Articles | Volume 13, issue 6
https://doi.org/10.5194/se-13-957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-957-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aegean-style extensional deformation in the contractional southern Dinarides: incipient normal fault scarps in Montenegro
Peter Biermanns
CORRESPONDING AUTHOR
Institute of Neotectonics and Natural Hazards, RWTH Aachen University,
52064 Aachen, Germany
Benjamin Schmitz
Institute of Geosciences, University of Jena, 07749 Jena, Germany
Silke Mechernich
Institute of Geology and Mineralogy, University of Cologne, 50937
Köln, Germany
Christopher Weismüller
Institute of Neotectonics and Natural Hazards, RWTH Aachen University,
52064 Aachen, Germany
Kujtim Onuzi
Institute of Geosciences, Energy, Water and Environment, Polytechnic
University of Tirana, 1016 Tirana, Albania
Kamil Ustaszewski
Institute of Geosciences, University of Jena, 07749 Jena, Germany
Klaus Reicherter
Institute of Neotectonics and Natural Hazards, RWTH Aachen University,
52064 Aachen, Germany
Related authors
Sajid Ali, Peter Biermanns, Rashid Haider, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 19, 999–1022, https://doi.org/10.5194/nhess-19-999-2019, https://doi.org/10.5194/nhess-19-999-2019, 2019
Short summary
Short summary
The Karakoram Highway (KKH) is an important physical connection between Pakistan and China. Landslides have been a major threat to its stability since its construction. After the announcement of the China–Pakistan Economic Corridor (CPEC), KKH has had more importance. Geoscientists from research institutions in both countries are assessing landslide hazard and risk along the highway. In a PhD project, this paper will be followed by a detailed analysis of mass movements along the highway.
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Alejandro Jiménez Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-142, https://doi.org/10.5194/hess-2024-142, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We accomplished an interdisciplinary study to study the Fuente de Piedra (FdP) playa-lake evolution in southern Spain. We made water balances during the FdP lifespan . Our results indicate that the FdP playa-lake level moved and tilted towards SW caused by active faults.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Sarah Mader, Joachim R. R. Ritter, Klaus Reicherter, and the AlpArray Working Group
Solid Earth, 12, 1389–1409, https://doi.org/10.5194/se-12-1389-2021, https://doi.org/10.5194/se-12-1389-2021, 2021
Short summary
Short summary
The Albstadt Shear Zone, SW Germany, is an active rupture zone with sometimes damaging earthquakes but no visible surface structure. To identify its segmentations, geometry, faulting pattern and extension, we analyze the continuous earthquake activity in 2011–2018. We find a segmented N–S-oriented fault zone with mainly horizontal and minor vertical movement along mostly NNE- and some NNW-oriented rupture planes. The main horizontal stress is oriented NW and due to Alpine-related loading.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
Christopher Weismüller, Janos L. Urai, Michael Kettermann, Christoph von Hagke, and Klaus Reicherter
Solid Earth, 10, 1757–1784, https://doi.org/10.5194/se-10-1757-2019, https://doi.org/10.5194/se-10-1757-2019, 2019
Short summary
Short summary
We use drones to study surface geometries of massively dilatant faults (MDFs) in Iceland, with apertures up to tens of meters at the surface. Based on throw, aperture and structures, we define three geometrically different endmembers of the surface expression of MDFs and show that they belong to one continuum. The transition between the endmembers is fluent and can change at one fault over short distances, implying less distinct control of deeper structures on surface geometries than expected.
Mjahid Zebari, Christoph Grützner, Payman Navabpour, and Kamil Ustaszewski
Solid Earth, 10, 663–682, https://doi.org/10.5194/se-10-663-2019, https://doi.org/10.5194/se-10-663-2019, 2019
Short summary
Short summary
Here, we assessed the maturity level and then relative variation of uplift time of three anticlines along the hanging wall of the Zagros Mountain Front Flexure in the Kurdistan Region of Iraq. We also estimated the relative time difference between the uplift time of more mature anticlines and less mature ones to be around 200 kyr via building a landscape evolution model. These enabled us to reconstruct a spatial and temporal evolution of these anticlines.
