Articles | Volume 5, issue 2
https://doi.org/10.5194/se-5-883-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-5-883-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Transport processes at quartz–water interfaces: constraints from hydrothermal grooving experiments
K. Klevakina
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
J. Renner
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
N. Doltsinis
Institut für Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
now at: Institut für Festkörpertheorie, Westfälische Wilhelms-Universität, 48149 Münster, Germany
W. Adeagbo
Institut für Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
now at: Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
Related authors
No articles found.
Olaf Kolditz, Christopher McDermott, Jeoung Seok Yoon, Jörg Renner, Li Zhuang, Andrew Fraser-Harris, Michael Chandler, Samuel Graham, Ju Wang, and Mostafa Mollaali
Saf. Nucl. Waste Disposal Discuss., https://doi.org/10.5194/sand-2024-2, https://doi.org/10.5194/sand-2024-2, 2024
Revised manuscript under review for SaND
Short summary
Short summary
The DECOVALEX Task SAFENET is dedicated to advancing the understanding of fracture nucleation and evolution processes in crystalline rocks, with applications in nuclear waste management and geothermal reservoir engineering.
Mathias Nehler, Ferdinand Stoeckhert, Anne Oelker, Jörg Renner, and Erik Saenger
Solid Earth Discuss., https://doi.org/10.5194/se-2019-48, https://doi.org/10.5194/se-2019-48, 2019
Publication in SE not foreseen
Short summary
Short summary
The technique of X-ray computed tomography (CT) is widely used in multiple disciplines such as medicine, industry and earth sciences. However, quantitative analysis from the reconstructed images are subject to errors due to technical limitations and subsequent evaluation workflows. The paper addresses the uncertainties related to the estimation of porosity from these images and compares the results with laboratory measurements. Accurate porosity estimates are linked to sufficient resolution.
C. A. Trepmann, J. Renner, and A. Druiventak
Solid Earth, 4, 423–450, https://doi.org/10.5194/se-4-423-2013, https://doi.org/10.5194/se-4-423-2013, 2013
A. E. Ortiz R., R. Jung, and J. Renner
Solid Earth, 4, 331–345, https://doi.org/10.5194/se-4-331-2013, https://doi.org/10.5194/se-4-331-2013, 2013
Cited articles
Adeagbo, W. A., Doltsinis, N. L., Klevakina, K., and Renner, J.: Transport processes at α-quartz–water interfaces: Insights from first-principles molecular dynamics simulations, Chem. Phys. Chem., 9, 994–1002, 2008.
Bailey, G. L. J. and Watkins, H. C.: Surface tensions in the system solid copper-molten lead, Proc. Phys. Soc. B, 63, 350, 1950.
Bickmore, B. R., Wheeler, J. C., Bates, B., Nagy, K. L., and Eggett, D. L.: Reaction pathways for quartz dissolution determined by statistical and graphical analysis of macroscopic experimental data, Geochim. Cosmochim. Ac., 72, 4521–4536, 2008.
Bokstein, B. S., Klinger, L. M., and Apikhtina, I. V.: Liquid grooving at grain boundaries, Mater. Sci. Eng. A, 203, 373–376, 1995.
Brantley, S. L., Evans, B., Hickman, S. H., and Crerar, D. A.: Healing of microcracks in quartz – implications for fluid flow, Geology, 18, 136–139, 1990.
Dewers, T. and Hajash, A.: Rate equations for water-assisted compaction and stress induced water-rock interaction in sandstones, J. Geophys. Res., 100, 13093–13112, 1995.
Dhalenne, G., Revcolevschi, A., and Monty, C.: Grain boundaries in NiO. II. Determination of mass transport mechanisms by thermal grooving, Physica status solidi (a), 56, 623–636, 1979.
Dillon, S. J. and Rohrer, G. S.: Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth, Acta Mater., 57, 1–7, 2009.
Doltsinis, N. L., Burchard, M., Maresch, W. V., Boese, A. D., and Fockenberg, T.: Ab initio molecular dynamics study of dissolved SiO2 in supercritical water, J. Theor. Comput. Chem., 6, 49–62, 2007a.
