Articles | Volume 9, issue 3
Solid Earth, 9, 759–776, 2018
Solid Earth, 9, 759–776, 2018

Research article 14 Jun 2018

Research article | 14 Jun 2018

The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling

Alexis Plunder1,a, Cédric Thieulot1, and Douwe J. J. van Hinsbergen1 Alexis Plunder et al.
  • 1Department of Earth Sciences, Utrecht University, the Netherlands
  • anow at: Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, 75005 Paris, France

Abstract. The geotherm in subduction zones is thought to vary as a function of the subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction may strongly vary due to changes in the angle between the trench and the plate convergence vector, i.e., the subduction obliquity, due to trench curvature. We currently observe such curvature in, e.g., the Marianas, Chile and Aleutian trenches. Recently, strong along-strike variations in subduction obliquity were proposed to have caused a major temperature contrast between Cretaceous geological records of western and central Turkey. We test here whether first-order temperature variation in a subduction zone may be caused by variation in the trench geometry using simple thermo-kinematic finite-element 3-D numerical models. We prescribe the trench geometry by means of a simple mathematical function and compute the mantle flow in the mantle wedge by solving the equation of mass and momentum conservation. We then solve the energy conservation equation until steady state is reached. We analyze the results (i) in terms of mantle wedge flow with emphasis on the trench-parallel component and (ii) in terms of temperature along the plate interface by means of maps and the depth–temperature path at the interface. In our experiments, the effect of the trench curvature on the geotherm is substantial. A small obliquity yields a small but not negligible trench-parallel mantle flow, leading to differences of 30 °C along-strike of the model. Advected heat causes such temperature variations (linked to the magnitude of the trench-parallel component of velocity). With increasing obliquity, the trench-parallel component of the velocity consequently increases and the temperature variation reaches 200 °C along-strike. Finally, we discuss the implication of our simulations for the ubiquitous oblique systems that are observed on Earth and the limitations of our modeling approach. Lateral variations in plate sinking rate associated with curvature will further enhance this temperature contrast. We conclude that the synchronous metamorphic temperature contrast between central and western Turkey may well have resulted from reconstructed major variations in subduction obliquity.

Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis. This research was done to validate a hypothesis made on the basis of nonquantitative field data.