Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-705-2022
https://doi.org/10.5194/se-13-705-2022
Research article
 | 
22 Mar 2022
Research article |  | 22 Mar 2022

Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland

Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä

Related authors

Post-Caledonian tectonic evolution of the Precambrian and Paleozoic platform boundary zone offshore Poland based on the new and vintage multi-channel reflection seismic data
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024,https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
3D high-resolution seismic imaging of the iron oxide deposits in Ludvika (Sweden) using full-waveform inversion and reverse time migration
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022,https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Three-dimensional reflection seismic imaging of the iron oxide deposits in the Ludvika mining area, Sweden, using Fresnel volume migration
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022,https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022,https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Near-surface structure of the Sodankylä area in Finland, obtained by passive seismic interferometry
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021,https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North Iceland
Fabian Kutschera, Alice-Agnes Gabriel, Sara Aniko Wirp, Bo Li, Thomas Ulrich, Claudia Abril, and Benedikt Halldórsson
Solid Earth, 15, 251–280, https://doi.org/10.5194/se-15-251-2024,https://doi.org/10.5194/se-15-251-2024, 2024
Short summary
Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence
Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, and Nishtha Srivastava
Solid Earth, 15, 197–213, https://doi.org/10.5194/se-15-197-2024,https://doi.org/10.5194/se-15-197-2024, 2024
Short summary
A borehole trajectory inversion scheme to adjust the measurement geometry for 3D travel-time tomography on glaciers
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023,https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023,https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Towards real-time seismic monitoring of a geothermal plant using Distributed Acoustic Sensing
Jerome Azzola, Katja Thiemann, and Emmanuel Gaucher
EGUsphere, https://doi.org/10.5194/egusphere-2022-1417,https://doi.org/10.5194/egusphere-2022-1417, 2022
Preprint archived
Short summary

Cited articles

Ben-Zion, Y., Vernon, F. L., Ozakin, Y., Zigone, D., Ross, Z. E., Meng, H., and Barklage, M.: Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone, Geophys. J. Int., 202, 370–380, https://doi.org/10.1093/gji/ggv142, 2015. 
Chamarczuk, M.: Kylylahti 3D virtual seismic survey (unprocessed ambient-noise recordings), Version 2, Fairdata.fi [data set], https://doi.org/10.23729/48acb337-3be0-4e76-94f9-5e60779c26fe, 2021. 
Chamarczuk, M. and Koivisto, E.: Kylylahti 3D virtual seismic survey, Version 1, Fairdata.fi [data set], https://doi.org/10.23729/8469939b-4abe-405e-9eeb-53016acdfb7d, 2021. 
Chamarczuk, M., Malinowski, M., Koivisto, E., Heinonen, S., Juurela, S., and COGITO-MIN Working, G.: Passive seismic interferometry for subsurface imaging in an active mine environment: case study from the Kylylahti Cu-Au-Zn mine, Finland, Proceedings of Exploration'17: Seismic Methods and Exploration Workshop, 2017, 1–56, 2017. 
Chamarczuk, M., Malinowski, M., Draganov, D., Koivisto, E., Heinonen, S., and Juurela, S.: Seismic Interferometry for Mineral Exploration: Passive Seismic Experiment over Kylylahti Mine Area, Finland, Eur. Assoc. Geosci. Eng., 2018, 1–5, https://doi.org/10.3997/2214-4609.201802703, 2018. 
Download
Short summary
In passive seismic measurement, all noise sources from the environment, such as traffic, vibrations caused by distant excavation, and explosive work from underground mines, are utilized. In the Kylylahti experiment, receivers recorded ambient noise sources for 30 d. These recordings were subjected to data analysis and processing using novel methodology developed in our study and used for imaging the subsurface geology of the Kylylahti mine area.