Status: this preprint was under review for the journal SE. A final paper is not foreseen.
Anisotropic transport and frictional properties of simulated clay-rich fault gouges
Elisenda Bakkerand Johannes H. P. de Bresser
Abstract. We aimed to evaluate various factors that control the frictional and transport properties of gouge-filled faults cutting carbonate-bearing shales or claystone formations. The research experimentally determined the effect of shear displacement, dynamic shearing, static holding, and effective normal stress on fault gouge permeability, both parallel and perpendicular to the fault boundaries, as well as on frictional behaviour. The simulated gouge was prepared from crushed Opalinus Claystone (OPA), on which we performed direct shear experiments. The direct-shear experiments (σneff = 5–50 MPa, Pf = 2 MPa, and T ≈ 20 °C) showed ~1 order of magnitude decrease in permeability with shear displacement (up to ~6 mm), for both along- and across-fault fluid flow orientation. Moreover, our data showed an initial, pre-shear permeability anisotropy of up to ~1 order of magnitude, which decreased with increasing shear displacement (maturity) to ~0.5, with the along-fault permeability being consistently higher. Our results have important implications for calcite-rich claystones and shale formations, and in particular any pre-existing faults therein, that seal hydrocarbon reservoirs and potential CO2 storage reservoirs, as the current results point to a higher leakage potential of pre-existing faults compared to the intact caprock.
This preprint has been withdrawn.
Received: 16 Oct 2020 – Discussion started: 17 Nov 2020
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
What is the effect of shearing, holding and effective normal stress on fault gouge permeability, parallel and perpendicular to fault boundaries, as well as on frictional behaviour? Experiments show a pre-shear permeability anisotropy, as well as a decrease in permeability with shear and eff. normal stress, for both fluid flow directions. The results have important implications for pre-existing faults in calcite-rich claystones that seal hydrocarbon reservoirs or potential CO2 storage reservoirs.
What is the effect of shearing, holding and effective normal stress on fault gouge permeability,...