Articles | Volume 5, issue 2
https://doi.org/10.5194/se-5-1011-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-5-1011-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup
K. Becker
Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
D. Franke
Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
R. Trumbull
German Research Centre for Geosciences (GFZ), Potsdam, Germany
M. Schnabel
Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
I. Heyde
Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
B. Schreckenberger
Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
H. Koopmann
Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
German Research Centre for Geosciences (GFZ), Potsdam, Germany
W. Jokat
Alfred Wegener Institute (AWI), Bremen, Germany
C. M. Krawczyk
Leibniz Institute für Applied Geophysics (LIAG), Hannover, Germany
Viewed
Total article views: 4,724 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jun 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,169 | 2,247 | 308 | 4,724 | 222 | 207 |
- HTML: 2,169
- PDF: 2,247
- XML: 308
- Total: 4,724
- BibTeX: 222
- EndNote: 207
Total article views: 3,797 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Oct 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,700 | 1,823 | 274 | 3,797 | 206 | 196 |
- HTML: 1,700
- PDF: 1,823
- XML: 274
- Total: 3,797
- BibTeX: 206
- EndNote: 196
Total article views: 927 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jun 2014)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
469 | 424 | 34 | 927 | 16 | 11 |
- HTML: 469
- PDF: 424
- XML: 34
- Total: 927
- BibTeX: 16
- EndNote: 11
Cited
43 citations as recorded by crossref.
- Origin of a high-velocity layer: Insights from seismic reflection imaging (South China Sea) Q. He et al. 10.1016/j.marpetgeo.2024.106798
- Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic C. Taposeea et al. 10.1016/j.tecto.2016.06.026
- An AMS study of magma transport and emplacement mechanisms in mafic dykes from the Etendeka Province, Namibia M. Wiegand et al. 10.1016/j.tecto.2016.08.016
- How to identify oceanic crust—Evidence for a complex break-up in the Mozambique Channel, off East Africa J. Klimke et al. 10.1016/j.tecto.2015.10.012
- The crustal structure of the continental margin east of the Falkland Islands C. Schimschal & W. Jokat 10.1016/j.tecto.2017.11.034
- Conjugate margins — An oversimplification of the complex southern North Atlantic rift and spreading system? A. Peace & J. Kim Welford 10.1190/INT-2019-0087.1
- Rift migration and transition during multiphase rifting: Insights from the proximal domain, northern South China Sea rifted margin S. Hao et al. 10.1016/j.marpetgeo.2020.104729
- Lithospheric Structure of the East European Craton at the Transition from Sarmatia to Fennoscandia Interpreted from the TTZ-South Seismic Profile (SE Poland to Ukraine) T. Janik et al. 10.3390/min12020112
- Publisher’s Note 10.1016/j.earscirev.2019.05.009
- Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea S. Brune et al. 10.1016/j.marpetgeo.2016.10.018
- Towards a process-based understanding of rifted continental margins M. Pérez-Gussinyé et al. 10.1038/s43017-022-00380-y
- Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean E. Melankholina & N. Sushchevskaya 10.1134/S0016852118020061
- New constraints on the age of the opening of the South Atlantic basin S. Hall et al. 10.1016/j.marpetgeo.2018.03.010
- Rifted margins classification and forcing parameters F. Sapin et al. 10.1038/s41598-021-87648-3
- Halokinetically Overprinted Tectonic Inversion of the Penobscot 3D Volume Offshore Nova Scotia, Canada A. Peace et al. 10.1007/s00024-024-03462-8
- Seismic velocity structure of seaward-dipping reflectors on the South American continental margin C. McDermott et al. 10.1016/j.epsl.2019.05.049
- Hotspot origin for asymmetrical conjugate volcanic margins of the austral South Atlantic Ocean as imaged on deeply penetrating seismic reflection lines K. Reuber et al. 10.1190/INT-2018-0256.1
- The thermal structure of volcanic passive margins J. Armitage & J. Collier 10.1144/petgeo2016-101
- Seismic velocity structure and tectonic evolution of the Continent-ocean transition in the mid-northern South China Sea Y. Yuan et al. 10.1016/j.tecto.2023.229984
- A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism A. Peace et al. 10.1016/j.earscirev.2019.102902
- Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature G. Lu & R. Huismans 10.1038/s41467-021-23981-5
- Causes and consequences of asymmetric lateral plume flow during South Atlantic rifting J. Morgan et al. 10.1073/pnas.2012246117
- Major influence of plume‐ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism—The example of Tristan R. Gassmöller et al. 10.1002/2015GC006177
- Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: Imprint from Archean crustal evolution to breakup of India and Madagascar U. Saikia et al. 10.1016/j.epsl.2017.01.004
- Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia G. Franz et al. 10.5194/se-14-237-2023
- A compilation of igneous rock volumes at volcanic passive continental margins from interpreted seismic profiles M. Gallahue et al. 10.1016/j.marpetgeo.2020.104635
- A neural network application to assess magma diversity in the Etendeka igneous province, Namibia T. Owen-Smith et al. 10.25131/sajg.124.0034
- Ignition of the southern Atlantic seafloor spreading machine without hot-mantle booster D. Sauter et al. 10.1038/s41598-023-28364-y
- Beyond ‘crumple zones’: recent advances, applications and future directions in deformable plate tectonic modelling A. Peace 10.1017/S0016756821000534
- Discontinuous Igneous Addition Along the Eastern North American Margin Beneath the East Coast Magnetic Anomaly C. Brandl et al. 10.1029/2023JB026459
- Structure and evolution of the Atlantic passive margins: A review of existing rifting models from wide-angle seismic data and kinematic reconstruction Y. Biari et al. 10.1016/j.marpetgeo.2021.104898
- Role of outer marginal collapse on salt deposition in the eastern Gulf of Mexico, Campos and Santos basins J. Pindell et al. 10.1144/SP476.4
- Geophysical modelling detects an intrusive magmatic body in the lower crust atop an underplated Moho at the Red Sea rifted margin, Central Saudi Arabia M. Mukhopadhyay et al. 10.1016/j.jafrearsci.2023.104914
- Intracontinental rift-related deposits: A review of key models E. Zappettini et al. 10.1016/j.oregeorev.2017.06.019
- Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot? W. Jokat & C. Hagen 10.1016/j.tecto.2016.08.011
- Helium isotope evidence for a deep-seated mantle plume involved in South Atlantic breakup N. Stroncik et al. 10.1130/G39151.1
- Crustal Structure of the Camamu‐Almada Margin Along the Northeastern Rift Segment of Brazil From an Integration of Deep‐Penetration Seismic Reflection Profiles, Refraction, and Gravity Modeling S. Romito & P. Mann 10.1029/2021TC007157
- Nuevas observaciones en la corteza continental transicional del sur del Golfo de México y sus implicaciones en los modelos de margen continental J. Rosales Rodríguez 10.22201/igeof.2954436xe.2024.63.4.1780
- Fault‐controlled lithospheric detachment of the volcanic southern South Atlantic rift K. Becker et al. 10.1002/2015GC006081
- Interaction between a hotspot and a fracture zone: The crustal structure of Walvis Ridge at 6° E T. Fromm et al. 10.1016/j.tecto.2017.03.001
- Lower crustal high-velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and Early Cenozoic magmatism R. Mjelde et al. 10.1016/j.tecto.2015.11.021
- The onset of Walvis Ridge: Plume influence at the continental margin T. Fromm et al. 10.1016/j.tecto.2017.03.011
- Characterization of Seaward‐Dipping Reflectors Along the South American Atlantic Margin and Implications for Continental Breakup C. McDermott et al. 10.1029/2017TC004923
39 citations as recorded by crossref.
- Origin of a high-velocity layer: Insights from seismic reflection imaging (South China Sea) Q. He et al. 10.1016/j.marpetgeo.2024.106798
- Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic C. Taposeea et al. 10.1016/j.tecto.2016.06.026
- An AMS study of magma transport and emplacement mechanisms in mafic dykes from the Etendeka Province, Namibia M. Wiegand et al. 10.1016/j.tecto.2016.08.016
- How to identify oceanic crust—Evidence for a complex break-up in the Mozambique Channel, off East Africa J. Klimke et al. 10.1016/j.tecto.2015.10.012
- The crustal structure of the continental margin east of the Falkland Islands C. Schimschal & W. Jokat 10.1016/j.tecto.2017.11.034
- Conjugate margins — An oversimplification of the complex southern North Atlantic rift and spreading system? A. Peace & J. Kim Welford 10.1190/INT-2019-0087.1
- Rift migration and transition during multiphase rifting: Insights from the proximal domain, northern South China Sea rifted margin S. Hao et al. 10.1016/j.marpetgeo.2020.104729
- Lithospheric Structure of the East European Craton at the Transition from Sarmatia to Fennoscandia Interpreted from the TTZ-South Seismic Profile (SE Poland to Ukraine) T. Janik et al. 10.3390/min12020112
- Publisher’s Note 10.1016/j.earscirev.2019.05.009
- Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea S. Brune et al. 10.1016/j.marpetgeo.2016.10.018
- Towards a process-based understanding of rifted continental margins M. Pérez-Gussinyé et al. 10.1038/s43017-022-00380-y
- Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean E. Melankholina & N. Sushchevskaya 10.1134/S0016852118020061
