Articles | Volume 9, issue 3
https://doi.org/10.5194/se-9-759-2018
https://doi.org/10.5194/se-9-759-2018
Research article
 | 
14 Jun 2018
Research article |  | 14 Jun 2018

The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling

Alexis Plunder, Cédric Thieulot, and Douwe J. J. van Hinsbergen

Related authors

Relationship between microstructures and resistance in mafic assemblages that deform and transform
Nicolas Mansard, Holger Stünitz, Hugues Raimbourg, Jacques Précigout, Alexis Plunder, and Lucille Nègre
Solid Earth, 11, 2141–2167, https://doi.org/10.5194/se-11-2141-2020,https://doi.org/10.5194/se-11-2141-2020, 2020
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Geodynamics
Impact of upper mantle convection on lithosphere hyperextension and subsequent horizontally forced subduction initiation
Lorenzo G. Candioti, Stefan M. Schmalholz, and Thibault Duretz
Solid Earth, 11, 2327–2357, https://doi.org/10.5194/se-11-2327-2020,https://doi.org/10.5194/se-11-2327-2020, 2020
Short summary
Pore-scale permeability prediction for Newtonian and non-Newtonian fluids
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019,https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Oblique rifting: the rule, not the exception
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018,https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary

Cited articles

Agard, P., Yamato, P., Jolivet, L., and Burov, E.: Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms, Earth-Sci. Rev., 92, 53–79, 2009.
Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y., and Koster, J.: A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM J. Matrix Anal. A., 23, 15–41, 2001.
Amestoy, P. R., Guermouche, A., L'Excellent, J.-Y., and Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Computation, 32, 136–156, 2006.
Angiboust, S., Agard, P., Glodny, J., Omrani, J., and Oncken, O.: Zagros blueschists: Episodic underplating and long-lived cooling of a subduction zone, Earth Planet. Sc. Lett., 443, 48–58, 2016.
Argus, D. F., Gordon, R. G., and Demets, C.: Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochem. Geophy. Geosys., 12, 1–13, 2011.
Download
Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis. This research was done to validate a hypothesis made on the basis of nonquantitative field data.