Doltsinis, N. L., Maresch, W. V., Burchard, M., and Fockenberg, F.: Dissolved quartz in supercritical water: Insights from ab initio molecular dynamics simulations, Goldschmidt 2007 Cologne, A230–A230, 2007b.
Dove, P. M. and Crerar, D. A.: Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor, Geochim. Cosmochim. Ac., 54, 955–969, 1990.
Dove, P. M., Han, N., and De Yoreo, J. J.: Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior, P. Natl. Acad. Sci. USA, 102, 15357–15362, 2005.
Farver, J. R. and Yund, R. A.: Oxygen diffusion in quartz – dependence on temperature and water fugacity, Chem. Geol., 90, 55–70, 1991.
Farver, J. R. and Yund, R. A.: Grain-boundary diffusion of oxygen, potassium and calcium in natural and hot-pressed feldspar aggregates, Contrib. Mineral. Petrol., 118, 340–355, 1995.
Farver, J. and Yund, R.: Silicon diffusion in a natural quartz aggregate: constraints on solution-transfer diffusion creep, Tectonophysics, 325, 193–205, 2000.
Fournier, R. O. and Potter, R. W.: An equation correlating the solubility of quartz in water from 25 to 900 °C at pressures up to 10,000 bars, Geochim. Cosmochim. Ac., 46, 1969–1973, 1982.
Fyfe, W. S. and McKay, D. S.: Hydroxyl ion catalysis of crystallization of amorphous silica at 330 degrees C and some observations on hydrolysis of albite solutions, Am. Mineral., 47, 83–89, 1962.
Gerya, T. V., Podlesskii, K. K., Perchuk, L. L., and Maresch, W. V.: Semi-empirical Gibbs free energy formulations for minerals and fluids, Phys. Chem. Miner., 31, 429–455, 2004.
Gerya, T. V., Maresch, W. V., Burchard, M., Zakhartchouk, V., Doltsinis, N. L., and Fockenberg, T.: Thermodynamic modeling of solubility and speciation of silica in H2O-SiO2 fluid up to 1300 degrees C and 20 kbar based on the chain reaction formalism, Eur. J. Mineral., 17, 269–283, 2005.
Gratier, J. P. and Guiget, R.: Experimental pressure solution deposition on quartz grains: the crucial effect of the nature of the fluid, J. Struct. Geol., 8, 845–856, 1986.
Gratier, J.-P., Favreau, P., Renard, F., and Pili, E.: Fluid pressure evolution during the earthquake cycle controlled by fluid flow and pressure solution crack sealing, Earth Planets Space, 54, 1139–1146, 2002.
Gratz, A. J. and Bird, P.: Quartz dissolution: Negative crystal experiments and a rate law, Geochim. Cosmochim. Ac., 57, 965–976, 1993a.
Gratz, A. J. and Bird, P.: Quartz dissolution: Theory of rough and smooth surfaces, Geochim. Cosmochim. Ac., 57, 977–989, 1993b.
Gratz, A. J., Bird, P., and Quiro, G. B.: Dissolution of quartz in aqueous basic solution, 106–236 °C: Surface kinetics of "perfect" crystallographic faces, Geochim. Cosmochim. Ac., 54, 2911–2922, 1990.
Hackl, K., Fischer, F. D., Klevakina, K., Renner, J., and Svoboda, J.: A variational approach to grooving and wetting, Acta Mater., 61, 1581–1591, https://doi.org/10.1016/j.actamat.2012.11.035, 2012.
Hay, R. S. and Evans, J. B.: Grain boundary grooving of calcite bicrystals Proceedings of the 24th U.S. symposium on rock mechanics, theory, experiment, practice, American Rock Mechanics Association, Texas, 24, 469–472, 1983.
Herring, C.: Some theorems on the free energies of crystal surfaces, Phys. Rev., 82, 87–93, 1951.
Hilgers, C. and Urai, J. L.: Microstructural observations on natural syntectonic fibrous veins: implications for the growth process, Tectonophysics, 352, 257–274, 2002.
Holness, M. B.: Equilibrium dihedral angles in the system quartz-CO2-H2O-NaCl at 800\textdegree C and 1-15 kbar: the effects of pressure and fluid composition on the permeability of quartzites, Earth Planet. Sc. Lett., 114, 171–184, 1992.
