Preprints
https://doi.org/10.5194/se-2020-41
https://doi.org/10.5194/se-2020-41
07 Apr 2020
 | 07 Apr 2020
Status: this preprint was under review for the journal SE but the revision was not accepted.

Discrete element modeling of a subduction zone with a seafloor irregularity and its impact on the seismic cycle

Liqing Jiao, Chung-Han Chan, Luc Scholtès, Aurélia Hubert-Ferrari, Frédéric-Victor Donzé, and Paul Tapponnier

Abstract. Seafloor irregularities influence rupture behavior along the subducting slab and in the overriding plate, thus affecting earthquake cycles. Whether seafloor irregularities increase the likelihood of large earthquakes in a subduction zone remains contested, partially due to focus put either on fault development or on rupture pattern. Here, we simulate a subducting slab with a seafloor irregularity and the resulting deformation pattern of the overriding plate using the discrete element method. Our simulations illustrate the rupture along three major fault systems: megathrust, splay and backthrust faults. Our results show different rupture dimensions of earthquake events varying from tens to ca. 140 km. Our results suggest that the recurrence interval of megathrust events with rupture length of ca. 100 km is ca. 140 years, which is overall comparable to the paleoseismic records at the Mentawai area of the Sumatran zone. We further propose the coseismic slip amounts decrease and interseismic slip amounts increase from the surface downwards gradually. We conclude that the presence of seafloor irregularities significantly affects rupture events along the slab as well as fault patterns in the overriding plate.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Liqing Jiao, Chung-Han Chan, Luc Scholtès, Aurélia Hubert-Ferrari, Frédéric-Victor Donzé, and Paul Tapponnier
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Liqing Jiao, Chung-Han Chan, Luc Scholtès, Aurélia Hubert-Ferrari, Frédéric-Victor Donzé, and Paul Tapponnier
Liqing Jiao, Chung-Han Chan, Luc Scholtès, Aurélia Hubert-Ferrari, Frédéric-Victor Donzé, and Paul Tapponnier

Viewed

Total article views: 1,110 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
661 374 75 1,110 83 76
  • HTML: 661
  • PDF: 374
  • XML: 75
  • Total: 1,110
  • BibTeX: 83
  • EndNote: 76
Views and downloads (calculated since 07 Apr 2020)
Cumulative views and downloads (calculated since 07 Apr 2020)

Viewed (geographical distribution)

Total article views: 951 (including HTML, PDF, and XML) Thereof 951 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 05 Oct 2024
Download
Short summary
Seafloor geometry plays an important role in earthquake behaviors in a tectonic subducting system. Here, we simulate a subducting slab with a seafloor irregularity to perform the resulting deformation pattern of the overriding plate and spatial and temporal patterns of the seismicity activity in the subducting system. Our model is overall comparable to paleoseismic records, matches seismicity patterns, and fulfils the domain definition of a subduction system.