasilopoulos, M., Molnár, F., O'Brien, H., Lahaye, Y., Lefèbvre, M.,
Richard, A., André-Mayer, A. S., Ranta, J.-P., and Talikka, M.:
Geochemical signatures of mineralizing events in the Juomasuo Au–Co
deposit, Kuusamo belt, northeastern Finland, Miner. Deposita, 56,
1195–1222, https://doi.org/10.1007/s00126-020-01039-8, 2021.
Voute, F., Hagemann, S. G., Evans N. J., and Villanes, C.: Sulfur isotopes,
trace element, and textural analyses of pyrite, arsenopyrite and base metal
sulfides associated with gold mineralization in the Pataz-Parcoy district,
Peru: implication for paragenesis, fluid source, and gold deposition
mechanisms, Miner. Deposita, 54, 1077–1100,
https://doi.org/10.1007/s00126-018-0857-6, 2019.
Weihed, P., Arndt, N., Billström, K., Duchesne, J.-C., Eilu, P., Martinsson, O., Papunen, H., and Lahtinen, R.: 8: Precambrian geodynamics and ore formation: The Fennoscandian Shield, Ore Geol. Rev., 27, 273–322, https://doi.org/10.1016/j.oregeorev.2005.07.008, 2005.
Winderbaum, L., Ciobanu, C. L., Cook, N. J., Paul, M., Metcalfe, A., and
Gilbert, S.: Multivariate Analysis of an LA-ICP-MS Trace Element Dataset for
Pyrite, Math. Geosci., 44, 823–842,
https://doi.org/10.1007/s11004-012-9418-1, 2012.
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only...
Special issue