Articles | Volume 10, issue 2
https://doi.org/10.5194/se-10-405-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-405-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Submarine groundwater discharge site in the First Salpausselkä ice-marginal formation, south Finland
Joonas J. Virtasalo
CORRESPONDING AUTHOR
Marine Geology, Geological Survey of Finland (GTK), Espoo, 02150, Finland
Jan F. Schröder
Institut für Geowissenschaften, Christian-Albrechts-Universität Kiel, Kiel, 24118, Germany
Samrit Luoma
Groundwater, Geological Survey of Finland (GTK), Espoo, 02150, Finland
Juha Majaniemi
Groundwater, Geological Survey of Finland (GTK), Espoo, 02150, Finland
Juha Mursu
Applied Geophysics, Geological Survey of Finland (GTK), Kuopio, 70211, Finland
Jan Scholten
Institut für Geowissenschaften, Christian-Albrechts-Universität Kiel, Kiel, 24118, Germany
Related authors
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Joonas J. Virtasalo, Jan F. Schröder, Samrit Luoma, Juha Majaniemi, Juha Mursu, and Jan Scholten
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-507, https://doi.org/10.5194/hess-2018-507, 2018
Preprint withdrawn
Short summary
Short summary
Submarine groundwater discharge (SGD) is a significant source of nutrients and other potentially harmful substances to coastal sea. We analyse a rich dataset of offshore seismic sub-bottom profiles, multibeam and sidescan sonar images of seafloor, and onshore ground-penetrating radar profiles to establish the geometry of an SGD site in south Finland. The SGD takes place through meter scale pits (pockmarks) on the seafloor, confirmed by elevated radon concentrations in the overlying water.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Insa Rapp, Christian Schlosser, Jan-Lukas Menzel Barraqueta, Bernhard Wenzel, Jan Lüdke, Jan Scholten, Beat Gasser, Patrick Reichert, Martha Gledhill, Marcus Dengler, and Eric P. Achterberg
Biogeosciences, 16, 4157–4182, https://doi.org/10.5194/bg-16-4157-2019, https://doi.org/10.5194/bg-16-4157-2019, 2019
Short summary
Short summary
The availability of iron (Fe) affects phytoplankton growth in large parts of the ocean. Shelf sediments, particularly in oxygen minimum zones, are a major source of Fe and other essential micronutrients, such as cobalt (Co) and manganese (Mn). We observed enhanced concentrations of Fe, Co, and Mn corresponding with low oxygen concentrations along the Mauritanian shelf, indicating that the projected future decrease in oxygen concentrations may result in increases in Fe, Mn, and Co concentrations.
Joonas J. Virtasalo, Jan F. Schröder, Samrit Luoma, Juha Majaniemi, Juha Mursu, and Jan Scholten
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-507, https://doi.org/10.5194/hess-2018-507, 2018
Preprint withdrawn
Short summary
Short summary
Submarine groundwater discharge (SGD) is a significant source of nutrients and other potentially harmful substances to coastal sea. We analyse a rich dataset of offshore seismic sub-bottom profiles, multibeam and sidescan sonar images of seafloor, and onshore ground-penetrating radar profiles to establish the geometry of an SGD site in south Finland. The SGD takes place through meter scale pits (pockmarks) on the seafloor, confirmed by elevated radon concentrations in the overlying water.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Quaternary geology
Lithological and geomorphological indicators of glacial genesis in the upper Quaternary strata, Nadym River basin, Western Siberia
Oleg Sizov, Anna Volvakh, Anatoly Molodkov, Andrey Vishnevskiy, Andrey Soromotin, and Evgeny Abakumov
Solid Earth, 11, 2047–2074, https://doi.org/10.5194/se-11-2047-2020, https://doi.org/10.5194/se-11-2047-2020, 2020
Short summary
Short summary
Analysing the genesis of Quaternary sediments is important for understanding the glaciation history and development of marine sediments in the northern part of Western Siberia. The key features of sedimentation and landform formation have been characterised for the first time in an example of a lithological column from the lower sources of the Nadym River. A comprehensive analysis was performed on the lithological, petrographic and geomorphological data from the upper Quaternary stratum.
