Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-705-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-705-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland
Michal Chamarczuk
CORRESPONDING AUTHOR
Institute of Geophysics, Polish Academy of Sciences, 01-452, Warsaw,
Poland
Michal Malinowski
Institute of Geophysics, Polish Academy of Sciences, 01-452, Warsaw,
Poland
Geological Survey of Finland, 02151 Espoo, Finland
Deyan Draganov
Department of Geoscience and Engineering, Delft University of
Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Emilia Koivisto
Department of Geosciences and Geography, University of Helsinki,
00014 Helsinki, Finland
Suvi Heinonen
Geological Survey of Finland, 02151 Espoo, Finland
Sanna Rötsä
Boliden Kevitsa Mining Oy, 99670 Petkula, Finland
Related authors
No articles found.
Michal Malinowski, Tuomo Karinen, Uula Autio, Suvi Heinonen, Brij Singh, Andrzej Górszczyk, Lukasz Sito, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-3111, https://doi.org/10.5194/egusphere-2025-3111, 2025
Short summary
Short summary
We acquired and processed novel 3D seismic data to reveal the hidden structure of a deep rock formation in northeastern Finland. This study uncovered a complex, layered system rather than a simple magma channel, and identified a major fault that may influence mineral deposits. Our findings offer new tools and insights for exploring valuable underground resources in hard rock environments.
Brij Singh, Andrzej Górszczyk, Michał Malinowski, Suvi Heinonen, Uula Autio, Tuomo Karinen, Marek Wojdyła, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-496, https://doi.org/10.5194/egusphere-2025-496, 2025
Short summary
Short summary
Two reflection seismic (semi-)regional profiles were acquired to map the regional reflectivity of the Koillismaa Layered Igneous Complex in north-eastern Finland. Several reflections up to a depth of 5–6 km are mapped. The top of the magma conduit associated with KLIC is successfully revealed and it is interpreted that there might be a second magma conduit below the exposed intrusion. The study helped in better understanding of the regional structural geology of the area.
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Short summary
Passive-source surface waves may be exploited in mineral exploration for deeper investigations. We propose a semi-automatic workflow for their processing. The geological interpretation of the results obtained at a mineral site (Siilinjärvi phosphorus mine) shows large potentialities and effectiveness of the proposed workflow.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Cited articles
Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., and Barklage, M.: Basic data features and results from a spatially dense
seismic array on the San Jacinto fault zone, Geophys. J. Int., 202, 370–380,
https://doi.org/10.1093/gji/ggv142, 2015.
Chamarczuk, M.: Kylylahti 3D virtual seismic survey (unprocessed ambient-noise recordings), Version 2, Fairdata.fi [data set], https://doi.org/10.23729/48acb337-3be0-4e76-94f9-5e60779c26fe, 2021.
Chamarczuk, M. and Koivisto, E.: Kylylahti 3D virtual seismic survey, Version 1, Fairdata.fi [data set], https://doi.org/10.23729/8469939b-4abe-405e-9eeb-53016acdfb7d, 2021.
Chamarczuk, M., Malinowski, M., Koivisto, E., Heinonen, S., Juurela, S., and
COGITO-MIN Working, G.: Passive seismic interferometry for subsurface
imaging in an active mine environment: case study from the Kylylahti
Cu-Au-Zn mine, Finland, Proceedings of
Exploration'17: Seismic Methods and Exploration Workshop, 2017, 1–56, 2017.
Chamarczuk, M., Malinowski, M., Draganov, D., Koivisto, E., Heinonen, S.,
and Juurela, S.: Seismic Interferometry for Mineral Exploration: Passive
Seismic Experiment over Kylylahti Mine Area, Finland, Eur. Assoc. Geosci. Eng., 2018, 1–5, https://doi.org/10.3997/2214-4609.201802703, 2018.
Chamarczuk, M., Malinowski, M., Nishitsuji, Y., Thorbecke, J., Koivisto, E.,
Heinonen, S., Mezyk, M., Juurela, S., and Draganov, D.: Automatic 3D
illumination diagnosis method for large-N arrays: robust data scanner and
machine learning feature provider, Geophysics, 84, 13–25, https://doi.org/10.1190/geo2018-0504.1, 2019.