Sajid Ali, Peter Biermanns, Rashid Haider, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 19, 999–1022, https://doi.org/10.5194/nhess-19-999-2019, https://doi.org/10.5194/nhess-19-999-2019, 2019
Short summary
Short summary
The Karakoram Highway (KKH) is an important physical connection between Pakistan and China. Landslides have been a major threat to its stability since its construction. After the announcement of the China–Pakistan Economic Corridor (CPEC), KKH has had more importance. Geoscientists from research institutions in both countries are assessing landslide hazard and risk along the highway. In a PhD project, this paper will be followed by a detailed analysis of mass movements along the highway.
Sascha Schneiderwind, Jack Mason, Thomas Wiatr, Ioannis Papanikolaou, and Klaus Reicherter
Solid Earth, 7, 323–340, https://doi.org/10.5194/se-7-323-2016, https://doi.org/10.5194/se-7-323-2016, 2016
Short summary
Short summary
Palaeoseismological research uses historical earthquakes to verify seismic hazard assessment. Earthquakes of magnitude M > 5.5 likely produce surface ruptures that can be preserved in the subsurface. Buried soils or progressive displacements are the main targets of trenching studies. However, the recognition of these features is challenging for inexperienced researchers. Here a workflow is presented which applies remote sensing and geophysical techniques to verify layer distinction.
M. Kettermann, C. Grützner, H. W. van Gent, J. L. Urai, K. Reicherter, and J. Mertens
Solid Earth, 6, 839–855, https://doi.org/10.5194/se-6-839-2015, https://doi.org/10.5194/se-6-839-2015, 2015
Short summary
Short summary
This paper combines fieldwork, ground-penetrating radar (GPR) and remote sensing in the jointed and faulted grabens area of Canyonlands National Park, Utah, USA. GPR profiles show that graben floors are subject to faulting, although the surface shows no scarps. We enhance evidence for the effect of preexisting joints on the formation of dilatant faults and provide a conceptual model for graben evolution. Correlating paleosols from outcrops and GPR adds to estimates of the age of the grabens.
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014, https://doi.org/10.5194/cp-10-1673-2014, 2014
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014, https://doi.org/10.5194/sd-17-19-2014, 2014
Cited articles
Aliaj, S.: The Albanian orogen: convergence zone between Eurasia and the
Adria microplate, in: The Adria Microplate: GPS Geodesy, Tectonics and Hazards, edited by: Pinter, N., Grenerczy, G., Weber, J., Stein, S.,
and Medak, D.,
NATO Science Series IV: Earth and Environmental Sciences, Springer, 133–149, https://doi.org/10.1007/1-4020-4235-3,
2006.
Aliaj, S., Baldassarre, G., and Shkupi, D.: Quaternary subsidence zones in
Albania: some case studies, Bull. Eng. Geol. Environ., 59, 313–318, 2001.
Aliaj, S., Koçiu, S., Muço, B., and Sulstarova, E.: Sizmiciteti,
Sismotektonika dhe Vlerësimi I Rrezikut Sizmik në Shqipëri,
Akademia e Shkëncave e Shqipërisë, Tirana, ISBN 978-9-99561-026-5, 2010.
Allen, J. R. M., Brandt, U., Brauer, A., Hubberten, H. W., Huntley, B., Keller,
J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk,
N. R., Oberhansli, H., Watts, W. A., Wulf, S., and Zolitschka, B.: Rapid
environmental changes in southern Europe during the last glacial period,
Nature, 400, 740–743, 1999.
Armijo, R., Lyon-Caen, H., and Papanastassiou, D.: East-west extension and
Holocene normal-fault scarps in the Hellenic arc, Geology, 20, 491–494,
1992.
Avouac, J. P., Meyer, B., and Tapponier, P.: On the growth of normal faults and
the existence of flats and ramps along the El Asnam active fold and thrust
system, Tectonics, 11, 1–11, https://doi.org/10.1029/91TC01449, 1992.
