Articles | Volume 15, issue 4
https://doi.org/10.5194/se-15-387-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-387-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fast uplift in the southern Patagonian Andes due to long- and short-term deglaciation and the asthenospheric window underneath
Veleda A. P. Muller
CORRESPONDING AUTHOR
Dipartimento di Scienze dell'Ambiente e della Terra (DISAT), Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, Milan, Italy
currently at: Department of Geosciences, University of Arizona, Tucson, USA
Pietro Sternai
Dipartimento di Scienze dell'Ambiente e della Terra (DISAT), Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, Milan, Italy
Christian Sue
Institute des Sciences de la Terre (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, Université Gustave Eiffel, Grenoble, France
Geology Department, Université de Franche-Comté, Besançon, France
Related authors
No articles found.
Marguerite Mathey, Christian Sue, Colin Pagani, Stéphane Baize, Andrea Walpersdorf, Thomas Bodin, Laurent Husson, Estelle Hannouz, and Bertrand Potin
Solid Earth, 12, 1661–1681, https://doi.org/10.5194/se-12-1661-2021, https://doi.org/10.5194/se-12-1661-2021, 2021
Short summary
Short summary
This work features the highest-resolution seismic stress and strain fields available at the present time for the analysis of the active crustal deformation of the Western Alps. In this paper, we address a large dataset of newly computed focal mechanisms from a statistical standpoint, which allows us to suggest a joint control from far-field forces and from buoyancy forces on the present-day deformation of the Western Alps.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodynamics
Glacial-isostatic-adjustment strain rate–stress paradox in the Western Alps and impact on active faults and seismicity
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Cited articles
Aniya, M.: Holocene variations of Ameghino glacier, southern Patagonia, Holocene, 6, 247–252, https://doi.org/10.1177/095968369600600211, 1996.
Aniya, M., Sato, H., Naruse, R., Skvarca, P., and Casassa, G.: Recent glacier variations in the Southern Patagonia icefield, South America, Arct. Alp. Res., 29, 1–12, https://doi.org/10.1177/095968369600600211, 1997.
Ávila, P. and Dávila, F. M.: Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America, Tectonophysics, 747, 99–107, https://doi.org/10.1016/j.tecto.2018.10.006, 2018.
Ávila, P. and Dávila, F. M.: Lithospheric thinning and dynamic uplift effects during slab window formation, southern Patagonia (45–55° S), J. Geodynam., 133, 101689, https://doi.org/10.1016/j.jog.2019.101689, 2020.
Ávila, P., Ávila, M., Dávila, F. M., Ezpeleta, M., and Castellano, N. E.: Patagonian landscape modeling during Miocene to Present-day slab window formation, Tectonophysics, 862, 229971, https://doi.org/10.1016/j.tecto.2023.229971, 2023.
Bendle, J. M., Palmer, A. P., Thorndycraft, V. R., and Matthews, I. P.: High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5° S) revealed through varve chronology and Bayesian age modelling, Quaternary Sci. Rev., 177, 314–339, https://doi.org/10.1016/j.quascirev.2017.10.013, 2017.
Ben-Mansour, W., Wiens, D. A., Mark, H. F., Russo, R. M., Richter, A., Marderwald, E., and Barrientos, S.: Mantle flow pattern associated with the patagonian slab window determined from azimuthal anisotropy, Geophys. Res. Lett., 49, e2022GL099871, https://doi.org/10.1029/2022GL099871, 2022.
Boex, J., Fogwill, C., Harrison, S., Glasser, N. F., Hein, A., Schnabel, C., and Xu, S.: Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies, Sci. Rep., 3, 1–6, https://doi.org/10.1038/srep02118, 2013.
Bourgois, J., Cisternas, M. E., Braucher, R., Bourlès, D., and Frutos, J.: Geomorphic records along the general Carrera (Chile)–Buenos Aires (Argentina) glacial lake (46–48° S), climate inferences, and glacial rebound for the past 7–9 ka, J. Geol., 124, 27–53, https://doi.org/10.1086/684252, 2016.
Breitsprecher, K. and Thorkelson, D. J.: Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula, Tectonophysics, 464, 10–20, https://doi.org/10.1016/j.tecto.2008.02.013, 2009.
Burov, E. B. and Diament, M.: The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res.-Solid, 100, 3905–3927, https://doi.org/10.1029/94JB02770, 1995.
Butler, S. L. and Peltier, W. R.: On scaling relations in time-dependent mantle convection and the heat transfer constraint on layering, J. Geophys. Res.-Solid, 105, 3175–3208, https://doi.org/10.1029/1999JB900377, 2000.