- New constraints on the age of the opening of the South Atlantic basin S. Hall et al. 10.1016/j.marpetgeo.2018.03.010
- Rifted margins classification and forcing parameters F. Sapin et al. 10.1038/s41598-021-87648-3
- Halokinetically Overprinted Tectonic Inversion of the Penobscot 3D Volume Offshore Nova Scotia, Canada A. Peace et al. 10.1007/s00024-024-03462-8
- Seismic velocity structure of seaward-dipping reflectors on the South American continental margin C. McDermott et al. 10.1016/j.epsl.2019.05.049
- Hotspot origin for asymmetrical conjugate volcanic margins of the austral South Atlantic Ocean as imaged on deeply penetrating seismic reflection lines K. Reuber et al. 10.1190/INT-2018-0256.1
- The thermal structure of volcanic passive margins J. Armitage & J. Collier 10.1144/petgeo2016-101
- Seismic velocity structure and tectonic evolution of the Continent-ocean transition in the mid-northern South China Sea Y. Yuan et al. 10.1016/j.tecto.2023.229984
- A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism A. Peace et al. 10.1016/j.earscirev.2019.102902
- Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature G. Lu & R. Huismans 10.1038/s41467-021-23981-5
- Causes and consequences of asymmetric lateral plume flow during South Atlantic rifting J. Morgan et al. 10.1073/pnas.2012246117
- Major influence of plume‐ridge interaction, lithosphere thickness variations, and global mantle flow on hotspot volcanism—The example of Tristan R. Gassmöller et al. 10.1002/2015GC006177
- Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: Imprint from Archean crustal evolution to breakup of India and Madagascar U. Saikia et al. 10.1016/j.epsl.2017.01.004
- Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia G. Franz et al. 10.5194/se-14-237-2023
- A compilation of igneous rock volumes at volcanic passive continental margins from interpreted seismic profiles M. Gallahue et al. 10.1016/j.marpetgeo.2020.104635
- A neural network application to assess magma diversity in the Etendeka igneous province, Namibia T. Owen-Smith et al. 10.25131/sajg.124.0034
- Ignition of the southern Atlantic seafloor spreading machine without hot-mantle booster D. Sauter et al. 10.1038/s41598-023-28364-y
- Beyond ‘crumple zones’: recent advances, applications and future directions in deformable plate tectonic modelling A. Peace 10.1017/S0016756821000534
- Discontinuous Igneous Addition Along the Eastern North American Margin Beneath the East Coast Magnetic Anomaly C. Brandl et al. 10.1029/2023JB026459
- Structure and evolution of the Atlantic passive margins: A review of existing rifting models from wide-angle seismic data and kinematic reconstruction Y. Biari et al. 10.1016/j.marpetgeo.2021.104898
- Role of outer marginal collapse on salt deposition in the eastern Gulf of Mexico, Campos and Santos basins J. Pindell et al. 10.1144/SP476.4
- Geophysical modelling detects an intrusive magmatic body in the lower crust atop an underplated Moho at the Red Sea rifted margin, Central Saudi Arabia M. Mukhopadhyay et al. 10.1016/j.jafrearsci.2023.104914
- Intracontinental rift-related deposits: A review of key models E. Zappettini et al. 10.1016/j.oregeorev.2017.06.019
- Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot? W. Jokat & C. Hagen 10.1016/j.tecto.2016.08.011
- Helium isotope evidence for a deep-seated mantle plume involved in South Atlantic breakup N. Stroncik et al. 10.1130/G39151.1
- Crustal Structure of the Camamu‐Almada Margin Along the Northeastern Rift Segment of Brazil From an Integration of Deep‐Penetration Seismic Reflection Profiles, Refraction, and Gravity Modeling S. Romito & P. Mann 10.1029/2021TC007157
- Nuevas observaciones en la corteza continental transicional del sur del Golfo de México y sus implicaciones en los modelos de margen continental J. Rosales Rodríguez 10.22201/igeof.2954436xe.2024.63.4.1780
- Fault‐controlled lithospheric detachment of the volcanic southern South Atlantic rift K. Becker et al. 10.1002/2015GC006081
4 citations as recorded by crossref.
- Interaction between a hotspot and a fracture zone: The crustal structure of Walvis Ridge at 6° E T. Fromm et al. 10.1016/j.tecto.2017.03.001
- Lower crustal high-velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and Early Cenozoic magmatism R. Mjelde et al. 10.1016/j.tecto.2015.11.021
- The onset of Walvis Ridge: Plume influence at the continental margin T. Fromm et al. 10.1016/j.tecto.2017.03.011
- Characterization of Seaward‐Dipping Reflectors Along the South American Atlantic Margin and Implications for Continental Breakup C. McDermott et al. 10.1029/2017TC004923
Saved (final revised paper)
Saved (preprint)
Latest update: 21 Nov 2024