Articles | Volume 7, issue 2
Research article
09 Mar 2016
Research article |  | 09 Mar 2016

Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil)

Gustavo Viegas, Luca Menegon, and Carlos Archanjo

Abstract. The Pernambuco shear zone (northeastern Brazil) is a large-scale strike-slip fault that, in its eastern segment, deforms granitoids at mid-crustal conditions. Initially coarse-grained (> 50 µm) feldspar porphyroclasts are intensively fractured and reduced to an ultrafine-grained mixture consisting of plagioclase and K-feldspar grains (< 15 µm) localized in C' shear bands. Detailed microstructural observations and electron backscatter diffraction (EBSD) analysis do not show evidence of intracrystalline plasticity in feldspar porphyroclasts and/or fluid-assisted replacement reactions. Quartz occurs either as thick (∼ 1–2 mm) monomineralic veins transposed along the shear zone foliation or as thin ribbons ( ≤ 25 µm width) dispersed in the feldspathic mixture. The microstructure and c axis crystallographic-preferred orientation are similar in the thick monomineralic veins and in the thin ribbons, and they suggest dominant subgrain rotation recrystallization and activity of prism < a > and rhomb < a > slip systems. However, the grain size in monophase recrystallized domains decreases when moving from the quartz monomineralic veins to the thin ribbons embedded in the feldspathic C' bands (14 µm vs. 5 µm respectively). The fine-grained feldspar mixture has a weak crystallographic-preferred orientation interpreted as the result of shear zone parallel-oriented growth during diffusion creep, as well as the same composition as the fractured porphyroclasts, suggesting that it generated by mechanical fragmentation of rigid porphyroclasts with a negligible role of chemical disequilibrium. Once C' shear bands were generated and underwent viscous deformation at constant stress conditions, the polyphase feldspathic aggregate would have deformed at a strain rate 1 order of magnitude faster than the monophase quartz monomineralic veins, as evidenced by applying experimentally and theoretically calibrated flow laws for dislocation creep in quartz and diffusion creep in feldspar. Overall, our data set indicates that feldspar underwent a brittle-viscous transition while quartz was deforming via crystal plasticity. The resulting rock microstructure consists of a two-phase rheological mixture (fine-grained feldspars and recrystallized quartz) in which the polyphase feldspathic material localized much of the strain. Extensive grain-size reduction and weakening of feldspars is attained in the East Pernambuco mylonites mainly via fracturing which would trigger a switch to diffusion creep and strain localization without a prominent role of metamorphic reactions.

Short summary
This paper presents microstructural and chemical data of mylonitic granitoids deformed at the brittle-ductile transition in the continental crust. Through a combination of microstructures, chemical analyses and modelling of the strength of constituent phases, we were able to show that strain localisation in shear zones may be triggered primarily by brittle failure, without the need for reaction-softening mechanisms promoted by metamorphic fluids.