Cited articles
Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K.,
Fleming-Lehtinen, V., Gustafsson, B. G., Josefson, A. B., Norkko, A.,
Villnäs, A., and Murray, C.: Long-term temporal and spatial trends in
eutrophication status of the Baltic Sea, Biol. Rev., 92, 135–149,
https://doi.org/10.1111/brv.12221, 2017.
Andrews, J. N. and Wood, D. F.: Mechanism of radon release in rock matrices
and entry into groundwaters, T. I. Min. Metall. B, 81, 197–209, 1972.
Annan, A. P.: Electromagnetic principles of ground penetrating radar, in:
Ground Penetrating Radar: Theory and Applications, edited by: Jol, H. M.,
Elsevier, Amsterdam, the Netherlands, 3–40, 2009.
Bengtsson, L. and Enell, M.: Chemical analysis, in: Handbook of Holocene
Palaeoecology and Palaeohydrology, edited by: Berglund, D. E., Wiley, Chichester,
UK, 423–451, 1986.
Bear, J.: Dynamics of fluids in porous media, Elsevier, New York, USA,
756 pp., 1972.
Burnett, W. C. and Dulaiova, H.: Estimating the dynamics of groundwater
input into the coastal zone via continuous radon-222 measurements, J.
Environ. Radioactiv., 69, 21–35, https://doi.org/10.1016/S0265-931X(03)00084-5, 2003.
Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., and Taniguchi,
M.: Groundwater and pore water inputs to the coastal zone, Biogeochemistry,
66, 3–33, https://doi.org/10.1023/B:BIOG.0000006066.21240.53, 2003.
Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E.,
Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A.,
Moore, W. S., Oberdorfer, J. A., Oliveira, J., Ozyurt, N., Povinec, P.,
Privitera, A. M. G., Rajar, R., Ramessur, R. T., Scholten, J., Stieglitz,
T., Taniguchi, M., and Turner, J. V.: Quantifying submarine groundwater
discharge in the coastal zone via multiple methods, Sci. Total Environ.,
367, 498–543, https://doi.org/10.1016/j.scitotenv.2006.05.009, 2006.
Burnett, W. C., Peterson, R., Moore, W. S., and de Oliveira, J.: Radon and
radium isotopes as tracers of submarine groundwater discharge – Results from
the Ubatuba, Brazil SGD assessment intercomparison, Estuar. Coast. Shelf S.,
76, 501–511, https://doi.org/10.1016/j.ecss.2007.07.027, 2008.
Cartwright, J., Huuse, M., and Aplin, A.: Seal bypass systems, AAPG Bull.,
91, 1141–1166, https://doi.org/10.1306/04090705181, 2007.
Clemmensen, L. B. and Nielsen, L.: Internal architecture of a raised beach
ridge system (Anholt, Denmark) resolved by ground-penetrating radar
investigations, Sediment. Geol., 223, 281–290,
https://doi.org/10.1016/j.sedgeo.2009.11.014, 2010.
De Geer, G.: Geochronologie der letzten 12000 Jahre, Geol. Rundsch., 3,
457–471, https://doi.org/10.1007/BF01802565, 1912.
Donner, J.: The Younger Dryas age of the Salpausselkä moraines in
Finland, Bull. Geol. Soc. Finl., 82, 69–80, https://doi.org/10.17741/bgsf/82.2.001,
2010.
Eronen, M., Glückert, G., Hatakka, L., van de Plassche, O., van der
Plicht, J., and Rantala, P.: Rates of Holocene isostatic uplift and relative
sea-level lowering of the Baltic in SW Finland based on studies of isolation
contacts, Boreas, 30, 17–30, https://doi.org/10.1111/j.1502-3885.2001.tb00985.x, 2001.
Eyles, C. H., Eyles, N., and Miall, A. D.: Models of glaciomarine
sedimentation and their application to the interpretation of ancient glacial
sequences, Palaeogeogr. Palaeocl., 51, 15–84,
https://doi.org/10.1016/0031-0182(85)90080-X, 1985.