Cande, S. C. and Leslie, R. B.: Late Cenozoic tectonics of the southern Chile trench, J. Geophys. Res.-Solid, 91, 471–496, https://doi.org/10.1029/JB091iB01p00471, 1986.
Champagnac, J. D., Molnar, P., Sue, C., and Herman, F.: Tectonics, climate, and mountain topography, J. Geophys. Res.-Solid, 117, B02403, https://doi.org/10.1029/2011JB008348, 2012.
Champagnac, J.-D., Valla, P. G., and Herman, F.: Late-cenozoic relief evolution under evolving climate: A review, Tectonophysics, 614, 44–65, https://doi.org/10.1016/j.tecto.2013.11.037, 2014.
Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D., and Ivins, E. R.: Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE), Geophys. Res. Lett., 34, L22501, https://doi.org/10.1029/2007GL031871, 2007.
Cloetingh, S., Sternai, P., Koptev, A., Ehlers, T. A., Gerya, T., Kovács, I., Oerlemans, J., Beekman, F., Lavallée, Y., Dingwell, D., Békési, E., Porkolàb, K., Tesauro, M., Lavecchia, A., Botsyun, S., Muller, V., Roure, F., Serpelloni, E., Matenco, L., Castelltort, S., Giovannelli, D., Brovarone, A.V., Malaspina, N., Coletti, G., Valla, P., and Limberger, J.: Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate-and energy-related societal challenges, Global Planet. Change, 226, 104140, https://doi.org/10.1016/j.gloplacha.2023.104140, 2023.
Conrad, C. P. and Husson, L.: Influence of dynamic topography on sea level and its rate of change, Lithosphere, 1, 110–120, https://doi.org/10.1130/L32.1, 2009.
Currie, C. A. and Hyndman, R. D.: The thermal structure of subduction zone back arcs, J. Geophys. Res.-Solid, 111, B08404, https://doi.org/10.1029/2005JB004024, 2006.
Davies, B. J. and Glasser, N. F.: Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (∼ AD 1870) to 2011, J. Glaciol., 58, 1063–1084, https://doi.org/10.3189/2012JoG12J026, 2012.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M., Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova, M., Palmer, A., Pelto, M., Rodés, A., Segredo, E. A., Smedley, R. K., Smellie J., and Thorndycraft, V. R.: The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE), Earth-Sci. Rev., 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
Dávila, F. M., Lithgow-Bertelloni, C., Martina, F., Ávila, P., Nóbile, J., Collo, G., Ezpeleta, M., Canelo, H., and Sánchez, F.: Mantle influence on Andean and pre-Andean topography, in: The Evolution of the Chilean-Argentinean Andes, edited by: Folguera, A., Contreras-Reyes, E., Encinas, A., Iannelli, S. B., Oliveros, V., Dávila, F. M., Collo, G., Giambiagi, L., Maksymowicz, A., Lllanos, M. P. I., Turienzo, M., Naipauer, M., Orts, D., Litvak, V. D., Alvarez, O., and Arraigada, C., Springer Earth System Sciences, 363–385, ISBN 978-3-319-67773-6, https://doi.org/10.1007/978-3-319-67774-3_15, 2018.
DeMets, C., Gordon, R. G., and Argus, D. F.: Geologically current plate motions, Geophys. J. Int., 181, 1–80, https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010.
Dietrich, R., Ivins, E. R., Casassa, G., Lange, H., Wendt, J., and Fritsche, M.: Rapid crustal uplift in Patagonia due to enhanced ice loss, Earth Planet. Sc. Lett., 289, 22–29, https://doi.org/10.1016/j.epsl.2009.10.021, 2010.
Ding, X., Dávila, F. M., and Lithgow-Bertelloni, C.: Mechanisms of subsidence and uplift of Southern Patagonia and offshore basins during slab window formation, Geochem. Geophy. Geosy., 24, e2022GC010844, https://doi.org/10.1029/2022GC010844, 2023.
Eagles, G. and Scott, B. G.: Plate convergence west of Patagonia and the Antarctic Peninsula since 61 Ma, Global Planet. Change, 123, 189–198, https://doi.org/10.1016/j.gloplacha.2014.08.002, 2014.
Faccenna, C. and Becker, T. W.: Topographic expressions of mantle dynamics in the Mediterranean, Earth-Sci. Rev., 209, 103327, https://doi.org/10.1016/j.earscirev.2020.103327, 2020.