Battaglia, M., Murray, M. H., Serpelloni, E., and Bürgmann, R.: The Adriatic
region: An independent microplate within the Africa-Eurasia collision zone,
Geophys. Res. Lett., 31, L09605, https://doi.org/10.1029/2004GL019723, 2004.
Beck, J., Wolfers, S., and Roberts, G. P.: Bayesian earthquake dating and seismic hazard assessment using chlorine-36 measurements (BED v1), Geosci. Model Dev., 11, 4383–4397, https://doi.org/10.5194/gmd-11-4383-2018, 2018.
Benedetti, L., Finkel, R., Papanastassiou, D., King, G., Armijo, R.,
Ryerson, F., Farber, D., and Flerit, F.: Post-glacial slip history of the
Sparta fault (Greece) determined by 36 Cl cosmogenic dating: Evidence for
non-periodic earthquakes, Geophys. Res. Lett., 29, 87-1–87-4, https://doi.org/10.1029/2001GL014510, 2002.
Benedetti, L., Manighetti, I., Gaudemer, Y., Finkel, R., Malavieille, J.,
Pou, K., Arnold, M., Aumaître, G., Bourlès, D., and Keddadouche, K.:
Earthquake synchrony and clustering on Fucino faults (Central Italy) as
revealed from in situ 36Cl exposure dating, J. Geophys. Res.-Sol.
Ea., 118, 4948–4974, 2013.
Benetatos, C. and Kiratzi, A.: Finite-fault slip models for the 15 April
1979 (Mw 7.1) Montenegro earthquake and its strongest aftershock of 24 May
1979 (Mw 6.2), Tectonophysics, 421, 129–143, 2006.
Bennett, R. A., Serpelloni, E., Hreinsdóttir, S., Brandon, M.T., Buble,
G., Basic, T., Casale, G., Cavaliere, A., Anzidei, M., Marjonovic, M.,
Minelli, G., Molli, G., and Montanari, A.: Syn-convergent extension observed
using the RETREAT GPS network, northern Apennines, Italy, J. Geophys. Res.-Sol. Ea., 117, B04408, https://doi.org/10.1029/2011JB008744, 2012.
Biermanns, P., Schmitz, B., Ustaszewski, K., and Reicherter, K., Tectonic
geomorphology and Quaternary landscape development in the Albania –
Montenegro border region: An inventory, Geomorphology, 326, 116–131, 2019.
Boulton, S. J. and Stewart, I. S.: Holocene coastal notches in the
Mediterranean region: Indicators of palaeoseismic clustering?,
Geomorphology, 237, 29–37, 2015.
Bubeck, A., Wilkinson, M., Roberts, G. P., Cowie, P. A., McCaffrey, K. J. W.,
Phillips, R., and Sammonds, P.: The tectonic geomorphology of bedrock scarps
on active normal faults in the Italian Apennines mapped using combined
ground penetrating radar and terrestrial laser scanning, Geomorphology, 237,
38–51, 2015.
Carminati, E. and Doglioni, C.: Alps vs. Apennines: The paradigm of a
tectonically asymmetric Earth, Earth Sci. Rev., 112, 67–96, 2012.
Cavinato, G. P. and De Celles, P. G.: Extensional basins in the tectonically
bimodal central Apennines fold-thrust belt, Italy: Response to corner flow
above a subducting slab in retrograde motion, Geology, 27, 955–958,
1999.
Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M., Casarotti, E., Cattaneo, M., De Gori, P., Chiarabba, C., Monachesi, G., Lombardi, A., Valoroso, L., Latorre, D., and Marzorati, S.: The 2016 Central Italy Seismic Sequence: A First Look
at the Mainshocks, Aftershocks, and Source Models, Seismol. Res. Lett., 88, 757–771, 2017.
