Preprints
https://doi.org/10.5194/se-2022-2
https://doi.org/10.5194/se-2022-2
 
25 Jan 2022
25 Jan 2022
Status: this preprint has been withdrawn by the authors.

Strain localized deformation variation of a small-scale ductile shear zone

Lefan Zhan, Shuyun Cao, Yanlong Dong, and Wenyuan Li Lefan Zhan et al.
  • State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

Abstract. A continental-scale strike-slip shear zone frequently presents a long-lasting deformation and physical expression of strain localization in a middle to lower crustal level. However, the deformation evolution of strain localization at a small-scale shear zone remains unclear. This study investigated < 10 cm wide shear zones developing in undeformed granodiorites exposed at the boundary of the continental-scale Gaoligong strike-slip shear zone. The small-scale ductile shear zone demonstrated a typical transition from protomylonite, mylonite to extremely deformed ultramylonite, and decreased mineral size from coarse-grained aggregates to extremely fine-grained mixed phase. Shearing senses such as hornblende and feldspar porphyroclasts in the shear zone are the more significantly low-strain zone of mylonite. The microstructure and EBSD results revealed that the small-scale shear zone experienced ductile deformation under medium-high temperature conditions. Quartz aggregates suggested a consistent temperature with an irregular feature, exhibiting a dominated high-temperature prism slip system. Additionally, coarse-grained aggregates in the mylonite of the shear zone were deformed predominantly by dislocation creep, while ultra-plastic flow by viscous grain boundary sliding was an essential deformation process in the extremely fine-grained (~50 μm) mixed-phase of ultramylonite. Microstructural-derived strain rates calculated from quartz paleopiezometry were on the order of 10−15 to 10−13 s−1 from low-strain mylonite to high strained ultramylonite. The localization and strain rate-limited process was fluid-assisted precipitation presenting transitions of compositions as hydrous retrogression of hornblende to mica during increasing deformation and exhumation. Furthermore, the potential occurrence of the small-scale shear zone was initiated at a deep-seated crustal dominated by the temperature-controlled formation and rheological weakening.

This preprint has been withdrawn.

Lefan Zhan et al.

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on se-2022-2', Anonymous Referee #1, 10 Feb 2022
    • CC1: 'Reply on RC1', Lefan zhan, 13 Feb 2022
  • RC2: 'Comment on se-2022-2', Anonymous Referee #2, 24 Feb 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on se-2022-2', Anonymous Referee #1, 10 Feb 2022
    • CC1: 'Reply on RC1', Lefan zhan, 13 Feb 2022
  • RC2: 'Comment on se-2022-2', Anonymous Referee #2, 24 Feb 2022

Lefan Zhan et al.

Lefan Zhan et al.

Viewed

Total article views: 502 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
350 135 17 502 11 9
  • HTML: 350
  • PDF: 135
  • XML: 17
  • Total: 502
  • BibTeX: 11
  • EndNote: 9
Views and downloads (calculated since 25 Jan 2022)
Cumulative views and downloads (calculated since 25 Jan 2022)

Viewed (geographical distribution)

Total article views: 476 (including HTML, PDF, and XML) Thereof 476 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Sep 2022
Download

This preprint has been withdrawn.

Short summary
1. small-scale shear zone shows transition from protomylonite to ultramylonite. 2. small-scale shear zone experienced under high-temperature ductile deformation. 3. viscous grain boundary sliding is an important deformation mechanism. 4. fluid-assisted precipitation in localization and strain rate-limited process. 5. initiation of shear zone by temperature-controlled rheological weakening.