Ferguson, G. and Gleeson, T.: Vulnerability of coastal aquifers to
groundwater use and climate change, Nat. Clim. Change, 2, 342–345,
https://doi.org/10.1038/nclimate1413, 2012.
Fyfe, G. J.: The effect of water depth on ice-proximal glaciolacustrine
sedimentation: Salpausselka I, southern Finland, Boreas, 19, 147–164,
https://doi.org/10.1111/j.1502-3885.1990.tb00576.x, 1990.
Gerber, T. P., Pratson, L. F., Wolinsky, M. A., Steel, R., Mohr, J.,
Swenson, J. B., and Paola, C.: Clinoform progradation by turbidity currents:
modeling and experiments, J. Sediment. Res., 78, 220–238,
https://doi.org/10.2110/jsr.2008.023, 2008.
Gleeson, J., Santos, I. R., Maher, D. T., and Golsby-Smith, L.:
Groundwater–surface water exchange in a mangrove tidal creek: evidence from
natural geochemical tracers and implications for nutrient budgets, Mar.
Chem., 156, 27–37, https://doi.org/10.1016/j.marchem.2013.02.001, 2013.
Glückert, G.: The First Salpausselkä at Lohja, southern Finland,
Bull. Geol. Soc. Finl., 58, 45–55, 1986.
Häkkinen, A.: Saaristomeren vedenalaiset maa-ainesvarat,
Varsinais-Suomen seutukaavaliitto, Turku, Finland, 58 pp., 1990.
Hammer, Ø., Webb, K. E., and Depreiter, D.: Numerical simulation of
upwelling currents in pockmarks and data from the Inner Oslofjord, Norway,
Geo-Mar. Lett., 29, 269–275, https://doi.org/10.1007/s00367-009-0140-z, 2009.
Hovland, M., Gardner, J. V., and Judd, A. G.: The significance of pockmarks
to understanding fluid flow processes and geohazards, Geofluids, 2,
127–136, https://doi.org/10.1046/j.1468-8123.2002.00028.x, 2002.
Hyttinen, O., Kotilainen, A. T., Virtasalo, J. J., Kekäläinen, P.,
Snowball, I., Obrochta, S., and Andrén, T.: Holocene stratigraphy of the
Ångermanälven River estuary, Bothnian Sea, Geo-Mar. Lett., 37,
273–288, https://doi.org/10.1007/s00367-016-0490-2, 2017.
Jakobsson, M., O'Regan, M., Gyllencreutz, R., and Flodén, T.: Seafloor
terraces and semi-circular depressions related to fluid discharge n
Stockholm Archipelago, Baltic Sea, in: Atlas of Submarine Glacial Landforms:
Modern, Quaternary and Ancient, edited by: Dowdeswell, J. A., Canals, M., Jakobsson,
M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Geological
Society, London, Memoirs, 46, 305–306, https://doi.org/10.1144/M46.162, 2016.
Jankowska, H., Matciak, M., and Nowacki, J.: Salinity variations as an
effect of groundwater seepage through the seabed (Puck Bay, Poland),
Oceanologia, 36, 33–46, 1994.
Jensen, J. B., Kuijpers, A., Bennike, O., Laier, T., and Werner, F.: New
geological aspects for freshwater seepage and formation in Eckernförde
Bay, western Baltic, Cont. Shelf Res., 22, 2159–2173,
https://doi.org/10.1016/S0278-4343(02)00076-6, 2002.
Jensen, J. B., Moros, M., Endler, R., and IODP Expedition 347 Members.: The
Bornholm Basin, southern Scandinavia: a complex history from Late Cretaceous
structural developments to recent sedimentation, Boreas, 46, 3–17,
https://doi.org/10.1111/bor.12194, 2017.
Jokinen, S. A., Virtasalo, J. J., Kotilainen, A. T., and Saarinen, T.: Varve
microfabric record of seasonal sedimentation and bottom flow-modulated mud
deposition in the coastal northern Baltic Sea, Mar. Geol., 366, 79–96,
https://doi.org/10.1016/j.margeo.2015.05.003, 2015.