Civico, R., Pucci, S., Villani, F., Pizzimenti, L., De Martine, P. M., Nappi,
R., and the Open EMERGEO Working group: Surface ruptures following the 30
October 2016 Mw 6.5 Norcia earthquake, central Italy, J. Maps, 14,
151–160, 2018.
Copley, A., Boait, F., Hollingsworth, J., Jackson, J., and McKenzie, D.:
Subparallel thrust and normal faulting in Albania and the roles of
gravitational potential energy and rheology contrasts in mountain belts, J.
Geophys. Res., 114, B05407, https://doi.org/10.1029/2008JB005931, 2009.
Corrado, S., Aldega, L., Perri, F., Critelli, S., Muto, F., Schito, A., and
Tripodi, V.: Detecting syn-orogenic extension and sediment provenance of the
Cilento wedge top basin (southern Apennines, Italy): Mineralogy and
geochemistry of fine-grained sediments and petrography of dispersed organic
matter, Tectonophysics, 750, 404–418, 2019.
Cowie, P. A., Phillips, R. J., Roberts, G. P., McCaffrey, K., Zijerveld,
L. J. J., Gregory, L. C., Faure Walker, J., Wedmore, L. N. J., Dunai, T. J.,
Binnie, S. A., Freeman, S. P. H. T., Wilcken, K., Shanks, R. P., Huismans, R. S.,
Papanikolaous, I., Michetti, A. M., and Wilkinson, M.: Orogen-scale uplift in the
central Italian Apennines drives episodic behaviour of earthquake faults,
Sci. Rep., 7, 1–10, 2017.
D'Agostino, N., Avallone, A., Cheloni, D., D'Anastasio, E., Mantenuto, S.,
and Selvaggi, G.: Active tectonics of the Adriatic region from GPS and
earthquake slip vectors, J. Geophys. Res., 113, B12413, https://doi.org/10.1029/2008JB005860, 2008.
D'Agostino, N., Métois, M., Koci, R., Duni, L., Kuka, N. Ganas, A.,
Georgiev, I., Jouanne, F., Kaludjerovic, N., and Kandić, R.: Active crustal
deformation and rotations in the southwestern Balkans from continuous GPS
measurements, Earth Planet. Sc. Lett., 539, 116246,
https://doi.org/10.1016/j.epsl.2020.116246, 2020.
Devoti, R., D'Agostino, N., Serpelloni, E., Pietrantonio, G., Riguzzi, F.,
Avallone, A., Cavaliere, A., Cheloni, D., Cecere, G.,
D'Ambrosio, C., Falco, L., Selvaggi, G., Métois, M., Esposito, A., Sepe,
V., Galvani, A., and Anzidei, M.: A Combined Velocity Field of the
Mediterranean Region, Ann. Geophys., 60, S0217, https://doi.org/10.4401/ag-7059,
2017.
Di Bucci, D., Ravaglia, A., Seno, S., Toscani, G., Fracassi, U., and Valensise,
G.: Seismotectonics of the southern Apennines and Adriatic foreland:
Insights on active regional E-W shear zones from analogue modelling,
Tectonics, 25, TC4015, https://doi.org/10.1029/2005TC001898, 2006.
Dramis, F. and Blumetti, A. M.: Some considerations concerning seismic
geomorphology and paleoseismology, Tectonophysics, 408, 177–191, 2005.
Dumurdzanov, N., Serafimovski, T., and Burchfiel, B. C.: Cenozoic tectonics of
Macedonia and its relation to the South Balkan extensional regime,
Geosphere, 1, 1–22, 2005.
Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P.,
Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo,
C., Royden, L., Rossetti, F., and Serpelloni, E.: Mantle dynamics in the
Mediterranean, Rev. Geophys., 52, 283–332, 2014.
Faure Walker, J., Roberts, G. P., Cowie, P. A., Papanikolaou, I. D.,
Sammonds, P. R., Michetti, A. M., and Phillips, R. J.: Horizontal strain-rates
and throw-rates across breached relay zones, central Italy: Implications for
the preservation of throw deficits at points of normal fault linkage,
J. Struct. Geol., 31, 1145–1160, 2009.
Galadini, F. and Galli, P.: Active tectonics in the central Apennines
(Italy)–input data for seismic hazard assessment, Nat. Hazards, 22,
225–268, 2000.