Chamarczuk, M., Nishitsuji, Y., Malinowski, M., and Draganov, D.:
Unsupervised learning used in automatic detection and classification of
ambient-noise recordings from a large-n array, Seismol. Res. Lett., 91,
370–389, https://doi.org/10.1785/789 0220190063, 2020.
Chamarczuk, M., Malinowski, M., and Draganov, D.: 2D body-wave seismic
interferometry as a tool for reconnaissance studies and optimization of
passive reflection seismic surveys in hardrock environments, J. Appl.
Geophy., 187, 104288, https://doi.org/10.1016/j.jappgeo.2021.104288, 2021.
Cheraghi, S., Craven, J. A., and Bellefleur, G.: Feasibility of virtual
source reflection seismology using interferometry for mineral exploration: A
test study in the Lalor Lake volcanogenic massive sulphide mining area,
Manitoba, Canada, Geophys. Prospect., 63, 833–848, https://doi.org/10.1002/2015JB011870, 2015.
Dales, P., Audet, P., Olivier, G., and Mercier, J. P.: Interferometric
methods for spatio-temporal seismic monitoring in underground mines,
Geophys. J. Int., 210, 731–742, https://doi.org/10.1093/gji/ggx189, 2017.
Dales, P., Pinzon-Ricon, L., Brenguier, F., Boué, P., Arndt, N.,
McBride, J., and Olivier, G.: Virtual Sources of Body Waves from Noise
Correlations in a Mineral Exploration Context, Seismol. Res. Lett., 91,
2278–2286, https://doi.org/10.1785/0220200023, 2020.
Daneshvar, M. R., Clay, C. S., and Savage, M. K.: Passive seismic imaging
using microearthquakes, Seismol. Res. Lett., 60, 1178–1186, https://doi.org/10.1190/1.1443846, 1995.
Draganov, D., Wapenaar, K., and Thorbecke, J.: Seismic interferometry:
reconstructing the Earth's reflection response, Geophysics, 71,
61–170, https://doi.org/10.1190/1.2209947, 2006.
Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K.:
Reflection images from ambient seismic noise, Geophysics, 74, 63–67, https://doi.org/10.1190/1.3193529, 2009.
Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K.:
Seismic exploration-scale velocities and structure from ambient seismic
noise (>1 Hz), J. Geophys. Res.-Sol. Ea., 118, 4345–4360, https://doi.org/10.1002/jgrb.50339, 2013.
Forghani, F. and Snieder, R.: Underestimation of body waves and feasibility
of surface-wave reconstruction by seismic interferometry, Lead. Edge, 29,
790–794, https://doi.org/10.1190/1.3462779, 2010.
Heinonen, S., Malinowski, M., Hloušek, F., Gislason, G., Buske, S.,
Koivisto, E., and Wojdyla, M.: Cost-effective seismic exploration: 2D
reflection imaging of the mineral system of Kylylahti, Easter Finland,
Minerals, 9, 263, https://doi.org/10.3390/min9050263, 2019.
Koivisto, E., Malinowski, M., Heinonen, S., Cosma, C., Wojdyla, M.,
Vaittinen, K., and the COGITO-MIN Working Group: From Regional
Seismics to High-Resolution Resource Delineation: Example from the Outokumpu
Ore District, Eastern Finland, European Association
of Geoscientists and Engineers, 2018, 1–5, https://doi.org/10.3997/2214-4609.201802716, 2018.
Luhta, T.: Petrophysical properties of the Kylylahti Cu-Au-Zn sulphide
mineralization and its host rocks, Master's thesis, University
of Helsinki, Finland, https://helda.helsinki.fi/handle/10138/302130 (last access: 11 March 2022), 2019.
Mehta, M., Snieder, R., Calvert, R., and Sheiman, J.: Acquisition geometry
requirements for generating virtual-source data, Lead. Edge, 27, 620–629, https://doi.org/10.1190/1.2919580, 2008.