Kakkuri, J.: Fennoscandian land uplift: past, present and future, in: From
the Earth's Core to Outer Space, edited by: Haapala, I., Lecture Notes in Earth
System Sciences, 137, 127–136, https://doi.org/10.1007/978-3-642-25550-2_8, 2012.
Kielosto, S., Kukkonen, M., Stén, C.-G., and Backman, B.: Hangon ja
Perniön kartta-alueiden maaperä. Summary: Quaternary deposits in the
Hanko and Perniö map-sheet areas, Geological map of Finland 1:100 000.
Explanation to the maps of Quaternary deposits, sheets 2011 and 2012,
Geological Survey of Finland, Espoo, Finland, 104 pp., 1996.
Krall, L., Trezzi, G., Garcia-Orellana, J., Rodellas, V., Mörth, C.-M.,
and Andersson, P.: Submarine groundwater discharge at Forsmark, Gulf of
Bothnia, provided by Ra isotopes, Mar. Chem., 196, 162–172,
https://doi.org/10.1016/j.marchem.2017.09.003, 2017.
Kujansuu, R., Uusinoka, R., Herola, E., and Sten, C.-G.: Tammisaaren
kartta-alueen maaperä. Summary: Quaternary deposits in the Tammisaari
map-sheet area, Geological map of Finland 1:100 000. Explanation to the maps
of Quaternary deposits, sheet 2014, Geological Survey of Finland, Espoo,
Finland, 90 pp., 1993.
Lang, J. and Winsemann, J.: Lateral and vertical facies relationships of
bedforms deposited by aggradating supercritical flows: from cyclic steps to
humpback dunes, Sediment. Geol., 296, 36–54,
https://doi.org/10.1016/j.sedgeo.2013.08.005, 2013.
Lang, J., Sievers, J., Loewer, M., Igel, J., and Winsemann, J.: 3D
architecture of cyclic-step and antidune deposits in glacigenic subaqueous
fan and delta settings: integrating outcrop and ground-penetrating radar
data, Sediment. Geol., 362, 83–100, https://doi.org/10.1016/j.sedgeo.2017.10.011, 2017.
Loher, M., Reusch, A., and Strasser M.: Long-term pockmark maintenance by
fluid seepage and subsurface sediment mobilization – sedimentological
investigations in Lake Neuchâtel, Sedimentology, 63, 1168–1186,
https://doi.org/10.1111/sed.12255, 2016.
Luoma, S. and Okkonen, J.: Impacts of future climate change and Baltic Sea
level rise on groundwater recharge, groundwater levels, and surface leakage
in the Hanko aquifer in Southern Finland, Water, 6, 3671–3700,
https://doi.org/10.3390/w6123671, 2014.
Luoma, S. and Pullinen, A.: Field Investigation and Estimates of Hydraulic
Conductivity from Slug Tests in the First Salpausselkä formation in the
Santala area, Hanko, south Finland, Archived report, Geological Survey of
Finland, Espoo, 2011.
Luoma, S., Okkonen, J., Korkka-Niemi, K., Hendriksson, N., and Backman, B.:
Confronting the vicinity of the surface water and sea shore in a shallow
glaciogenic aquifer in southern Finland, Hydrol. Earth Syst. Sci., 19,
1353–1370, https://doi.org/10.5194/hess-19-1353-2015, 2015.
Merkouriadi, I. and Leppäranta, M.: Long-term analysis of hydrography
and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea, Climatic
Change, 124, 849–859, https://doi.org/10.1007/s10584-014-1130-3, 2014.
Ministry of Social Affairs and Health: Decree 401/2001, Sosiaali- ja
terveysministeriön asetus pienten yksiköiden talousveden
laatuvaatimuksista ja valvontatutkimuksista, 2001.
Moore, W. S.: The effect of submarine groundwater discharge on the ocean,
Annu. Rev. Mar. Sci., 2, 59–88, https://doi.org/10.1146/annurev-marine-120308-081019,
2010.
Mullinger, N. J., Pates, J. M., Binley, A. M., and Crook, N. P.: Controls on
the spatial and temporal variability of 222Rn in riparian
groundwater in a lowland Chalk catchment, J. Hydrol., 376, 58–69,
https://doi.org/10.1016/j.jhydrol.2009.07.015, 2009.
