Articles | Volume 6, issue 2
https://doi.org/10.5194/se-6-533-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-6-533-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland
T. Hergert
CORRESPONDING AUTHOR
Karlsruhe Institute of Technology, Institute of Applied Geosciences, Adenauerring 20b, 76131 Karlsruhe, Germany
now at: TU Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany
O. Heidbach
GFZ German Research Centre for Geosciences, Section 2.6 Seismic Hazard and Stress Field, Telegrafenberg, 14473 Potsdam, Germany
K. Reiter
University of Potsdam, Inst. of Earth and Environmental Science, Karl-Liebknecht-Str. 24–25, 14476 Potsdam-Golm, Germany
GFZ German Research Centre for Geosciences, Section 2.6 Seismic Hazard and Stress Field, Telegrafenberg, 14473 Potsdam, Germany
now at: TU Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany
S. B. Giger
NAGRA, National Cooperative for the Disposal of Radioactive Waste, 5430 Wettingen, Switzerland
P. Marschall
NAGRA, National Cooperative for the Disposal of Radioactive Waste, 5430 Wettingen, Switzerland
Viewed
Total article views: 3,170 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Feb 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,698 | 1,261 | 211 | 3,170 | 201 | 205 |
- HTML: 1,698
- PDF: 1,261
- XML: 211
- Total: 3,170
- BibTeX: 201
- EndNote: 205
Total article views: 2,611 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 May 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,438 | 992 | 181 | 2,611 | 176 | 181 |
- HTML: 1,438
- PDF: 992
- XML: 181
- Total: 2,611
- BibTeX: 176
- EndNote: 181
Total article views: 559 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Feb 2015)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
260 | 269 | 30 | 559 | 25 | 24 |
- HTML: 260
- PDF: 269
- XML: 30
- Total: 559
- BibTeX: 25
- EndNote: 24
Cited
47 citations as recorded by crossref.
- Fault detection methods for 2D and 3D geomechanical numerical models A. Adwan et al. 10.1002/nag.3652
- In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs M. Kruszewski et al. 10.5194/essd-14-5367-2022
- The quest for high fidelity, accurate geomechanical models and the research leading to it M. Ziegler et al. 10.1144/SP546-2024-38
- Present‐day stress orientation in the Clarence‐Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations M. Rajabi et al. 10.1111/bre.12175
- Stress magnitudes in the Basel enhanced geothermal system B. Valley & K. Evans 10.1016/j.ijrmms.2019.03.008
- Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions: Fox Creek, Alberta L. Shen et al. 10.1016/j.tecto.2019.04.023
- Layering and structural inheritance controls on fault zone structure in three dimensions: a case study from the northern Molasse Basin, Switzerland V. Roche et al. 10.1144/jgs2019-052
- The World Stress Map database release 2016: Crustal stress pattern across scales O. Heidbach et al. 10.1016/j.tecto.2018.07.007
- Stress rotation – impact and interaction of rock stiffness and faults K. Reiter 10.5194/se-12-1287-2021
- Modelling principal stress orientations in the Arabian Plate using plate velocities S. Peña Clavijo et al. 10.1144/SP546-2022-327
- Finite-element modelling of glacial isostatic adjustment (GIA): Use of elastic foundations at material boundaries versus the geometrically non-linear formulation A. Hampel et al. 10.1016/j.cageo.2018.08.002
- An unusual triangle zone in the external northern Alpine foreland (Switzerland): Structural inheritance, kinematics and implications for the development of the adjacent Jura fold-and-thrust belt A. Malz et al. 10.1016/j.tecto.2015.12.025
- The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage V. Vilarrasa 10.1111/gfl.12197
- Microstructural characterization of natural fractures and faults in the Opalinus Clay: insights from a deep drilling campaign across central northern Switzerland I. Akker et al. 10.1186/s00015-023-00438-z
- Automatic Calibration of a Geomechanical Model from Sparse Data for Estimating Stress in Deep Geological Formations O. Andersen et al. 10.2118/204006-PA
- 3D in situ stress state modelling and fault reactivation risk exemplified in the Ruhr region (Germany) M. Kruszewski et al. 10.1016/j.gete.2022.100386