Holness, M. B.: Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites, Earth Planet. Sc. Lett., 117, 363–377, 1993.
Joesten, R. and Fisher, G. W.: Kinetics of diffusion controlled mineral growth in the Christmas Mountains (Texas) contact aureole, Geol. Soc. Am. Bull., 100, 714–732, 1988.
Keller, W. D., Viele, G. W., and Johnson, C. H.: Texture of Arkansas Novaculite indicates thermally induced metamorphism, J. Sediment. Res., 47, 834–843, 1977.
Klinger, L.: Grain boundary grooving in two component system, Acta Mater., 50, 3358–3395, 2002.
Laporte, D. and Watson, E. B.: Direct observation of near-equilibrium pore geometry in synthetic crustal lithologies, J. Geol., 99, 873–878, 1991.
Lasaga, A. C. and Blum, A. E.: Surface chemistry, etch pits and mineral-water reactions, Geochim. Cosmochim. Ac., 50, 2363–2379, 1986.
Lasaga, A. C. and Gibbs, G. V.: Ab-initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions, Am. J. Sci., 290, 263–295, 1990.
Laudise, R. A.: Kinetics of hydrothermal quartz crystallization, J. Am. Chem. Soc., 81, 562–566, 1959.
Li, Y.-G., Vidale, J. E., Aki, K., Xu, F., and Burdette, T.: Evidence of Shallow Fault Zone Strengthening After the 1992 M7.5 Landers, California, Earthquake, Science, 279, 217–219, 1998.
Li, Y. G., Chen, P., Cochran, E. S., Vidale, J. E., and Burdette, T.: Seismic evidence for rock damage and healing on the San Andreas Fault associated with the 2004 M 6.0 Parkfield Earthquake, B. Seismol. Soc. Am., 96, S349–S363, 2006.
Manning, C. E.: The solubility of quartz in H2O in the lower crust and upper-mantle, Geochim. Cosmochim. Ac., 58, 4831–4839, 1994.
Milke, R. and Heinrich, W.: Diffusion-controlled growth of wollastonite rims between quartz and calcite: comparison between nature and experiment, J. Metamorph. Geol., 20, 467–480, 2002.
Min, D. and Wong, H.: Grain-boundary grooving by surface diffusion with asymmetric and strongly anisotropic surface energies, J. Appl. Phys., 99, 023515, https://doi.org/10.1063/1.2159082, 2006.
Morey, G. W., Fournier, R. O., and Rowe, J. J.: The solubility of quartz in water in the temperature interval from 25-degrees to 300-degrees-C, Geochim. Cosmochim. Ac., 26, 1029–1043, 1962.
Morrow, C. A., Moore, D. E., and Lockner, D. A.: Permeability reduction in granite under hydrothermal conditions, J. Geophys. Res., 106, 30551–30560, 2001.
Mullins, W. W.: Theory of thermal grooving, Appl. Phys., 28, 333–339, 1957.
Mullins, W. W.: Grain boundary grooving by volume diffusion, Trans. Metall. Soc., 218, 354–631, 1960.
Mullins, W. W. and Shewmon, P. G.: The kinetics of grain boundary grooving in copper, Acta Metall. Mater., 7, 163–170, 1959.
Newton, R. C. and Manning, C. E.: Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 10, 58–72, 2010.
Nichols, F. A.: On the spheroidization of rod-shaped particles of finite length, J. Mater. Sci., 11, 1077–1082, 1976.
Niemeijer, A. R., Spiers, C. J., and Bos, B.: Compaction creep of quartz sand at 400–600 °C: experimental evidence for dissolution-controlled pressure solution, Earth Planet. Sc. Lett., 195, 261–275, 2002.
Okamoto, A. and Sekine, K.: Textures of syntaxial quartz veins synthesized by hydrothermal experiments, J. Struct. Geol., 33, 1764–1775, 2011.
Ostapenko, G. T. and Mitsyuk, B. M.: Growth rate of the {0001} and {0111} faces of quartz as a function of temperature, Geochem. Int., 44, 1243–1245, 2006.