Muru, M., Rosentau, A., Preusser, F., Plado, J., Sibul, I., Jõeleht, A.,
Bjursäter, S., Aunap, R., and Kriiska, A.: Reconstructing Holocene shore
displacement and Stone Age palaeogeography from a foredune sequence on Ruhnu
Island, Gulf of Riga, Baltic Sea, Geomorphology, 303, 434–445,
https://doi.org/10.1016/j.geomorph.2017.12.016, 2018.
Neal, A.: Ground-penetrating radar and its use in sedimentology: principles,
problems and progress, Earth-Sci. Rev., 66, 261–330,
https://doi.org/10.1016/j.earscirev.2004.01.004, 2004.
Nemec, W., Lønne, I., and Blikra, L. H.: The Kregnes moraine in
Gauldalen. west-central Norway: anatomy of a Younger Dryas proglacial delta
in a palaeofjord basin, Boreas, 28, 454–476,
https://doi.org/10.1111/j.1502-3885.1999.tb00234.x, 1999.
North American Commission on Stratigraphic Nomenclature: North American
stratigraphic code, AAPG Bull., 89, 1547–1591, https://doi.org/10.1306/07050504129,
2005.
Nuorteva, J.: Topographically influenced sedimentation in Quaternary
deposits – a detailed acoustic study from the western part of the Gulf of
Finland, Geological Survey of Finland, Report of Investigation, 122, 1–88,
1994.
Ojala, A. E. K., Saresma, M., Virtasalo, J. J., and Huotari-Halkosaari, T.:
An allostratigraphic approach to subdivide fine-grained sediments for urban
planning, B. Eng. Geol. Environ., 77, 879–892, https://doi.org/10.1007/s10064-016-0981-4, 2018.
Pellikka, H., Leijala, U., Johansson, M. M., Leinonen, K., and Kahma, K. K.:
Future probabilities of coastal floods in Finland, Cont. Shelf Res., 157,
32–42, https://doi.org/10.1016/j.csr.2018.02.006, 2018.
Peterson, R. N., Burnett, W. C., Taniguchi, M., Chen, J., Santos, I. R., and
Ishitobi, T.: Radon and radium isotope assessment of submarine groundwater
discharge in the Yellow River Delta, China, J. Geophys. Res., 113, C09021,
https://doi.org/10.1029/2008JC004776, 2008.
Powell, R. D. and Cooper, J. M.: A glacial sequence stratigraphic model for
temperate, glaciated continental shelves, in: Glacier-Influenced
Sedimentation on High-Latitude Continental Margins, edited by: Dowdeswell, J.
A. and Ó Cofaigh, C., Geological Society, London, Special Publications,
203, 215–244, https://doi.org/10.1144/GSL.SP.2002.203.01.12, 2002.
Prakash, R., Srinivasamoorthy, K., Gopinath, S., Saravanan, K., Vinnarasi,
F., Ponnumani, G., Chidambaram, S., and Anandhan, P.: Radon isotope
assessment of submarine groundwater discharge (SGD) in Coleroon River
Estuary, Tamil Nadu, India, J. Radioanal. Nucl. Ch., 317, 25–36,
https://doi.org/10.1007/s10967-018-5877-2, 2018.
Rantataro, J.: Pääkaupunkiseudun edustan vedenalaiset
maa-ainesvarat, Helsingin seutukaavaliiton julkaisuja, C31, 1–84, 1992.
Räsänen, M. E., Auri, J. M., Huitti, J. V., Klap, A. K., and
Virtasalo, J. J.: A shift from lithostratigraphic to allostratigraphic
classification of Quaternary glacial deposits, GSA Today, 19, 4–11,
https://doi.org/10.1130/GSATG20A.1, 2009.
Rinterknecht, V. R., Clark, P. U., Raisbeck, G. M., Yiou, F., Brook, E. J.,
Tschudi, S., and Lunkka, J. P.: Cosmogenic 10Be dating of the
Salpausselkä I moraine in southwestern Finland, Quaternary Sci. Rev., 23,
2283–2289, https://doi.org/10.1016/j.quascirev.2004.06.012, 2004.