Nakata, N., Chang, J. P., Lawrence, J., and Boué, P.: Body wave
extraction and tomography at long beach, California, with ambient-noise
interferometry, J. Geophys. Res.-Sol. Ea., 120, 1159–1173, https://doi.org/10.1002/2015JB011870, 2015.
Olivier, G., Brenguier, F., Campillo, M., Lynch, R., and Roux, P.: Body-wave
reconstruction from ambient noise seismic noise correlations in an
underground mine, Geophysics, 80, 11–25, https://doi.org/10.1190/geo2014-0299.1,
2015.
Peltonen, P., Kontinen, A., Huhma, H., and Kuronen, U.: Outokumpu revisited:
New mineral deposit model for the mantle peridotite-associated
Cu-Co-Zn-Ni-Ag-Au sulphide deposits, Ore Geol. Rev., 33, 559–617,
https://doi.org/10.1016/j.oregeorev.2007.07.002, 2008.
Quiros, D., Brown, L., and Doyeon, K.: Seismic interferometry of railroad
induced ground motions: body and surface wave imaging, Geophys. J. Int.,
205, 301–313, https://doi.org/10.1093/gji/ggw033, 2016.
Riedel, M., Cosma, C., Enescu, N., Koivisto, E., Komminaho, K., Vaittinen,
K., and Malinowski, M.: Underground Vertical Seismic Profiling with
Conventional and Fiber-Optic Systems for Exploration in the Kylylahti
Polymetallic Mine, Eastern Fin Land, Minerals, 8, 538, https://doi.org/10.3390/min8110538, 2018.
Roots, E., Calvert, A., and Craven, J.: Interferometric seismic imaging
around the active Lalor mine in the Flin Flon greenstone belt, Canada,
Tectonophysics, 718, 92–104, https://doi.org/10.1016/j.tecto.2017.04.024, 2017.
Rost, S. and Thomas, C.: Array seismology: Methods and applications, Rev.
Geophys., 40, 1–27, https://doi.org/10.1029/2000RG000100, 2002.
Ruigrok, E., Campman, X., Draganov, D., and Wapenaar, K.: High-resolution
lithospheric imaging with seismic interferometry, Geophys. J. Int., 183,
339–357, https://doi.org/10.1111/j.1365-246X.2010.04724.x, 2010.
Ryberg, T.: Body wave observations from cross-correlations of ambient
seismic noise: A case study from the Karoo, RSA, Geophys. Res. Lett., 38,
L13311, https://doi.org/10.1029/2011GL047665, 2011.
Schuster, H.: Theory of daylight/interferometric imaging: tutorial,
Extended Abstracts, European Association of Geoscientists and
Engineers, https://doi.org/10.3997/2214-4609-pdb.15.A-32, 2001.
Singh, B., Malinowski, M., Hloušek, F., Koivisto, E., Heinonen, S.,
Hellwig, O., and Juurela, S.: Sparse 3D Seismic Imaging in the Kylylahti
Mine Area, Eastern Finland: Comparison of Time vs Depth Approach, Minerals,
9, 305, https://doi.org/10.3390/min9050305, 2019.
Snieder, R.: Extracting the green's function from the correlation of coda
waves: a derivation based on stationary phase, Phys. Rev. E, 69, 46610, https://doi.org/10.1103/PhysRevE.69.046610, 2004.
Väkevä, S.: Using Three-Component Data for Seismic Interferometry
Studies at the Kylylahti Mine, Master's thesis, University of
Helsinki, Finland, https://helda.helsinki.fi/handle/10138/302127 (last access: 11 March 2022), 2019.
Wapenaar, K.: Green's function retrieval by cross-correlation in case of
one-sided illumination, Geophys. Res. Lett., 33, L19304, https://doi.org/10.1029/2006GL027747, 2006.
Short summary
In passive seismic measurement, all noise sources from the environment, such as traffic, vibrations caused by distant excavation, and explosive work from underground mines, are utilized. In the Kylylahti experiment, receivers recorded ambient noise sources for 30 d. These recordings were subjected to data analysis and processing using novel methodology developed in our study and used for imaging the subsurface geology of the Kylylahti mine area.
In passive seismic measurement, all noise sources from the environment, such as traffic,...
Special issue