Fernandez, R. A., Anderson, J. B., Wellner, J. S., Totten, R. L., Hallet, B., and Smith, R. T.: Latitudinal variation in glacial erosion rates from Patagonia and the Antarctic Peninsula (46° S–65° S), GSA Bull., 128, 1000–1023, https://doi.org/10.1130/B31321.1, 2016.
Flament, N., Gurnis, M., and Müller, R. D.: A review of observations and models of dynamic topography, Lithosphere, 5, 189–210, https://doi.org/10.1130/L245.1, 2013.
Flament, N., Gurnis, M., Müller, R. D., Bower, D. J., and Husson, L.: Influence of subduction history on South American topography, Earth Planet. Sc. Lett., 430, 9–18, https://doi.org/10.1016/j.epsl.2015.08.006, 2015.
Fosdick, J. C., Grove, M., Hourigan, J. K., and Calderon, M.: Retroarc deformation and exhumation near the end of the Andes, southern Patagonia, Earth Planet. Sc. Lett., 361, 504–517, https://doi.org/10.1016/j.epsl.2012.12.007, 2013.
Geissler, W. H., Sodoudi, F., and Kind, R.: Thickness of the central and eastern European lithosphere as seen by S receiver functions, Geophys. J. Int., 181, 604–634, https://doi.org/10.1111/j.1365-246X.2010.04548.x, 2010.
Georgieva, V., Melnick, D., Schildgen, T. F., Ehlers, T. A., Lagabrielle, Y., Enkelmann, E., and Strecker, M. R.: Tectonic control on rock uplift, exhumation, and topography above an oceanic ridge collision: Southern Patagonian Andes (47° S), Chile, Tectonics, 35, 1317–1341, https://doi.org/10.1002/2016TC004120, 2016.
Georgieva, V., Gallagher, K., Sobczyk, A., Sobel, E. R., Schildgen, T. F., Ehlers, T. A., and Strecker, M. R.: Effects of slab-window, alkaline volcanism, and glaciation on thermochronometer cooling histories, Patagonian Andes, Earth Planet. Sc. Lett., 511, 164–176, https://doi.org/10.1016/j.epsl.2019.01.030, 2019.
Gerya, T. (Ed.): Introduction to numerical geodynamic modelling, Cambridge University Press, ISBN 978-1-107-14314-2, 2019.
Gerya, T. V. and Yuen, D. A.: Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Planet. Inter., 163, 83–105, https://doi.org/10.1016/j.pepi.2007.04.015, 2007.
Glasser, N. and Jansson, K.: The glacial map of southern South America, J. Maps, 4, 175–196, https://doi.org/10.4113/jom.2008.1020, 2008.
Glasser, N. F., Harrison, S., Winchester, V., and Aniya, M.: Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia, Global Planet. Change, 43, 79–101, https://doi.org/10.1016/j.gloplacha.2004.03.002, 2004.
Glasser, N. F., Jansson, K. N., Harrison, S., and Rivera, A.: Geomorphological evidence for variations of the North Patagonian Icefield during the Holocene, Geomorphology, 71, 263–277, https://doi.org/10.1016/j.geomorph.2005.02.003, 2005.
Glasser, N. F., Jansson, K. N., Harrison, S., and Kleman, J.: The glacial geomorphology and Pleistocene history of South America between 38° S and 56° S, Quaternary Sci. Rev., 27, 365–390, https://doi.org/10.1016/j.quascirev.2007.11.011, 2008.
Glasser, N. F., Harrison, S., Jansson, K. N., Anderson, K., and Cowley, A.: Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum, Nat. Geosci., 4, 303–307, https://doi.org/10.1038/ngeo1122, 2011.
Glasser, N. F., Jansson, K. N., Duller, G. A., Singarayer, J., Holloway, M., and Harrison, S.: Glacial lake drainage in Patagonia (13–8 kyr) and response of the adjacent Pacific Ocean, Sci. Rep., 6, 21064, https://doi.org/10.1038/srep21064, 2016.
Gómez, D. D., Bevis, M. G., Smalley Jr, R., Durand, M., Willis, M. J., Caccamise, D. J., Kendrick, E., Skvarca, P., Sobrero, F. S., Parra, H., and Casassa, G.: Transient ice loss in the Patagonia Icefields during the 2015–2016 El Niño event, Sci. Rep., 12, 9553, https://doi.org/10.1038/s41598-022-13252-8, 2022.
Guillaume, B., Martinod, J., Husson, L., Roddaz, M., and Riquelme, R.: Neogene uplift of central eastern Patagonia: dynamic response to active spreading ridge subduction?, Tectonics, 28, 2, https://doi.org/10.1029/2008TC002324, 2009.