Rosentau, A., Joeleht, A., Plado, J., Aunap, R., Muru, M., and Eskola, K.
O.: Development of the Holocene foredune plain in the Narva-Joesuu area,
eastern Gulf of Finland, Geol. Q., 57, 89–100, https://doi.org/10.7306/gq.1077, 2013.
Saarnisto, M. and Saarinen, T.: Deglaciation chronology of the Scandinavian
Ice Sheet from the Lake Onega Basin to the Salpausselkä end moraines,
Global Planet. Change, 31, 387–405, https://doi.org/10.1016/S0921-8181(01)00131-X,
2001.
Sadat-Noori, M., Santos, I. R., Sanders, C. J., Sanders, L. M., and Maher,
D. T.: Groundwater discharge into an estuary using spatially distributed
radon time series and radium isotopes, J. Hydrol., 528, 703–719,
https://doi.org/10.1016/j.jhydrol.2015.06.056, 2015.
Salonen, L.: Natural radionuclides in ground water in Finland, Radiat. Prot.
Dosim., 24, 163–166, https://doi.org/10.1093/oxfordjournals.rpd.a080263, 1988.
Sauramo, M.: Studies on the Quaternary varve sediments in southern Finland,
Bulletin de la Commission géologique de Finlande, 60, 1–164, 1923.
Schlüter, M., Sauter, E. J., Andersen, C. E., Dahlgaard, H., and Dando,
P. R.: Spatial distribution and budget for submarine groundwater discharge
in Eckernförde Bay (western Baltic Sea), Limnol. Oceanogr., 49,
157–167, https://doi.org/10.4319/lo.2004.49.1.0157, 2004.
Schmidt, A., Schlueter, M., Melles, M., and Schubert, M.: Continuous and
discrete on-site detection of radon-222 in ground- and surface waters by
means of an extraction module, Appl. Radiat. Isotopes, 66, 1939–1944,
https://doi.org/10.1016/j.apradiso.2008.05.005, 2008.
Schubert, M., Paschke, A., Lieberman, E., and Burnett, W. C.: Air-water
partitioning of 222Rn and its dependence on water temperature and
salinity, Environ. Sci. Technol., 46, 3905–3911, https://doi.org/10.1021/es204680n,
2012.
Schubert, M., Scholten, J., Schmidt, A., Comanducci, J. F., Pham, M. K.,
Mallast, U., and Knoeller, K.: Submarine groundwater discharge at a single
spot location: evaluation of different detection approaches, Water, 6,
584–601, https://doi.org/10.3390/w6030584, 2014.
Sheriff, R. E. and Geldart, L. P.: Exploration seismology, Cambridge
University Press, Cambridge, UK, 592 pp., 1995.
Söderberg, P. and Flodén, T.: Stratabound submarine terraces and
pockmarks – indicators of spring sapping in glacial clay, Stockholm
Archipelago, Sweden, Sveriges Geologiska Undersökning, Ser. Ca 86,
173–178, 1997.
Sutinen, R.: Glacial deposits, their electrical properties and surveying by
image interpretation and ground penetrating radar, Geological Survey of
Finland, Bulletin, 359, 1–123, 1992.
Sviridov, N. I.: Results of sound velocity measurements in the Baltic Sea
bottom sediments, Baltica, 6, 173–180, 1977.
Szymczycha, B., Vogler, S., and Pempkowiak, J.: Nutrient fluxes via submarine
groundwater discharge to the Bay of Puck, southern Baltic Sea, Sci. Total
Environ., 438, 86–93, https://doi.org/10.1016/j.scitotenv.2012.08.058, 2012.
Szymczycha, B., Kroeger, K. D., and Pempkowiak, J.: Significance of
groundwater discharge along the coast of Poland as a source of dissolved
metals to the southern Baltic Sea, Mar. Pollut. Bull., 109, 151–162,
https://doi.org/10.1016/j.marpolbul.2016.06.008, 2016.
