Preprints
https://doi.org/10.5194/se-2019-43
https://doi.org/10.5194/se-2019-43
27 Mar 2019
 | 27 Mar 2019
Status: this preprint has been withdrawn by the authors.

Evolution of a long-lived continental arc: a geochemical approach (Arequipa Batholith, Southern Peru)

Sophie Demouy, Mathieu Benoit, Michel de Saint-Blanquat, and Jérôme Ganne

Abstract. Batholith emplacements within a continental margin may bear witness of a magmatic input lasting for several million years. Consequently, the geochemical signatures of such sections are complex, and their understanding in terms of petrological processes, is crucial. The Arequipa section of the Coastal Batholith of Southern Peru was discontinuously constructed during several periods of magmatic activity, from the Jurassic to the Paleocene (200–175 Ma, and 90–60 Ma). Thermobarometric data on amphiboles indicates two main levels of emplacement at the batholith scale, the deepest between 5 and 7 km in depth and the second around 3.5 km. The present day outcropping of these different units at the same elevation argue for a large vertical movement along the Lluclla Fault System between 76 and 68 Ma. Both major/trace element contents and Nd-Sr isotopes show a large variability that is not random. The data dispersion is consistent with a two-staged evolutionary model of the magmatic arc, inspired by the MASH model: (i) an early stage dominated by hybridization and fractional crystallization processes, (ii) a late stage in which magmas were homogenized and mainly evolved by fractional crystallization. The change from one stage to another is controlled by the thermal state of the crustal arc section, especially the Deep Crustal Hot Zone.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Sophie Demouy, Mathieu Benoit, Michel de Saint-Blanquat, and Jérôme Ganne

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Sophie Demouy, Mathieu Benoit, Michel de Saint-Blanquat, and Jérôme Ganne
Sophie Demouy, Mathieu Benoit, Michel de Saint-Blanquat, and Jérôme Ganne

Viewed

Total article views: 1,160 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
633 447 80 1,160 109 81 79
  • HTML: 633
  • PDF: 447
  • XML: 80
  • Total: 1,160
  • Supplement: 109
  • BibTeX: 81
  • EndNote: 79
Views and downloads (calculated since 27 Mar 2019)
Cumulative views and downloads (calculated since 27 Mar 2019)

Viewed (geographical distribution)

Total article views: 939 (including HTML, PDF, and XML) Thereof 936 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Discussed

Latest update: 15 Jun 2024
Download

This preprint has been withdrawn.

Short summary
The genesis of the continental crust above subduction zones remains controversial and massive production of granite in short period of time, also named flare-up events are more and more documented but poorly constrained. In the present manuscript we present a detailed geochemical study of samples collected in the Arequipa region (Peru), where a flare-up event is suspected. Using these data, we propose an elegant explanation for the converging geochemical signatures associated to this event.