Guillaume, B., Gautheron, C., Simon-Labric, T., Martinod, J., Roddaz, M., and Douville, E.: Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology, Earth Planet. Sc. Lett., 364, 157–167, https://doi.org/10.1016/j.epsl.2012.12.036, 2013.
Gurnis, M. A.: reassessment of the heat transport by variable viscosity convection with plates and lids, Geophys. Res. Lett., 16, 179–182, https://doi.org/10.1029/GL016i002p00179, 1989.
Hager, B. H. and O'Connell, R. J.: A simple global model of plate dynamics and mantle convection, J. Geophys. Res.-Solid, 86, 4843–4867, https://doi.org/10.1029/JB086iB06p04843, 1981.
Harvey, A. H.: Properties of Ice and Supercooled Water, in: CRC Handbook of Chemistry and Physics, 97th Edn., edited by: Haynes, W. M., Lide, D. R., and Bruno, T. J., CRC Press, Boca Raton, FL, ISBN 978-1-4987-5429-3, 2017.
Hein, A. S., Hulton, N. R., Dunai, T. J., Sugden, D. E., Kaplan, M. R., and Xu, S.: The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia, Quaternary Sci. Rev., 29, 1212–1227, https://doi.org/10.1016/j.quascirev.2010.01.020, 2010.
Herman, F. and Brandon, M.: Mid-latitude glacial erosion hotspot related to equatorial shifts in southern Westerlies, Geology, 43, 987–990, https://doi.org/10.1130/G37008.1, 2015.
Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., and Ehlers, T. A.: Worldwide acceleration of mountain erosion under a cooling climate, Nature, 504, 423–426, https://doi.org/10.1038/nature12877, 2013.
Herman, F., Braun, J., Deal, E., and Prasicek, G.: The response time of glacial erosion, J. Geophys. Res.-Earth, 123, 801–817, https://doi.org/10.1002/2017JF004586, 2018.
Hirschmann, M. M.: Mantle solidus: Experimental constraints and the effects of peridotite composition, Geochem. Geophy. Geosy., 1, 1042, https://doi.org/10.1029/2000GC000070, 2000.
Hulton, N. R., Purves, R. S., McCulloch, R. D., Sugden, D. E., and Bentley, M. J.: The last glacial maximum and deglaciation in southern South America, Quaternary Sci. Rev., 21, 233–241, https://doi.org/10.1016/S0277-3791(01)00103-2, 2002.
Ivins, E. R. and James, T. S.: Simple models for late Holocene and present-day Patagonian glacier fluctuations and predictions of a geodetically detectable isostatic response, Geophys. J. Int., 138, 601–624, https://doi.org/10.1046/j.1365-246x.1999.00899.x, 1999.
Ivins, E. R., Watkins, M. M., Yuan, D. N., Dietrich, R., Casassa, G., and Rülke, A.: On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009, J. Geophys. Res.-Solid, 116, B02403, https://doi.org/10.1029/2010JB007607, 2011.
Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S.: Recent contributions of glaciers and ice caps to sea level rise, Nature, 482, 514–518, https://doi.org/10.1038/nature10847, 2012.
Johannes, W.: The significance of experimental studies for the formation of migmatites, in: Migmatites, edited by: Ashworth, J. R., Blackie & Son Ltd, Chapman & Hall, USA, ISBN 978-1-4613-2347-1, https://doi.org/10.1007/978-1-4613-2347-1_2, 1985.
Kaplan, M. R., Schaefer, J. M., Strelin, J. A., Denton, G. H., Anderson, R. F., Vandergoes, M. J., Finkel, R. C., Schwartz, R., Travis, S. G., Garcia, J. L., Martini, M. A., and Nielsen, S. H. H.: Patagonian and southern South Atlantic view of Holocene climate, Quaternary Sci. Rev., 141, 112–125, https://doi.org/10.1016/j.quascirev.2016.03.014, 2016.
Kaufmann, G. and Lambeck, K.: Glacial isostatic adjustment and the radial viscosity profile from inverse modelling, J. Geophys. Res.-Solid, 107, 2280, https://doi.org/10.1029/2001JB000941, 2002.
Kaufmann, G., Wu, P., and Wolf, D.: Some effects of lateral heterogeneities in the upper mantle on postglacial land uplift close to continental margins, Geophys. J. Int., 128, 175–187, https://doi.org/10.1111/j.1365-246X.1997.tb04078.x, 1997.