- A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin M. Ziegler et al. 10.5194/se-7-1365-2016
- Can we estimate far-field stress using the mean of local stresses? An examination based on numerical simulations K. Gao et al. 10.1016/j.compgeo.2019.103188
- Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO2 sequestration operation P. Jeanne et al. 10.1016/j.jrmge.2016.06.008
- The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin M. Ziegler & O. Heidbach 10.1186/s40517-020-00162-z
- Locating Geothermal Resources: Insights from 3D Stress and Flow Models at the Upper Rhine Graben Scale A. Armandine Les Landes et al. 10.1155/2019/8494539
- 3D geomechanical modeling of the Xianshuihe fault zone, SE Tibetan Plateau: Implications for seismic hazard assessment X. Li et al. 10.1016/j.tecto.2022.229546
- An open-access stress magnitude database for Germany and adjacent regions S. Morawietz et al. 10.1186/s40517-020-00178-5
- Thermal effects on geologic carbon storage V. Vilarrasa & J. Rutqvist 10.1016/j.earscirev.2016.12.011
- Potential influence of overpressurized gas on the induced seismicity in the St. Gallen deep geothermal project (Switzerland) D. Zbinden et al. 10.5194/se-11-909-2020
- Impact of faults on the remote stress state K. Reiter et al. 10.5194/se-15-305-2024
- Geomechanical assessment of a large-scale CO2 storage and insights from uncertainty analysis Z. Sun et al. 10.1016/j.geoen.2023.211596
- Rock Properties and Modelled Stress State Uncertainties: A Study of Variability and Dependence M. Ziegler 10.1007/s00603-022-02879-8
- Field‐based description of near‐surface crustal deformation in a high‐strain shear zone: A case study in southern Kyushu, Japan M. Niwa et al. 10.1111/iar.12516
- Measurement and Assessment of the In-Situ Stress of the Shazaoyuan Rock Block, a Candidate Site for HLW Disposal in Northwest China X. Qin et al. 10.1007/s00603-024-03775-z
- The crustal stress field of Germany: a refined prediction S. Ahlers et al. 10.1186/s40517-022-00222-6
- Bayesian Quantification and Reduction of Uncertainties in 3D Geomechanical‐Numerical Models M. Ziegler & O. Heidbach 10.1029/2022JB024855
- Applying Conservation of Energy to Estimate Earthquake Frequencies from Strain Rates and Stresses M. Ziebarth et al. 10.1029/2020JB020186
- Contemporary crustal kinematics in the Guangdong-Hong Kong-Macao Greater Bay Area, SE China: Implications for the geothermal resource exploration X. Li et al. 10.1016/j.jseaes.2024.106041
- Control of the stress field on shallow seafloor hydrothermal paths: A case study of the TAG hydrothermal field M. Wang et al. 10.1007/s13131-022-2003-7
- The 3D stress field of Nordland, northern Norway – insights from numerical modelling S. Gradmann et al. 10.1144/SP546-2023-163
- Leakage risk assessment of a CO2 storage site: A review R. Gholami et al. 10.1016/j.earscirev.2021.103849
- Stress Field Interactions Between Overlapping Shield Volcanoes: Borehole Breakout Evidence From the Island of Hawai'i, USA S. Pierdominici et al. 10.1029/2020JB019768
- Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio M. Ziegler et al. 10.5194/se-15-1047-2024
- 3D crustal stress state of Germany according to a data-calibrated geomechanical model S. Ahlers et al. 10.5194/se-12-1777-2021
- Increasing accuracy of 3-D geomechanical-numerical models M. Ziegler & O. Heidbach 10.1093/gji/ggae096
- Analysis of Near-Field Stresses in an Analogue Strike-Slip Fault Model Z. Su et al. 10.1007/s00603-023-03714-4
- Geomechanical Assessment of a Large-Scale Co2 Storage and Insights from Uncertainty Analysis Z. Sun et al. 10.2139/ssrn.4066403
- The present-day stress field of Australia M. Rajabi et al. 10.1016/j.earscirev.2017.04.003
- Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical–numerical models M. Rajabi et al. 10.1080/08120099.2017.1294109
- Outcrop-scale fracture systems in the Alpine foreland of central northern Switzerland: kinematics and tectonic context H. Madritsch 10.1007/s00015-015-0203-2
- The present-day stress field of New South Wales, Australia M. Rajabi et al. 10.1080/08120099.2016.1135821
43 citations as recorded by crossref.