Geological Survey of Montenegro: Geological map of Montenegro, 1:25k
geological map sheet Vladimir 160-4-3 and 1:50 k geological map sheet
Podgorica 3, Geological Survey of Montenegro, 2009.
Giraudi, C.: Considerations on the significance of some postglacial fault
scarps in the Abruzzo Apennines (Central Italy), Quaternary Int., 25, 33–45,
1995.
Giraudi, C. and Frezzotti, M.: Paleoseismicity in the Gran Sasso Massif
(Abruzzo, Central Italy), Quaternary Int., 25, 81–93, 1995.
Giraudi, C. and Frezzotti, M.: Late Pleistocene glacial events in the
central Apennines, Italy, Quaternary Res., 48, 280–290, 1997.
Goldberg, R., Siman-Tov, S., and Emmanuel, S.: Weathering resistance of
carbonate fault mirrors promotes rupture localization, Geophys. Res. Lett.,
43, 3105–3111, 2016.
Goodall, H. J., Gregory, L. C., Wedmore, L. N. J., MacCaffrey, K. J. W., Amey,
R. M. J., Roberts, G. P., Shanks, R. P., Phillips, R. J., and Hooper, A.: Determining
Histories of Slip on Normal Faults with Bedrock Scarps Using Cosmogenic
Nuclide Exposure Data, Tectonics, 40, e2020TC006457, https://doi.org/10.1029/2020TC006457, 2021.
Grünthal, G., Wahlstrom, R., and Stromeyer, D.: The SHARE European
Earthquake Catalogue (SHEEC) for the Time Period 1900-2006 and Its
Comparison to theEuropean-Mediterranean Earthquake Catalogue (EMEC), J.
Seismol., 17, 1339–1344, 2013.
Grützner, C., Barba, S., Papanikolaou, I., and Pérez-López, R.:
Earthquake geology: science, society and critical facilities, Ann. Geophys.,
56, https://doi.org/10.4401/ag-6503, 2013.
Grützner, C., Schneiderwind, S., Papanikolaou, I., Deligiannakis, G.,
Pallikarakis, A., and Reicherter, K.: New constraints on extensional
tectonics and seismic hazard in northern Attica, Greece: the case of the
Milesi Fault, Geophys. J. Int., 204, 180–199, 2016.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps-Carpathians-Dinarides as a key to understanding switches in subduction
polarity, slab gaps and surface motion, Int. J. Earth Sci., 104, 1–26,
2015.
Handy, M. R., Giese, J., Schmid, S. M., Pleuger, J., Spakman, W., Onuzi, K.,
and Ustaszewski, K.: Coupled Crust-Mantle Response to Slab Tearing, Bending,
and Rollback Along the Dinaride-Hellenide Orogen, Tectonics, 38, 2803–2828,
2019.
Hicks, S. P. and Rietbrock, A.: Seismic slip on an upper-plate normal fault
during a large subduction megathrust rupture, Nat. Geosci., 8, 955–960, https://doi.org/10.1038/ngeo2585, 2015.
Highland, L. and Bobrowsky, P. T.: The landslide handbook: a guide to
understanding landslides, Reston: US Geological Survey, ISBN 1411-322266, 2008.
Iezzi, F., Roberts, G., Faure Walker, J., Papanikolaou, I., Ganas, A.,
Deligiannakis, G., Beck, J., Wolfers, S., and Gheorghiu, D.: Temporal and
spatial earthquake clustering revealed through comparison of millennial
strain-rates from 36Cl cosmogenic exposure dating and decadal GPS
strain-rate, Sci. Rep., 11, 1–12, 2021.
Jouanne, F., Mugnier, J. L., Koci, R., Bushati, S., Matev, K., Kuka, N.,
Shinko, I., Kociu, S., and Duni, L.: GPS constraints on current tectonics of
Albania, Tectonophysics, 554, 50–62, 2012.