Klemann, V., Ivins, E. R., Martinec, Z., and Wolf, D.: Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res.-Solid, 112, B09405 https://doi.org/10.1029/2006JB004818, 2007.
Lachenbruch, A. H. and Morgan, P.: Continental extension, magmatism and elevation; formal relations and rules of thumb, Tectonophysics, 174, 39–62, https://doi.org/10.1016/0040-1951(90)90383-J, 1990.
Lagabrielle, Y., Suárez, M., Rossello, E. A., Hérail, G., Martinod, J., Régnier, M., and de la Cruz, R.: Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction, Tectonophysics, 385, 211–241, https://doi.org/10.1016/j.tecto.2004.04.023, 2004.
Lagabrielle, Y., Scalabrino, B., Suarez, M., and Ritz, J. F.: Mio-Pliocene glaciations of Central Patagonia: New evidence and tectonic implications, Andean Geol., 37, 276–299, https://doi.org/10.5027/andgeoV37n2-a02, 2010.
Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., and Dietrich, R.: Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models, Geophys. Res. Lett., 41, 805–812, https://doi.org/10.1002/2013GL058419, 2014.
Larson, K. M., Bürgmann, R., Bilham, R., and Freymueller, J. T.: Kinematics of the India-Eurasia collision zone from GPS measurements, J. Geophys. Res.-Solid, 104, 1077–1093, https://doi.org/10.1029/1998JB900043, 1999.
Lenzano, M. G., Rivera, A., Durand, M., Vacaflor, P., Carbonetti, M., Lannutti, E., Gende, M., and Lenzano, L.: Detection of Crustal Uplift Deformation in Response to Glacier Wastage in Southern Patagonia, Remote Sens., 15, 584, https://doi.org/10.3390/rs15030584, 2023.
Mark, H. F., Wiens, D. A., Ivins, E. R., Richter, A., Ben Mansour, W., Magnani, M. B., Marderwald, E., Adaros, R., and Barrientos, S.: Lithospheric erosion in the Patagonian slab window, and implications for glacial isostasy, Geophys. Res. Lett., 49, e2021GL096863, https://doi.org/10.1029/2021GL096863, 2022.
Martinod, J., Pouyaud, B., Carretier, S., Guillaume, B., and Hérail, G.: Geomorphic Records along the General Carrera (Chile)–Buenos Aires (Argentina) Glacial Lake (46°–48° S), Climate Inferences, and Glacial Rebound for the Past 7–9 ka: A discussion, J. Geol., 124, 631–635, https://doi.org/10.1086/687550, 2016.
McCulloch, R. D., Bentley, M. J., Purves, R. S., Hulton, N. R., Sugden, D. E., and Clapperton, C. M.: Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America, J. Quaternary Sci., 15, 409–417, https://doi.org/10.1002/jqs.608, 2000.
McCulloch, R. D., Fogwill, C. J., Sugden, D. E., Bentley, M. J., and Kubik, P. W.: Chronology of the last glaciation in central Strait of Magellan and Bahía Inútil, southernmost South America, Geograf. Ann. A, 87, 289–312, https://doi.org/10.1111/j.0435-3676.2005.00260.x, 2005.
McKenzie, D. and Richter, F. M.: Parameterized thermal convection in a layered region and the thermal history of the Earth, J. Geophys. Res.-Solid, 86, 11667–11680, https://doi.org/10.1029/JB086iB12p11667, 1981.
McKenzie, D. A. N. and Bickle, M. J.: The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625–679, https://doi.org/10.1093/petrology/29.3.625, 1988.
Millan, R., Rignot, E., Rivera, A., Martineau, V., Mouginot, J., Zamora, R., Uribe, J., Lenzano, G., De Fleurian, B., Li, X., Gim, Y., and Kirchner, D.: Ice thickness and bed elevation of the Northern and Southern Patagonian Icefields, Geophys. Res. Lett., 46, 6626–6635, https://doi.org/10.1029/2019GL082485, 2019.
Mitrovica, J. X. and Forte, A.: M. Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables, J. Geophys. Res.-Solid, 102, 2751–2769, https://doi.org/10.1029/96JB03175, 1997.
Molnar, P. and England, P.: Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?, Nature, 346, 29–34, https://doi.org/10.1038/346029a0, 1990.
Moreno, P. I., Lowell, T. V., Jacobson Jr., G. L., and Denton, G. H.: Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de la Puntilla (41° S), Geograf. Ann. A, 81, 285–311, https://doi.org/10.1002/jqs.801, 1999.