- Fault detection methods for 2D and 3D geomechanical numerical models A. Adwan et al. 10.1002/nag.3652
- In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs M. Kruszewski et al. 10.5194/essd-14-5367-2022
- The quest for high fidelity, accurate geomechanical models and the research leading to it M. Ziegler et al. 10.1144/SP546-2024-38
- Present‐day stress orientation in the Clarence‐Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations M. Rajabi et al. 10.1111/bre.12175
- Stress magnitudes in the Basel enhanced geothermal system B. Valley & K. Evans 10.1016/j.ijrmms.2019.03.008
- Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions: Fox Creek, Alberta L. Shen et al. 10.1016/j.tecto.2019.04.023
- Layering and structural inheritance controls on fault zone structure in three dimensions: a case study from the northern Molasse Basin, Switzerland V. Roche et al. 10.1144/jgs2019-052
- The World Stress Map database release 2016: Crustal stress pattern across scales O. Heidbach et al. 10.1016/j.tecto.2018.07.007
- Stress rotation – impact and interaction of rock stiffness and faults K. Reiter 10.5194/se-12-1287-2021
- Modelling principal stress orientations in the Arabian Plate using plate velocities S. Peña Clavijo et al. 10.1144/SP546-2022-327
- Finite-element modelling of glacial isostatic adjustment (GIA): Use of elastic foundations at material boundaries versus the geometrically non-linear formulation A. Hampel et al. 10.1016/j.cageo.2018.08.002
- An unusual triangle zone in the external northern Alpine foreland (Switzerland): Structural inheritance, kinematics and implications for the development of the adjacent Jura fold-and-thrust belt A. Malz et al. 10.1016/j.tecto.2015.12.025
- The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage V. Vilarrasa 10.1111/gfl.12197
- Microstructural characterization of natural fractures and faults in the Opalinus Clay: insights from a deep drilling campaign across central northern Switzerland I. Akker et al. 10.1186/s00015-023-00438-z
- Automatic Calibration of a Geomechanical Model from Sparse Data for Estimating Stress in Deep Geological Formations O. Andersen et al. 10.2118/204006-PA
- 3D in situ stress state modelling and fault reactivation risk exemplified in the Ruhr region (Germany) M. Kruszewski et al. 10.1016/j.gete.2022.100386
- A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin M. Ziegler et al. 10.5194/se-7-1365-2016
- Can we estimate far-field stress using the mean of local stresses? An examination based on numerical simulations K. Gao et al. 10.1016/j.compgeo.2019.103188
- Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO2 sequestration operation P. Jeanne et al. 10.1016/j.jrmge.2016.06.008
- The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin M. Ziegler & O. Heidbach 10.1186/s40517-020-00162-z
- Locating Geothermal Resources: Insights from 3D Stress and Flow Models at the Upper Rhine Graben Scale A. Armandine Les Landes et al. 10.1155/2019/8494539
- 3D geomechanical modeling of the Xianshuihe fault zone, SE Tibetan Plateau: Implications for seismic hazard assessment X. Li et al. 10.1016/j.tecto.2022.229546
- An open-access stress magnitude database for Germany and adjacent regions S. Morawietz et al. 10.1186/s40517-020-00178-5
- Thermal effects on geologic carbon storage V. Vilarrasa & J. Rutqvist 10.1016/j.earscirev.2016.12.011
- Potential influence of overpressurized gas on the induced seismicity in the St. Gallen deep geothermal project (Switzerland) D. Zbinden et al. 10.5194/se-11-909-2020