Király, Á., Faccenna, C., and Funiciello, F.: Subduction Zones
Interaction Around the Adria Microplate and the Origin of the Apenninic Arc,
Tectonics, 37, 3941–3953, https://doi.org/10.1029/2018TC005211, 2018.
Koçiaj, S. and Sulstarova, E.: The earthquake of June 1, 1905, Shkodra,
Albania; intensity distribution and macroseismic epicentre, Tectonophysics,
67, 319–332, 1980.
Kotzev, V., King, R. W., Burchfiel, B. C., Todosov, A., Nurce, B., and Nakov, R.: Crustal motion and strain accumulation in the South Balkan Region Inferred from GPS Measurements, in: Earthquake monitoring and seismic hazard mitigation in Balkan countries, 19–43, https://doi.org/10.1007/978-1-4020-6815-7_2, Springer, Dordrecht, 2008.
Kuhlemann, J., Milivojević, M., Krumrei, I., and Kubik, P.W.: Last
glaciation of the Šara range (Balkan peninsula): Increasing dryness from
the LGM to the Holocene, Austr. J. Earth Sci., 102, 146–158, 2009.
Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G.,
Scicchitano, G., and Silenzi, S: Sea level change along the Italian coast during
the Holocene and projections for the future, Quaternary Int., 232, 250–257,
2011.
Le Breton, E. Handy, M. R., Molli, R., and Ustaszewski, K.: Post-20 Ma Motion of
the Adriatic Plate: New Constraints From Surrounding Orogens and
Implications for Crust-Mantle Decoupling, Tectonics, 36, 3135–3154, 2017.
Mason, J., Schneiderwind, S., Pallikarakis, A., Wiatr, T., Mechernich, S.,
Papanikolaou, I., and Reicherter, K.: Fault structure and deformation rates
at the Lastros-Sfaka Graben, Crete, Tectonophysics, 683, 216–232, 2016.
Mason, J., Schneiderwind, S., Pallikarakis, A., Mechernich, S.,
Papanikolaou, I., and Reicherter, K.: Hanging-wall colluvial cementation along
active normal faults, Quaternary Res., 88, 39–59, 2017.
McCalpin, J. (Ed.): Paleoseismology, 2nd Edn., Academic Press, ISBN 978-0-12-373576-8, 2009.
Mechernich, S., Schneiderwind, S., Mason, J., Papanikolaou, I. D.,
Deligiannakis, G., Pallikarakis, A., Binnie, S. A., Dunai, T. J., and
Reicherter, K.: The seismic history of the Pisia fault (eastern Corinth
rift, Greece) from fault plane weathering features and cosmogenic 36Cl
dating, J. Geophys. Res.-Sol. Ea., 123, 4266–4284, 2018.
Mechernich, S., Dunai, T. J., Binnie, S. A., Goral, T., Heinze, S., Dewald,
A., Schimmelpfennig, I., Keddadouche, K., Aumaître, G., Bourlès,
D., Marrero, S., Wilcken, K., Simon, K., Fink, D., Phillips, F. M., Caffee,
M. W., Gregory, L. C., Phillips, R., Freemann, S. P. H. T., Shanks, R. P., Sarıkaya, M. A., Pavetich, S., Rugel, G., Merchel, S., Akçar, N., Yesilyurt,
S., Ivy-Ochs, S., and Vockenhuber, C.: Carbonate and silicate intercomparison
materials for cosmogenic 36Cl measurements, Nucl. Inst. Methods Phys.
Res. B, 455, 250–259, 2019.
Mechernich., S., Reicherter, K., Deligiannakis, G., and Papanikolaou, I.:
Tectonic geomorphology of active faults in Eastern Crete (Greece) with slip
rates and earthquake history from cosmogenic 36Cl dating of the Lastros and
Orno faults, Quaternary Int., https://doi.org/10.1016/j.quaint.2022.04.007, online first, 2022.