Tamura, T., Murakami, F., Nanayama, F., Watanabe, K., and Saito, Y.:
Ground-penetrating radar profiles of Holocene raised-beach deposits in the
Kujukuri strand plain, Pacific coast of eastern Japan, Mar. Geol., 248,
11–27, https://doi.org/10.1016/j.margeo.2007.10.002, 2008.
Tait, D. R., Santos, I. R., Erler, D. V., Befus, K. M., Cardenas, M. B., and
Eyre, B. D.: Estimating submarine groundwater discharge in a South Pacific
coral reef lagoon using different radioisotope and geophysical approaches,
Mar. Chem., 156, 49–60, https://doi.org/10.1016/j.marchem.2013.03.004, 2013.
Tsyrulnikov, A., Tuuling, I., Kalm, V., Hang, T., and Flodén, T.: Late
Weichselian and Holocene seismostratigraphy and depositional history of the
Gulf of Riga, NE Baltic Sea, Boreas, 41, 673–689,
https://doi.org/10.1111/j.1502-3885.2012.00257.x, 2012.
Vallius, H.: Sediment and carbon accumulation rates off the southern coast
of Finland, Baltica, 28, 81–88, https://doi.org/10.5200/baltica.2015.28.08, 2015.
Virkkala, K.: On ice-marginal features in southwestern Finland, Bulletin de
la Commission géologique de Finlande, 210, 1–76, 1963.
Virtasalo, J. J., Kotilainen, A. T., Räsänen, M. E., and Ojala, A.
E. K.: Late-glacial and post-glacial deposition in a large, low relief,
epicontinental basin: the northern Baltic Sea, Sedimentology, 54,
1323–1344, https://doi.org/10.1111/j.1365-3091.2007.00883.x, 2007.
Virtasalo, J. J., Hämäläinen, J., and Kotilainen, A. T.: Toward
a standard stratigraphical classification practice for the Baltic Sea
sediments: the CUAL approach, Boreas, 43, 924–938, https://doi.org/10.1111/bor.12076,
2014.
Virtasalo, J. J., Endler, M., Moros, M., Jokinen, S. A.,
Hämäläinen, J., and Kotilainen, A. T.: Base of brackish-water mud
as key regional stratigraphic marker of mid-Holocene marine flooding of the
Baltic Sea Basin, Geo-Mar. Lett., 36, 445–456,
https://doi.org/10.1007/s00367-016-0464-4, 2016.
Virtasalo, J. J., Schröder, J. F., Luoma, S., Majaniemi, J., Mursu, J.,
and Scholten, J. C.: Hydrographic data, surface seawater radon-222
concentration, and loss on ignition and caesium-137 values of sediment
samples from the Hanko submarine groundwater discharge site, northern Baltic
Sea, Finland, PANGAEA, https://doi.org/10.1594/PANGAEA.898674, 2019.
Winsemann, J., Hornung, J. J., Meinsen, J., Asprion, U., Polom, U., Brandes,
C., Bußmann, M., and Weber, C.: Anatomy of a subaqueous ice-contact fan
and delta complex, Middle Pleistocene, north-west Germany, Sedimentology,
56, 1041–1076, https://doi.org/10.1111/j.1365-3091.2008.01018.x, 2009.
Whiticar, M. J. and Werner, F.: Pockmarks: submarine vents of natural gas or
freshwater seeps, Geo-Mar. Lett., 1, 193–199, https://doi.org/10.1007/BF02462433,
1981.
Wong, P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A.,
McInnes, K. L., Saito, Y., and Sallenger, A.: Coastal systems and low-lying
areas, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part
A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M.
D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C.,
Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R.,
and White, L. L., Cambridge University Press, Cambridge, UK, 361–409, 2014.
Short summary
This study establishes the local stratigraphy and 3-D aquifer geometry of a submarine groundwater discharge site in the Hanko Peninsula, south Finland. The study is based on a rich dataset of marine seismic profiles, multibeam and side-scan sonar images of the seafloor, and onshore ground-penetrating radar and refraction seismic profiles. The groundwater discharge takes place through metre-scale pockmarks on the seafloor, confirmed by elevated radon concentrations in the overlying water.
This study establishes the local stratigraphy and 3-D aquifer geometry of a submarine...