- Impact of faults on the remote stress state K. Reiter et al. 10.5194/se-15-305-2024
- Geomechanical assessment of a large-scale CO2 storage and insights from uncertainty analysis Z. Sun et al. 10.1016/j.geoen.2023.211596
- Rock Properties and Modelled Stress State Uncertainties: A Study of Variability and Dependence M. Ziegler 10.1007/s00603-022-02879-8
- Field‐based description of near‐surface crustal deformation in a high‐strain shear zone: A case study in southern Kyushu, Japan M. Niwa et al. 10.1111/iar.12516
- Measurement and Assessment of the In-Situ Stress of the Shazaoyuan Rock Block, a Candidate Site for HLW Disposal in Northwest China X. Qin et al. 10.1007/s00603-024-03775-z
- The crustal stress field of Germany: a refined prediction S. Ahlers et al. 10.1186/s40517-022-00222-6
- Bayesian Quantification and Reduction of Uncertainties in 3D Geomechanical‐Numerical Models M. Ziegler & O. Heidbach 10.1029/2022JB024855
- Applying Conservation of Energy to Estimate Earthquake Frequencies from Strain Rates and Stresses M. Ziebarth et al. 10.1029/2020JB020186
- Contemporary crustal kinematics in the Guangdong-Hong Kong-Macao Greater Bay Area, SE China: Implications for the geothermal resource exploration X. Li et al. 10.1016/j.jseaes.2024.106041
- Control of the stress field on shallow seafloor hydrothermal paths: A case study of the TAG hydrothermal field M. Wang et al. 10.1007/s13131-022-2003-7
- The 3D stress field of Nordland, northern Norway – insights from numerical modelling S. Gradmann et al. 10.1144/SP546-2023-163
- Leakage risk assessment of a CO2 storage site: A review R. Gholami et al. 10.1016/j.earscirev.2021.103849
- Stress Field Interactions Between Overlapping Shield Volcanoes: Borehole Breakout Evidence From the Island of Hawai'i, USA S. Pierdominici et al. 10.1029/2020JB019768
- Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio M. Ziegler et al. 10.5194/se-15-1047-2024
- 3D crustal stress state of Germany according to a data-calibrated geomechanical model S. Ahlers et al. 10.5194/se-12-1777-2021
- Increasing accuracy of 3-D geomechanical-numerical models M. Ziegler & O. Heidbach 10.1093/gji/ggae096
- Analysis of Near-Field Stresses in an Analogue Strike-Slip Fault Model Z. Su et al. 10.1007/s00603-023-03714-4
- Geomechanical Assessment of a Large-Scale Co2 Storage and Insights from Uncertainty Analysis Z. Sun et al. 10.2139/ssrn.4066403
4 citations as recorded by crossref.
- The present-day stress field of Australia M. Rajabi et al. 10.1016/j.earscirev.2017.04.003
- Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical–numerical models M. Rajabi et al. 10.1080/08120099.2017.1294109
- Outcrop-scale fracture systems in the Alpine foreland of central northern Switzerland: kinematics and tectonic context H. Madritsch 10.1007/s00015-015-0203-2
- The present-day stress field of New South Wales, Australia M. Rajabi et al. 10.1080/08120099.2016.1135821
Saved (final revised paper)
Saved (preprint)
Latest update: 21 Nov 2024
Short summary
A numerical model integrating the structure and mechanical properties of a sedimentary sequence in the Alpine foreland is presented to show that topography, tectonic faults and, most of all, spatialy variable rock properties affect the state of stress at depth. The tectonic forces acting on the sequence are primarily taken up by the stiff rock units leaving the weaker units in a stress shadow.
A numerical model integrating the structure and mechanical properties of a sedimentary sequence...