Nábělek, J.: Geometry and mechanism of faulting of the 1980 El
Asnam, Algeria, earthquake from inversion of teleseismic body waves and
comparison with field observations, J. Geophys. Res.-Sol. Ea., 90,
12713–12728, 1985.
Nocquet, J. M.: Present-day kinematics of the Mediterranean: A comprehensive
overview of GPS results, Tectonophysics, 579, 220–242, 2012.
Nocquet, J. M. and Calais, E.: Geodetic measurements of crustal deformation in
the Western Mediterranean and Europe, Pure Appl. Geophys., 161, 661–681,
2004.
Palumbo, L., Benedetti, L., Bourles, D., Cinque, A., and Finkel, R.: Slip
history of the Magnola fault (Apennines, Central Italy) from 36Cl surface
exposure dating: evidence for strong earthquakes over the Holocene, Earth
Planet. Sc. Lett., 225, 163–176, 2004.
Papadopoulos, G. A., Agalos, A., Carydis, P., Lekkas, E., Mavroulis, S., and
Triantafyllou, I.: The 26 November 2019 Mw 6.4 Albania Destructive
Earthquake, Seismol. Res. Lett., 91, 3129–3138, 2020.
Papanikolaou, I., Roberts, G. P., Deligiannakis, G., Sakellariou, A., and
Vassilakis, E.: The Sparta Fault, Southern Greece: From segmentation and
tectonic geomorphology to seismic hazard mapping and time dependent
probabilities, Tectonophysics, 597, 85–105, 2013.
Papanikolaou, I. D. and Roberts, G. P.: Geometry, kinematics and
deformation rates along the active normal fault system in the southern
Apennines: Implications for fault growth, J. Struct. Geol., 29, 166–188,
2007.
Papanikolaou, I. D., Roberts, G. P., and Michetti, A. M.: Fault scarps and
deformation rates in Lazio-Abruzzo, Central Italy: Comparison between
geological fault slip-rate and GPS data, Tectonophysics, 408, 147–176, 2005.
Papazachos, B. C. and Papazachou, C.: The earthquakes of Greece, Ziti
publications, Thessaloniki, Greece, 286 pp., ISBN 960-431-416-5, 2003.
Patacca, E. and Scandone, P.: Geology of the Southern Apennines, Boll. Soc.
Geol. It., Spec. Issue, 7, 75–119, 2007.
Pavlopoulos, K., Leontaritis, A., Athanassas, C. D., Petrakou, C., Vandarakis, D., Nikolakopoulos, K., Stamatopoulos, L., and Theodorakopoulou, K.: Last glacial geomorphologic records in Mt Chelmos, North Peloponnesus, Greece, J. Mt. Sci., 15, 948–965, https://doi.org/10.1007/s11629-017-4563-0, 2018.
Philip, H. and Meghraoui, M.: Structural analysis and interpretation of the
surface deformations of the El Asnam earthquake of October 10, 1980,
Tectonics, 2, 17–49, 1983.
Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P.,
and Vannucci, G.: The Italian CMT dataset from 1977 to the present, Phys.
Earth Planet. Int., 159, 286–303, 2006.
Pope, R. J., Hughes, P. D., and Skourtsos, E.: Glacial history of Mt Chelmos, Peloponnesus, Greece, Geol. Soc. Lond. Spec. Publ., 433, 211–236, https://doi.org/10.1144/SP433.11, 2017.
Ramsay, J. G. and Huber, M. I.: The techniques of Modern Structural Geology:
Vol. 2, Folds and Fractures, Academic Press, London, ISBN 0-12-576902-4, 1987.
Reicherter, K., Hoffmann, N., Lindhorst, K., Krastel, S.,
Fernández-Steeger, Grützner, C., and Wiatr, T.: Active basins and
neotectonics: morphotectonics of the Lake Ohrid Basin (FYROM and Albania),
Z. Dt. Geowiss., 162, 217–234, 2011.
Riesner, M., Bollinger, L., Hubbard, J., Guérin, C., Lefèvre, M.,
Vallage, A., Shah, C. B., Kandel, T. P., Haines, S., and Sapkota, S. N.: Localized
extension in megathrust hanging wall following great earthquakes in western
Nepal, Sci. Rep., 11, 1–18, 2021.