Peng, Z. and Ben-Zion, Y.: Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion, Pure Appl. Geophys., 163, 567–600, 2006.
Peters, M. I. and Reimanis, I. E.: Grain boundary grooving studies of yttrium aluminum garnet (YAG) bicrystals, J. Am. Ceram. Soc., 86, 870–872, 2003.
Rabkin, E., Klinger, L., Izyumova, T., Berner, A., and Semenov, V.: Grain boundary grooving with simultaneous grain boundary sliding in Ni-rich NiAl, Acta Mater., 49, 1429–1438, 2001.
Rabkin, E., Gabelev, A., Klinger, L., Semenov, V., and Bozhko, S.: Grain boundary grooving in molybdenum bicrystals, J. Mater. Sci., 41, 5151–5160, 2006.
Rimstidt, J. D. and Barnes, H. L.: The kinetics of silica-water reactions, Geochim. Cosmochim. Ac., 44, 1683–1699, 1980.
Robertson, W. M.: Grain-boundary grooving by surface diffusion for finite surface slopes, J. Appl. Phys., 42, 463–467, 1971.
Saylor, D. M. and Rohrer, G. S.: Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc., 82, 1529–1536, 1999.
Schlegel, M. L., Nagy, K. L., Fenter, P., and Sturchio, N. C.: Structures of quartz (10-10) and (10-11)-water interfaces determined by X-ray reflectivity and atomic force microscopy of natural growth surfaces, Geochim. Cosmochim. Ac., 66, 3037–3054, 2002.
Schutjens, P. M. T. M.: Experimental compaction of quartz sand at low effective stress and temperature conditions, J. Geol. Soc. Lond., 148, 527–539, 1991.
Siggia, E. D.: High rayleigh number convection, Annu. Rev. Fluid Mech., 26, 137–168, 1994.
Smith, D. L. and Evans, B.: Diffusional crack healing in quartz, J. Geophys. Res., 89, 4125–4135, 1984.
Sotin, C. and Poirier, J. P.: Analysis of high-temperature creep experiments by generalized nonlinear inversion, Mech. Mater., 3, 311–317, 1984.
Suzuki, S. and Kuroiwa, D.: Grain-boundary energy and grain-boundary groove angles in ice, J. Glaciol., 11, 265–277, 1972.
Tenthorey, E., Cox, S. F., and Todd, H. F.: Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones, Earth Planet. Sc. Lett., 206, 161–172, 2003.
Tester, J. W., Worley, W. G., Robinson, B. A., Grigsby, C. O., and Feerer, J. L.: Correlating quartz dissolution kinetics in pure water from 25 °C to 625 °C, Geochim. Cosmochim. Ac., 58, 2407–2420, 1994.
Thompson, C. V.: Grain growth in thin films, Annu. Rev. Mater. Sci., 20, 245–268, 1990.
Urai, J. L., Williams, P. F., and van Roermund, H. L. M.: Kinematics of crystal growth in syntectonic fibrous veins, J. Struct. Geol., 13, 823–836, 1991.
Wagner, W. and Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Dat, 31, 387–535, 2002.
Watson, E. B. and Wark, D. A.: Diffusion of dissolved SiO2 in H2O at 1 GPa, with implications for mass transport in the crust and upper mantle, Contrib. Mineral. Petrol., 130, 66–80, 1997.
Weill, D. F. and Fyfe, W. S.: The solubility of quartz in H2O in the range 1000–4000 bars and 400–550 °C, Geochim. Cosmochim. Ac., 28, 1243–1255, 1964.
Xie, Z. and Walther, J. V.: Quartz solubilities in NaCl solutions with and without wollastonite at elevated temperatures and pressures, Geochim. Cosmochim. Ac., 57, 1947–1955, 1993.
Zhang, W., Sachenko, P., and Schneibel, J. H.: Kinetics of thermal grain boundary grooving for changing dihedral angles, J. Mater. Res., 17, 1495–1501, 2002.
Zhang, W., Sachenko, P., and Gladwell, I.: Thermal grain boundary grooving with anisotropic surface free energies, Acta Mater., 52, 107–116, 2004.