Moreno, P. I., Denton, G. H., Moreno, H., Lowell, T. V., Putnam, A. E., and Kaplan, M. R.: Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia, Quaternary Sci. Rev., 122, 233–249, https://doi.org/10.1016/j.quascirev.2015.05.027, 2015.
Muller, V. A. P., Calderón, M., Fosdick, J. C., Ghiglione, M. C., Cury, L. F., Massonne, H. J., Fanning, M. C., Warren, C. J., Ramírez de Arellano, C., and Sternai, P.: The closure of the Rocas Verdes Basin and early tectono-metamorphic evolution of the Magallanes Fold-and-Thrust Belt, southern Patagonian Andes (52–54° S), Tectonophysics, 798, 228686, https://doi.org/10.1016/j.tecto.2020.228686, 2021.
Muller, V. A. P., Sternai, P., Sue, C., Simon-Labric, T., and Valla, P. G.: Climatic control on the location of continental volcanic arcs, Sci. Rep., 12, 1–13, https://doi.org/10.1038/s41598-022-26158-2, 2022.
Muller, V. A. P., Sue, C., Valla, P., Sternai, P., Simon-Labric, T., Gautheron, C., Cuffey, K., Grujic, D., Bernet, M., Martinod, J., Ghiglione, M., Herman, F., Reiners, P., Shuster, D., Willett, C., Baumgartner, L., and Braun, J.: Geodynamic and climatic forcing on late-Cenozoic exhumation of the Southern Patagonian Andes (Fitz Roy and Torres del Paine massifs), ESS Open Archive, https://doi.org/10.22541/essoar.168332179.93378898/v1, 2023.
Muller, V. A. P., Sternai, P., and Sue, C.: Codes for Muller et al., Fast uplift in the Southern Patagonian Andes due to long and short term deglaciation and the asthenospheric window underneath, EGU Solid Earth, 2024 (https://github.com/psternai/Muller-et-al.-2024), Zenodo [code], https://doi.org/10.5281/zenodo.10896122, 2024.
Pedoja, K., Regard, V., Husson, L., Martinod, J., Guillaume, B., Fucks, E., Iglesias, M., and Weill, P.: Uplift of Quaternary shorelines in eastern Patagonia: Darwin revisited, Geomorphology, 127, 121–142, https://doi.org/10.1016/j.geomorph.2010.08.003, 2011.
Peltier, W. R.: Mantle viscosity and ice-age ice sheet topography, Science, 273, 1359–1364, https://doi.org/10.1126/science.273.5280.1359, 1996.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Peltier, W. R. and Andrews, J. T.: Glacial-isostatic adjustment – I. The forward problem, Geophys. J. Int., 46, 605–646, https://doi.org/10.1111/j.1365-246X.1976.tb01251.x, 1976.
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al., J. Geophys. Res.-Solid, 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Rabassa, J.: Late cenozoic glaciations in Patagonia and Tierra del Fuego, Dev. Quatern. Sci., 11, 151–204, https://doi.org/10.1016/S1571-0866(07)10008-7, 2008.
Ramos, V. A.: Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes, Tectonophysics, 399, 73–86, https://doi.org/10.1016/j.tecto.2004.12.016, 2005.
Ramos, V. A. and Kay, S. M.: Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions, Tectonophysics, 205, 261–282, https://doi.org/10.1016/0040-1951(92)90430-E, 1992.
Ranalli, G.: Rheology of the Earth, Springer Science & Business Media, ISBN 0-412-54670-1, 1995.
Ranalli, G.: Rheology of the lithosphere in space and time, Geol. Soc. Lond. Spec. Publ., 121, 19–37, https://doi.org/10.1144/GSL.SP.1997.121.01.02, 1997.
Ravikumar, M., Singh, B., Pavan Kumar, V., Satyakumar, A. V., Ramesh, D. S., and Tiwari, V. M.: Lithospheric density structure and effective elastic thickness beneath Himalaya and Tibetan Plateau: Inference from the integrated analysis of gravity, geoid, and topographic data incorporating seismic constraints, Tectonics, 39, e2020TC006219, https://doi.org/10.1029/2020TC006219, 2020.
Reynhout, S. A., Sagredo, E. A., Kaplan, M. R., Aravena, J. C., Martini, M. A., Moreno, P. I., Rojas, M., Schwartz, R., and Schaefer, J. M.: Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability, Quaternary Sci. Rev., 220, 178–187, https://doi.org/10.1016/j.quascirev.2019.05.029, 2019.
Richter, A., Ivins, E., Lange, H., Mendoza, L., Schröder, L., Hormaechea, J. L., Casassa, G., Marderwald, E., Fritsche, M., Perdomo, R., Horwath, M., and Dietrich, R.: Crustal deformation across the Southern Patagonian Icefield observed by GNSS, Earth Planet. Sc. Lett., 452, 206–215, https://doi.org/10.1016/j.epsl.2016.07.042, 2016.
Rignot, E., Rivera, A., and Casassa, G.: Contribution of the Patagonia Icefields of South America to sea level rise, Science, 302, 434–437, https://doi.org/10.1126/science.1087393, 2003.
Robertson Maurice, S. D., Wiens, D. A., Koper, K. D., and Vera, E.: Crustal and upper mantle structure of southernmost South America inferred from regional waveform inversion, J. Geophys. Res.-Solid, 108, 2038, https://doi.org/10.1029/2002JB001828, 2003.
Ruddiman, W. F., Raymo, M., and McIntyre, A.: Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets, Earth Planet. Sc. Lett., 80, 117–129, https://doi.org/10.1016/0012-821X(86)90024-5, 1986.
Russo, R. M., Gallego, A., Comte, D., Mocanu, V. I., Murdie, R. E., and VanDecar, J. C.: Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction region, Geology, 38, 707–710, https://doi.org/10.1130/G30920.1, 2010.
Russo, R. M., Luo, H., Wang, K., Ambrosius, B., Mocanu, V., He, J., James, T., Bevis, M., and Fernandes, R.: Lateral variation in slab window viscosity inferred from global navigation satellite system (GNSS)-observed uplift due to recent mass loss at Patagonia ice fields, Geology, 50, 111–115, https://doi.org/10.1130/G49388.1, 2022.
Scalabrino, B., Lagabrielle, Y., Malavieille, J., Dominguez, S., Melnick, D., Espinoza, F., Suárez, M., and Rossello, E.: A morphotectonic analysis of central Patagonian Cordillera: Negative inversion of the Andean belt over a buried spreading center?, Tectonics, 29, 2, https://doi.org/10.1029/2009TC002453, 2010.
Seltzer, A. M., Ng, J., Aeschbach, W., Kipfer, R., Kulongoski, J. T., Severinghaus, J. P., and Stute, M.: Widespread six degrees Celsius cooling on land during the Last Glacial Maximum, Nature, 593, 228–232, https://doi.org/10.1038/s41586-021-03467-6, 2021.
Serpelloni, E., Faccenna, C., Spada, G., Dong, D., and Williams, S. D.: Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary, J. Geophys. Res.-Solid, 118, 6003–6024, https://doi.org/10.1002/2013JB010102, 2013.
Stern, C. R. and Kilian, R.: Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contrib. Mineral. Petrol., 123, 263–281, https://doi.org/10.1002/2013JB010102, 1996.
Sternai, P.: Surface processes forcing on extensional rock melting, Sci. Rep., 10, 1–13, https://doi.org/10.1038/s41598-020-63920-w, 2020.
Sternai, P.: Feedbacks between internal and external Earth dynamics, in: Dynamics of Plate Tectonics and Mantle Convection, edited by: Duarte, J., Elsevier, 271–294, ISBN 978-0-323-85733-8, 2023.
Sternai, P., Caricchi, L., Castelltort, S., and Champagnac, J.-D.: Deglaciation and glacial erosion: a joint control on the magma productivity by continental unloading, Geophys. Res. Lett., 43, 1632–1641, https://doi.org/10.1002/2015GL067285, 2016a.
Sternai, P., Avouac, J.-P., Jolivet, L., Faccenna, C., Gerya, T. V., Becker, T., and Menant, A.: On the influence of the asthenospheric flow on the tectonics and topography at collision-subduction transition zones: comparison with the eastern Tibetan margin, J. Geodynam., 100, 18–194, https://doi.org/10.1016/j.jog.2016.02.009, 2016b.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Sternai, P., Muller, V. A. P., Jolivet, L., Garzanti, E., Corti, G., Pasquero, C., Sembroni, A., and Faccenna, C.: Effects of asthenospheric flow and orographic precipitation on continental rifting, Tectonophysics, 820, 229120, https://doi.org/10.1016/j.tecto.2021.229120, 2021.
Stevens Goddard, A. L. and Fosdick, J. C.: Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern Patagonia, Geology, 47, 555–558, https://doi.org/10.1130/G46091.1, 2019.
Strelin, J. A., Kaplan, M. R., Vandergoes, M. J., Denton, G. H., and Schaefer, J. M.: Holocene glacier history of the Lago Argentino basin, southern Patagonian Icefield, Quaternary Sci. Rev., 101, 124–145, https://doi.org/10.1016/j.quascirev.2014.06.026, 2014.
Stuhne, G. R. and Peltier, W. R.: Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica, J. Geophys. Res.-Earth, 120, 1841–1865, https://doi.org/10.1002/2015JF003580, 2015.
Sue, C., Delacou, B., Champagnac, J. D., Allanic, C., and Burkhard, M.: Aseismic deformation in the Alps: GPS vs. seismic strain quantification, Terra Nova, 19, 182–188, https://doi.org/10.1111/j.1365-3121.2007.00732.x, 2007.
Sugden, D. E., Hulton, N. R., and Purves, R. S.: Modelling the inception of the Patagonian icesheet, Quatern. Int., 95, 55–64, https://doi.org/10.1016/S1040-6182(02)00027-7, 2002.
Thomson, S. N., Brandon, M. T., Tomkin, J. H., Reiners, P. W., Vásquez, C., and Wilson, N. J.: Glaciation as a destructive and constructive control on mountain building, Nature, 467, 313–317, https://doi.org/10.1038/nature09365, 2010.
Thorndycraft, V. R., Bendle, J. M., Benito, G., Davies, B. J., Sancho, C., Palmer, A. P., Fabel, D., Medialdea, A., and Martin, J. R.: Glacial lake evolution and Atlantic-Pacific drainage reversals during deglaciation of the Patagonian Ice Sheet, Quaternary Sci. Rev., 203, 102–127, https://doi.org/10.1016/j.quascirev.2018.10.036, 2019.
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University Press, ISBN 978-0-521-66186-7, 2002.
Valla, P. G., van der Beek, P. A., Shuster, D. L., Braun, J., Herman, F., Tassan-Got, L., and Gautheron, C.: Late Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low-temperature thermochronology modeling and 4He/3He thermochronometry, J. Geophys. Res.-Earth, 117, F01004, https://doi.org/10.1029/2011JF002043, 2012.
Van der Meijde, M., Julià, J., and Assumpção, M.: Gravity derived moho for south America, Tectonophysics, 609, 456–467, https://doi.org/10.1016/j.tecto.2013.03.023, 2013.
van der Wal, W., Whitehouse, P. L., and Schrama, E. J.: Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica, Earth Planet. Sc. Lett., 414, 134–143, https://doi.org/10.1016/j.epsl.2015.01.001, 2015.
Walpersdorf, A., Sue, C., Baize, S., Cotte, N., Bascou, P., Beauval, C., Collard, P, Daniel, G., Dyer, H., Grasso, J.-R., Hautecoeur, O., Helmstetter, A., Hok, S., Langlais, M., Menard, G., Mousavi, Z., Ponton, F., Rizza, M., Rolland, L., Souami, D., and Martinod, J.: Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France), J. Geodynam., 85, 58–65, https://doi.org/10.1016/j.jog.2015.02.001, 2015.
Watts, A. B.: Isostasy and Flexure of the Lithosphere, Cambridge University Press, ISBN 0-521-62272, 2001.
Whitehouse, P. L.: Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions, Earth Surf. Dynam., 6, 401–429, https://doi.org/10.5194/esurf-6-401-2018, 2018.
Willis, M. J., Melkonian, A. K., Pritchard, M. E., and Rivera, A.: Ice loss from the Southern Patagonian ice field, South America, between 2000 and 2012, Geophys. Res. Lett., 39, L17501, https://doi.org/10.1029/2012GL053136, 2012.
Yan, Q., Wei, T., and Zhang, Z.: Modeling the climate sensitivity of Patagonian glaciers and their responses to climatic change during the global last glacial maximum, Quaternary Sci. Rev., 288, 107582, https://doi.org/10.1016/j.quascirev.2022.107582, 2022.
Short summary
Uplift rates up to 40 mm yr−1 are measured by GNSS in the southern Patagonian Icefield, a remainder of the Patagonian Ice Sheet that covered the Andes in the Last Glacial Maximum (LGM) at 26 ka. Using numerical modelling, we estimate an increase of 150 to 200 °C of the asthenospheric temperature due to the slab window under southern Patagonia, and we show that post-glacial rebound, after the long-term LGM and the short-term Little Ice Age (400 a), contributed to the modern uplift rate budget.
Uplift rates up to 40 mm yr−1 are measured by GNSS in the southern Patagonian Icefield, a...