Roberts, G. P. and Michetti, A. M.: Spatial and temporal variations in
growth rates along active normal fault systems: an example from The
Lazio–Abruzzo Apennines, central Italy, J. Struct. Geol., 26, 339–376,
2004
Schlagenhauf, A., Y. Gaudemer, Y., Benedetti, L., Manighetti, I., Palumbo,
L., Schimmelpfennig, I., Finkel, R., and Pou, K.: Using in situ Chlorine-36
cosmonuclide to recover past earthquake histories on limestone normal fault
scarps: a reappraisal of methodology and interpretations, Geophys. J. Int.,
182, 36–72, 2010.
Schlagenhauf, A., Manighetti, I., Benedetti, L., Gaudemer, Y., Finkel, R.,
Malavieille, J., and Pou, K.: Earthquake supercycles in Central Italy, inferred
from 36Cl exposure dating, Earth Planet. Sc. Lett., 307, 487–500,
2011.
Schmid, S. M., Fügenschuh, B., Kounov, A., Maţenco, L., Nievergelt,
P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R.,
Tomljenović, B., Ustaszewski, K., and van Hinsbergen, D. J. J.: Tectonic
units of the Alpine collision zone between Eastern Alps and western Turkey,
Gondwana Res., 78, 308–374, 2020.
Schmitz, B., Biermanns, P., Hinsch, R., Ðaković, M., Onuzi, K.,
Reicherter, K., and Ustaszewski, K.: Ongoing shortening in the Dinarides
fold-and-thrust belt: A new structural model of the 1979 (Mw 7.1) Montenegro
earthquake epicentral region, J. Struct. Geol., 141, 104192, https://doi.org/10.1016/j.jsg.2020.104192, 2020.
Schneiderwind, S., Boulton, S. J., Papanikolaou, I. D., and Reicherter, K.:
Innovative tidal notch detection using TLS and fuzzy logic: Implications for
palaeo-shorelines from compressional (Crete) and extensional (Gulf of
Corinth) tectonic settings, Geomorphology, 283, 189–200, 2017.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys.
Res., 105, 23753–23759, 2000.
Stone, J. O., Allan, G. L., Fifeld, L. K., and Cresswell, R. G.: Cosmogenic
chlorine-36 from calcium spallation, Geochem. Cosmochim. Ac., 60, 679–692,
1996.
Sulstarova E., Koçiaj, S., and Aliaj, S.: Seismic regionalization of the PSR
of Albania, The Academy of Sciences of the People's Socialist Republic of
Albania, Seismological Centre, Tirana, 1980.
Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J. A., and
Mazzoli, S.: A review of deformation pattern templates in foreland basin
systems and fold-and-thrust belts: Implications for the state of stress in
the frontal regions of thrust wedges, Earth-Sci. Rev., 141, 82–104, 2015.
Tesson, J., Pace, B., Benedetti, L., Visini, F., Delli Rocioli, M., Arnold,
M., Aumaître, G., Bourlès, D. L., and Keddadouche, K.: Seismic slip
history of the Pizzalto fault (central Apennines, Italy) using in
situ-produced 36Cl cosmic ray exposure dating and rare earth element
concentrations, J. Geophys.Res.-Sol. Ea., 121, 1983–2003, 2016.
Uncu, L.: Holocene Landscape Changes of the Lezha Region, Ph.D. thesis,
University of Marburg, Germany, https://doi.org/10.17192/z2011.0100, 2012.
Vittori, E., Blumetti, A. M., Comerci, V., Di Manna, P., Piccardi, L., Gega,
D., and Hoxha, I.: Geological effects and tectonic environment of the 26
November 2019, Mw 6.4 Durres earthquake (Albania), Geophys. J. Int., 225,
1174–1191, 2020.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface
displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact...