Articles | Volume 10, issue 3
https://doi.org/10.5194/se-10-647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-647-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage
Department of Geology and Geophysics, Louisiana State University, Baton
Rouge, LA 70803, USA
Research Center for Earth System Science. Yunnan University, Kunming, Yunnan
Province, 650091, China
Peng Zhou
Department of Geology and Geophysics, Louisiana State University, Baton
Rouge, LA 70803, USA
Daniel F. Stockli
Department of Geological Sciences, Jackson School of Geosciences, University
of Texas, Austin, TX 78712-1722, USA
Jerzy Blusztajn
Department of Geology and Geophysics, Woods Hole Oceanographic Institution,
Woods Hole, MA 02540, USA
Related authors
Peter D. Clift, Christian Betzler, Steven C. Clemens, Beth Christensen, Gregor P. Eberli, Christian France-Lanord, Stephen Gallagher, Ann Holbourn, Wolfgang Kuhnt, Richard W. Murray, Yair Rosenthal, Ryuji Tada, and Shiming Wan
Sci. Dril., 31, 1–29, https://doi.org/10.5194/sd-31-1-2022, https://doi.org/10.5194/sd-31-1-2022, 2022
Short summary
Short summary
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to reconstruct the monsoon climate. The results provide relatively continuous records spanning the last 24 myr. Asia has shown a steady drying since the late Miocene, while Australia has become wetter. The monsoons are affected by the tectonics of Asia and surrounding seas, as well as orbital forcing, resulting in diachronous evolution of continental climate, ocean currents, and the marine biosphere.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451–466, https://doi.org/10.5194/esurf-6-451-2018, https://doi.org/10.5194/esurf-6-451-2018, 2018
Short summary
Short summary
Here we provide the first results on the evolution of the Ayeyarwady delta, the last unstudied megadelta of Asia. In addition to its intrinsic value as a founding study on the Holocene development of this region, we advance new ideas on the climate control of monsoonal deltas as well as describe for the first time a feedback mechanism between tectonics and tidal hydrodynamics that can explain the peculiarities of the Ayeyarwady delta.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna M. R. Sartell, Andrew Schaeffer, Daniel Stockli, Marie A. Vander Kloet, and Carmen Gaina
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-3, https://doi.org/10.5194/gc-2024-3, 2024
Preprint under review for GC
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic Geology. The students experience this from a wide range of lecturers, focussing both on the small and larger scales, and covering many geoscientific disciplines.
Peter D. Clift, Christian Betzler, Steven C. Clemens, Beth Christensen, Gregor P. Eberli, Christian France-Lanord, Stephen Gallagher, Ann Holbourn, Wolfgang Kuhnt, Richard W. Murray, Yair Rosenthal, Ryuji Tada, and Shiming Wan
Sci. Dril., 31, 1–29, https://doi.org/10.5194/sd-31-1-2022, https://doi.org/10.5194/sd-31-1-2022, 2022
Short summary
Short summary
An integrated campaign of drilling around Asia and Australia was conducted from 2013 to 2016 to reconstruct the monsoon climate. The results provide relatively continuous records spanning the last 24 myr. Asia has shown a steady drying since the late Miocene, while Australia has become wetter. The monsoons are affected by the tectonics of Asia and surrounding seas, as well as orbital forcing, resulting in diachronous evolution of continental climate, ocean currents, and the marine biosphere.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Emily H. G. Cooperdock, Richard A. Ketcham, and Daniel F. Stockli
Geochronology, 1, 17–41, https://doi.org/10.5194/gchron-1-17-2019, https://doi.org/10.5194/gchron-1-17-2019, 2019
Short summary
Short summary
(U–Th) / He chronometry relies on accurate grain-specific size and shape measurements. Using > 100 apatite grains to compare
assumed2-D versus
true3-D grain shapes measured by a microscope and X-ray computed tomography, respectively, we find that volume and surface area both differ by ~ 25 % between the two techniques and directly affect mass and concentration measurements. But we found a very small effect on the FT correction (2 %) and no discernible impact on mean sample age or dispersion.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451–466, https://doi.org/10.5194/esurf-6-451-2018, https://doi.org/10.5194/esurf-6-451-2018, 2018
Short summary
Short summary
Here we provide the first results on the evolution of the Ayeyarwady delta, the last unstudied megadelta of Asia. In addition to its intrinsic value as a founding study on the Holocene development of this region, we advance new ideas on the climate control of monsoonal deltas as well as describe for the first time a feedback mechanism between tectonics and tidal hydrodynamics that can explain the peculiarities of the Ayeyarwady delta.
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Cited articles
Ahmad, T., Harris, N., Bickle, M., Chapman, H., Bunbury, J., and Prince, C.:
Isotopic constraints on the structural relationships between the Lesser
Himalayan Series and the High Himalayan Crystalline Series, Garhwal
Himalaya, Geol. Soc. Am. Bull., 112, 467–477, 2000.
Alizai, A., Carter, A., Clift, P. D., VanLaningham, S., Williams, J. C.,
and Kumar, R.: Sediment provenance, reworking and transport processes in the
Indus River by U-Pb dating of detrital zircon grains, Global Planet. Change,
76, 33–55, https://doi.org/10.1016/j.gloplacha.2010.11.008, 2011.
Amidon, W. H., Burbank, D. W., and Gehrels, G. E.: U-Pb zircon ages as a sediment
mixing tracer in the Nepal Himalaya, Earth Planet. Sc. Lett., 235,
244–260, 2005.
Beaumont, C., Jamieson, R. A., Nguyen, M. H., and Lee, B.: Himalayan tectonics
explained by extrusion of a low-viscosity crustal channel coupled to focused
surface denudation, Nature, 414, 738–742, 2001.
Blöthe, J. H. and Korup, O.: Millennial lag times in the Himalayan sediment
routing system, Earth Planet. Sc. Lett., 382, 38–46, 2013.
Bookhagen, B., Thiede, R. C., and Strecker, M. R.: Abnormal monsoon years and
their control on erosion and sediment flux in the high, arid Northwest
Himalaya, Earth Planet. Sc. Lett., 231, 131–146, 2005.
Bouvier, A., Vervoort, J. D., and Patchett, P. J.: The Lu–Hf and Sm–Nd isotopic
compo-sition of CHUR: constraints from unequilibrated chondrites and
implications for the bulk composition of terrestrial planets, Earth Planet. Sc. Lett., 273, 48–57, 2008.
Burbank, D. W., Beck, R. A., and Mulder, T.: The Himalayan foreland basin, in: The Tectonics of
Asia, edited by:
Yin, A. and Harrison, T. M., Cambridge University
Press, New York, 149–188, 1996.
Caddick, M. J., Bickle, M. J., Harris, N. B. W., Holland, T. J. B., Horstwood,
M. S. A., Parrish, R. R., and Ahmad, T.: Burial and exhumation history of a Lesser
Himalayan schist: Recording the formation of an inverted metamorphic
sequence in NW India, Earth Planet. Sc. Lett., 264, 375–390,
https://doi.org/10.1016/j.epsl.2007.09.011, 2007.
Calvès, G., Huuse, M., Clift, P. D., and Brusset, S.: Giant fossil mass
wasting off the coast of West India: The Nataraja submarine slide, Earth Planet. Sc. Lett., 432, 265–272, https://doi.org/10.1016/j.epsl.2015.10.022, 2015.
Chirouze, F., Huyghe, P., Chauvel, C., van der Beek, P., Bernet, M.,
and Mugnier, J.-L.: Stable Drainage Pattern and Variable Exhumation in the
Western Himalaya since the Middle Miocene, J. Geol., 123, 1–20,
https://doi.org/10.1086/679305, 2015.
Clift, P. D.: Controls on the erosion of Cenozoic Asia and the flux of
clastic sediment to the ocean, Earth Planet. Sc. Lett., 241, 571–580,
2006.
Clift, P. D. and Blusztajn, J. S.: Reorganization of the western Himalayan river
system after five million years ago, Nature, 438, 1001–1003, 2005.
Clift, P. D. and Giosan, L.: Sediment fluxes and buffering in the post-glacial
Indus Basin, Basin Res., 26, 369–386, https://doi.org/10.1111/bre.12038, 2014.
Clift, P. D., Shimizu, N., Layne, G., Gaedicke, C., Schlüter, H. U.,
Clark, M. K., and Amjad, S.: Development of the Indus Fan and its significance
for the erosional history of the western Himalaya and Karakoram, Geol. Soc.
Am. Bull., 113, 1039–1051, 2001.
Clift, P. D., Lee, J. I., Hildebrand, P., Shimizu, N., Layne, G. D., Blusztajn,
J., Blum, J. D., Garzanti, E., and Khan, A. A.: Nd and Pb isotope variability in
the Indus River system; implications for sediment provenance and crustal
heterogeneity in the western Himalaya, Earth Planet. Sc. Lett., 200,
91–106, https://doi.org/10.1016/S0012-821X(02)00620-9, 2002.
Clift, P. D., Hodges, K., Heslop, D., Hannigan, R., Hoang, L. V., and Calves, G.:
Greater Himalayan exhumation triggered by Early Miocene monsoon
intensification, Nat. Geosci., 1, 875–880, https://doi.org/10.1038/ngeo351, 2008.
Clift, P. D., Giosan, L., Carter, A., Garzanti, E., Galy, V., Tabrez, A. R.,
Pringle, M., Campbell, I. H., France-Lanord, C., Blusztajn, J., Allen, C.,
Alizai, A., Lückge, A., Danish, M., and Rabbani, M. M.: Monsoon control over
erosion patterns in the Western Himalaya: possible feed-backs into the
tectonic evolution, in: Monsoon
evolution and tectonic-climate linkage in Asia, edited by: Clift, P. D., Tada, R., and Zheng, H., Geol. Soc. Lond., spec.
pub., 342, 181–213, 2010.
Clift, P. D., Zheng, H., Carter, A., Böning, P., Jonell, T., Schorr, H.,
Shan, X., Pahnke, K., Wei, X., and Rittenour, T.: Controls on erosion in the
western Tarim Basin: Implications for the uplift of northwest Tibet and the
Pamir, Geosphere, 13, 1747–1765, https://doi.org/10.1130/GES01378.1, 2017.
Colleps, C. L., McKenzie, R. N., Stockli, D. F., Hughes, N. C., Singh, B. P.,
Webb, A. A. G., Myrow, P. M., Planavsky, N. J., and Horton, B. K.: Zircon (U-Th)/He
thermochronometric constraints on Himalayan thrust belt exhumation, bedrock
weathering, and Cenozoic seawater chemistry, Geochem. Geophys. Geosyst., 19, 257–271,
https://doi.org/10.1002/2017GC007191, 2018.
Crawford, M. B. and Searle, M. P.: Field relationships and geochemistry of
pre-collisional (India-Asia) granitoid magmatism in the central Karakoram,
northern Pakistan, Tectonophysics, 206, 171–192, 1992.
DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B., and Spurlin, M.: Tectonic
implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal,
Science, 288, 497–499, https://doi.org/10.1126/science.288.5465.497, 2000.
DeCelles, P. G., Kapp, P., Gehrels, G. E., and Ding, L.: Paleocene-Eocene foreland
basin evolution in the Himalaya of southern Tibet and Nepal: Implications
for the age of initial India-Asia collision, Tectonics, 33, 824–849,
https://doi.org/10.1002/2014TC003522, 2014.
Deniel, C., Vidal, P., Fernandez, A., Fort, P., and Peucat, J.-J.: Isotopic
study of the Manaslu granite (Himalaya, Nepal): inferences on the age and
source of Himalayan leucogranites, Contrib. Min. Petrol., 96, 78–92,
1987.
DePaolo, D. J. and Wasserburg, G. J.: Nd isotopic variations and petrogenetic
models, Geophys. Res. Lett., 3, 249–252, 1976.
Derry, L. A. and France-Lanord, C.: Neogene Himalayan weathering history and
river 87Sr∕86Sr; impact on the marine Sr record, Earth Planet. Sc. Lett., 142, 59–74, 1996.
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P., and Hamidullah,
S.: Seasonal stable isotope evidence for a strong Asian monsoon throughout
the past 10.7 my, Geology, 29, 31–34, 2001.
Dunlea, A. G., Murray, R. W., Sauvage, J., Spivack, A. J., Harris, R. N.,
and D'Hondt, S.: Dust, volcanic ash, and the evolution of the South Pacific Gyre
through the Cenozoic, Paleocean., 30, 1078–1099,
https://doi.org/10.1002/2015PA002829, 2015.
Fedo, C. M., Nesbitt, H. W., and Young, G. M.: Unraveling the effects of potassium
metasomatism in sedimentary rocks and paleosols, with implications for
paleoweathering conditions and provenance, Geology, 23, 921–924, 1995.
Folk, R. L.: Petrology of Sedimentary Rocks, Hemphill Press, Austin, Texas,
182 pp., 1974.
Foster, D. A., Gleadow, A. J. W., and Mortimer, G.: Rapid Pliocene exhumation in
the Karakoram (Pakistan), revealed by fission-track thermochronology of the
K2 gneiss, Geology, 22, 19–22, 1994.
Garzanti, E., Vezzoli, G., Ando, S., Paparella, P., and Clift, P. D.: Petrology
of Indus River sands; a key to interpret erosion history of the western
Himalayan syntaxis, Earth Planet. Sc. Lett., 229, 287–302, https://doi.org/10.1016/j.epsl.2004.11.008, 2005.
Gehrels, G. E.: Detrital Zircon U-Pb Geochronology Applied to Tectonics, Ann.
Rev. Earth Planet. Sci., 42, 127–149, https://doi.org/10.1146/annurev-earth-050212-124012, 2014.
Gehrels, G. E., Valencia, V., and Ruiz, J.: Enhanced precision, accuracy,
efficiency, and spatial resolution of U-Pb ages by laser
ablation–multicollector–inductively coupled plasma–mass spectrometry,
Geochem. Geophys. Geosyst., 9, Q03017, https://doi.org/10.1029/2007GC001805, 2008.
Gehrels, G. E., Kapp, P., DeCelles, P., Pullen, A., Blakely, R., Weislgel,
A., Ding, L., Guynn, J., Marin, A., McQuarrie, N., and Yin, A.: Detrital zircon
geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen,
Tectonics, 30, TC5016, https://doi.org/10.1029/2011TC002868, 2011.
Goldstein, S. L., O'Nions, R. K., and Hamilton, P. J.: A Sm-Nd isotopic study of
atmospheric dusts and particulates from major river systems, Earth Planet. Sc. Lett., 70, 221–236, 1984.
Goswami, V., Singh, S. K., Bhushan, R., and Rai, V. K.: Temporal variations in
87Sr∕86Sr and eNd in sediments of the southeastern Arabian Sea: Impact of
monsoon and surface water circulation, Geochem. Geophys. Geosyst., 13,
Q01001, https://doi.org/10.1029/2011GC003802, 2012.
Gunnell, Y., Gallagher, K., Carter, A., Widdowson, M., and Hurford, A. J.:
Denudation history of the continental margin of western peninsular India
since early Mesozoic – reconciling apatite fission track data with
geomorphology, Earth Planet. Sc. Lett., 215, 187–201, 2003.
Hart, N. R., Stockli, D. F., and Hayman, N. W.: Provenance evolution during
progressive rifting and hyperextension using bedrock and detrital zircon
U-Pb geochronology, Mauléon Basin, western Pyrenees, Geosphere, 12,
1166–1186, https://doi.org/10.1130/GES01273.1, 2016.
Hein, C. J., Galy, V., Galy, A., France-Lanord, C., Kudrass, H., and Schwenk, T.:
Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra
river basin and implications for carbon sequestration, Earth Planet. Sc. Lett., 478, 89–101, https://doi.org/10.1016/j.epsl.2017.08.013, 2017.
Herron, M. M.: Geochemical classification of terrigenous sands and shales
from core or log data, J. Sed. Petrol., 58, 820–829, 1988.
Honjo, S., Dymond, J., Prell, W., and Ittekkot, V.: Monsoon-controlled export
fluxes to the interior of the Arabian Sea, Deep-Sea Res. Pt. II, 46,
1859–1902, 1999.
Inger, S. and Harris, N.: Geochemical constraints on leucogranite magmatism in
the Langtang Valley, Nepal Himalaya, J. Petrol., 34, 345–368,
1993.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A.: The
application of laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) to in situ U–Pb zircon geochronology, Chem. Geol., 211, 47–69,
2004.
Jonell, T. N., Owen, L. A., Carter, A., Schwenniger, J.-L., and Clift, P. D.:
Quantifying episodic erosion and transient storage on the western margin of
the Tibetan Plateau, upper Indus River, Quaternary Res., 89, 281–306,
https://doi.org/10.1017/qua.2017.92, 2017.
Jonell, T. N., Li, Y., Blusztajn, J., Giosan, L., and Clift, P. D.: Signal or
noise? Isolating grain size effects on Nd and Sr isotope variability in
Indus delta sediment provenance, Chem. Geol., 485, 56–73,
https://doi.org/10.1016/j.chemgeo.2018.03.036, 2018.
Karim, A. and Veizer, J.: Water balance of the Indus river basin and moisture
source in the Karakoram and western Himalayas: implications from hydrogen
and oxygen isotopes river water, J. Geophys. Res., 107, 4362,
https://doi.org/10.1029/2000JD000253, 2002.
Khan, M. A., Stern, R. J., Gribble, R. F., and Windley, B. F.: Geochemical and
isotopic constraints on subduction polarity, magma sources, and
palaeogeography of the Kohistan intra-oceanic arc, northern Pakistan
Himalaya, J. Geol. Soc., 154, 935–946, 1997.
Kurian, S., Nath, B. N., Kumar, N. C., and Nair, K. K. C.: Geochemical and Isotopic
Signatures of Surficial Sediments from the Western Continental Shelf of
India: Inferring Provenance, Weathering, and the Nature of Organic Matter
Geochemical and Isotopic Signatures of Sediments From The Indian West Coast,
J. Sed. Res., 83, 427–442, https://doi.org/10.2110/jsr.2013.36, 2013.
Li, Y., Clift, P. D., Böning, P., Blusztajn, J., Murray, R. W., Ireland,
T., Pahnke, K., and Giosan, L.: Continuous Signal Propagation in the Indus
Submarine Canyon since the Last Deglacial, Mar. Geol., 406, 159–176,
https://doi.org/10.1016/j.margeo.2018.09.011, 2018.
Mahéo, G., Pécher, A., Guillot, S., Rolland, Y., and Delacourt, C.: Exhumation
of Neogene gneiss domes between oblique crustal boundaries in south
Karakorum (northwest Himalaya, Pakistan), in: Gneiss Domes in Orogeny, edited by: Whitney, D. L., Teyssier, C.,
and Siddoway, C. S., Geol. Soc. Am., spec. pub.,
380, 141–154, https://doi.org/10.1130/0-8137-2380-9.141, 2004.
Malavieille, J.: Impact of erosion, sedimentation, and structural heritage
on the structure and kinematics of orogenic wedges: Analog models and case
studies, GSA Today, 20, 4–10, https://doi.org/10.1130/GSATG48A.1, 2010.
Meigs, A. J., Burbank, D. W., and Beck, R. A.: Middle-late Miocene (>10 Ma)
formation of the Main Boundary thrust in the western Himalaya, Geology,
23, 423–426, 1995.
Miles, P. R. and Roest, W. R.: Earliest seafoor spreading magnetic anomalies in
the north Arabian Sea and the ocean-continent transition, Geophys. J. Int.,
115, 1025–1031, 1993.
Najman, Y.: The detrital record of orogenesis: A review of approaches and
techniques used in the Himalayan sedimentary basins, Earth Sci. Rev., 74,
1–72, 2006.
Najman, Y., Bickle, M., Garzanti, E., Pringle, M., Barfod, D., Brozovic, N.,
Burbank, D., and Ando, S.: Reconstructing the exhumation history of the Lesser
Himalaya, NW India, from a multitechnique provenance study of the foreland
basin Siwalik Group, Tectonics, 28, TC5018, https://doi.org/10.1029/2009TC002506, 2009.
Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti,
E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish, R., and Vezzoli, G.:
Timing of India-Asia collision: Geological, biostratigraphic, and
palaeomagnetic constraints, J. Geophys. Res., 115, B12416,
https://doi.org/10.1029/2010JB007673, 2010.
Nesbitt, H. W., Markovics, G., and Price, R. C.: Chemical processes affecting
alkalis and alkaline earths during continental weathering, Geochim.
Cosmochim. Ac., 44, 1659–1666, 1980.
Pandey, D. K., Clift, P. D., Kulhanek, D. K., and Expedition 355 Scientists:
Arabian Sea Monsoon, Int. Ocean Disc. Prog. Prelim. Rpt., 355, 1–46,
https://doi.org/10.14379/iodp.pr.355.2015, 2015.
Pandey, D. K., Clift, P. D., Kulhanek, D. K., Andò, S., Bendle, J. A. P.,
Bratenkov, S., Griffith, E. M., Gurumurthy, G. P., Hahn, A., Iwai, M., Khim,
B.-K., Kumar, A., Kumar, A. G., Liddy, H. M., Lu, H., Lyle, M. W., Mishra, R.,
Radhakrishna, T., Routledge, C. M., Saraswat, R., Saxena, R., Scardia, G.,
Sharma, G. K., Singh, A. D., Steinke, S., Suzuki, K., Tauxe, L., Tiwari, M.,
Xu, Z., and Yu, Z.: Site U1456, in: Arabian Sea Monsoon, edited by: Pandey, D. K., Clift, P. D., and Kulhanek, D. K., Proceedings of the International Ocean
Discovery Program355, 1–32, https://doi.org/10.14379/iodp.proc.355.101.2016, 2016.
Parrish, R. R. and Hodges, K. V.: Isotopic constraints on the age and provenance
of the Lesser and Greater Himalayan sequences, Nepalese Himalaya, Geol. Soc.
Am. Bull., 108, 904–911, 1996.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric data, J.
Analyt. Atom. Spect., 26, 2508–2518, 2011.
Petrus, J. A. and Kamber, B. S.: VizualAge: A novel approach to laser ablation
ICP-MS U-Pb geochronology data reduction, Geostand. Geoanalyt. Res., 36,
247–270, 2012.
Phillips, R. J., Searle, M. P., and Parrish, R. R.: The geochemical and temporal
evolution of the continental lithosphere and its relationship to
continental-scale faulting: The Karakoram Fault, eastern Karakoram, NW
Himalayas, Geochem. Geophys. Geosyst., 14, 583–603, https://doi.org/10.1002/ggge.20061,
2013.
Quade, J., Cerling, T. E., and Bowman, J. R.: Development of Asian monsoon
revealed by marked ecological shift during the latest Miocene in northern
Pakistan, Nature, 342, 163–166, 1989.
Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of Late Cenozoic climate,
Nature, 359, 117–122, 1992.
Robinson, D. M., DeCelles, P. G., and Copeland, P.: Tectonic evolution of the
Himalayan thrust belt in western Nepal; implications for channel flow
models, Geol. Soc. Am. Bull., 118, 865–885, 2006.
Rolland, Y., Mahéo, G., Guillot, S., and Pecher, A.: Tectono-metamorphic
evolution of the Karakorum Metamorphic complex (Dassu–Askole area, NE
Pakistan): exhumation of mid-crustal HT–MP gneisses in a convergent
context, J. Metamorph. Geol., 19, 717–737,
https://doi.org/10.1046/j.0263-4929.2001.00342.x, 2001.
Rolland, Y., Picard, C., Pecher, A., Lapierre, H., Bosch, D., and Keller, F.:
The Cretaceous Ladakh arc of NW himalaya – slab melting and melt–mantle
interaction during fast northward drift of Indian Plate, Chem. Geol., 182,
139–178, 2002.
Schärer, U., Copeland, P., Harrison, T. M., and, Searle, M. P.: Age, cooling
history, and origin of post-collisional leucogranites in the Karakoram
Batholith; a multi-system isotope study, J. Geol., 98, 233–251, 1990.
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring,
S. A., Khadri, S. F. R., and Gertsch, B.: U-Pb geochronology of the Deccan Traps
and relation to the end-Cretaceous mass extinction, Science, 347,
182–184, https://doi.org/10.1126/science.aaa0118, 2015.
Searle, M. P.: Cooling history, erosion, exhumation and kinematics of the
Himalaya-Karakoram-Tibet orogenic belt, in: The Tectonic Evolution of Asia, edited by: Yin, A. and Harrison, T. M.,
Cambridge University Press, Cambridge, UK, p. 110–137,
1996.
Shetye, S. R., Gouveia, A. D., and Shenoi, S. S. C.: Circulation and water masses of
the Arabian Sea, P. Indian As.-Earth, 103, 107–123, https://doi.org/10.1007/BF02839532, 1994.
Shuaib, S. M.: Geology and hydrocarbon potential of offshore Indus Basin,
Pakistan, AAPG Bull., 66, 940–946, 1982.
Singh, S., Parkash, B., Awasthi, A. K., and Kumar, S.: Late Miocene record of
palaeovegetation from Siwalik palaeosols of the Ramnagar sub-basin, India,
Curr. Sci. India, 100, 213–222, 2011.
Singh, S. K. and France-Lanord, C.: Tracing the distribution of erosion in the
Brahmaputra watershed from isotopic compositions of stream sediments, Earth Planet. Sc. Lett., 202, 645–662,
2002.
Tripathi, S., Tiwari, M., Lee, J., Khim, B.-K., and IODP Expedition 355
Scientists: First evidence of denitrification visà-vis monsoon in the
Arabian Sea since Late Miocene, Sci. Rep.-UK, 7, 43056,
https://doi.org/10.1038/srep43056, 2017.
Turner, A. G. and Annamalai, H.: Climate change and the South Asian summer
monsoon, Nat. Clim. Change, 2, 587, https://doi.org/10.1038/nclimate1495, 2012.
Vance, D., Bickle, M., Ivy-Ochs, S., and Kubik, P. W.: Erosion and exhumation in
the Himalaya from cosmogenic isotope inventories of river sediments, Earth Planet. Sc. Lett., 206, 273–288, https://doi.org/10.1016/S0012-821X(02)01102-0, 2003.
Vannay, J.-C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V.,
and Cosca, M.: Miocene to Holocene exhumation of metamorphic crustal wedges in
the NW Himalaya; evidence for tectonic extrusion coupled to fluvial erosion,
Tectonics, 23, TC1014, https://doi.org/10.1029/2002TC001429, 2004.
Vermeesch, P.: How many grains are needed for a provenance study?, Earth
Planet. Sc. Lett., 224, 351–441, 2004.
Vermeesch, P.: On the visualisation of detrital age distributions, Chem.
Geol., 312–313, 19000194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Vermeesch, P., Resentini, A., and Garzanti, E.: An R package for statistical
provenance analysis, Sed. Geol., 336, 14–25,
https://doi.org/10.1016/j.sedgeo.2016.01.009, 2016.
Wallis, D., Carter, A., Phillips, R. J., Parsons, A. J., and Searle, M. P.: Spatial
variation in exhumation rates across Ladakh and the Karakoram: New apatite
fission track data from the Eastern Karakoram, NW India, Tectonics, 35,
704–721, https://doi.org/10.1002/2015TC003943, 2016.
Webb, A. A. G.: Preliminary palinspastic reconstruction of Cenozoic
deformation across the Himachal Himalaya (northwestern India), Geosphere, 9,
572–587, 2013.
Webb, A. A. G., Yin, A., Harrison, T. M., Célérier, J., Gehrels, G. E.,
Manning, C. E., and Grove, M.: Cenozoic tectonic history of the Himachal Himalaya
(northwestern India) and its constraints on the formation mechanism of the
Himalayan orogen, Geosphere, 7, 1013–1061, https://doi.org/10.1130/GES00627.1, 2011.
Whittington, A., Foster, G., Harris, N., Vance, D., and Ayres, M.:
Lithostratigraphic correlations in the western Himalaya – An isotopic
approach, Geology, 27, 585–588, 1999.
Wilson, S. A.: Data compilation for USGS reference material BHVO-2, Hawaiian
Basalt, U.S. Geological Survey Open-File Report, US Geological Survey, Reston, VA, 1997.
Wobus, C. W., Hodges, K. V., and Whipple, K. X.: Has focused denudation sustained
active thrusting at the Himalayan topographic front?, Geology, 31,
861–864, 2003.
Yu, Z., Colin, C., Wan, S., Saraswat, R., Song, L., Xu, Z., Clift, P., Lu,
H., Lyle, M., Kulhanek, D., Hahn, A., Tiwari, M., Mishra, R., Miska, S.,
and Kumar, A.: Sea level-controlled sediment transport to the eastern Arabian
Sea over the past 600 kyr: Clay minerals and SrNd isotopic evidence from
IODP site U1457, Quaternary Sci. Rev., 205, 22–34,
https://doi.org/10.1016/j.quascirev.2018.12.006, 2019.
Zeitler, P. K., Sutter, J. F., Williams, I. S., Zartman, R. E., and Tahirkheli,
R. A. K.: Geochronology and temperature history of the Nanga Parbat-Haramosh
Massif, Pakistan, in: Tectonics of
the western Himalayas, edited by: Malinconico, L. L. and Lillie, R. J., Geol. Soc. Am., spec. pub., 232, 1–22, 1989.
Zeitler, P. K., Chamberlain, C. P., and Smith, H. A.: Synchronous Anatexis,
Metamorphism, and Rapid Denudation at Nanga-Parbat (Pakistan Himalaya),
Geology, 21, 347–350, 1993.
Zhang, P., Molnar, P., and Downs, W. R.: Increased sedimentation rates and grain
sizes 2–4 Myr ago due to the influence of climate change on erosion rates,
Nature, 410, 891–897, 2001.
Zhuang, G., Najman, Y., Guillot, S., Roddaz, M., Antoine, P.-O.,
Métaise, G., Carter, A., Marivaux, L., and Solangig, S. H.: Constraints on
the collision and the pre-collision tectonic configuration between India and
Asia from detrital geochronology, thermochronology, and geochemistry studies
in the lower Indus basin, Pakistan, Earth Planet. Sc. Lett., 432,
363–373, https://doi.org/10.1016/j.epsl.2015.10.026, 2015.
Short summary
Surface processes driven by climate have been linked to the tectonic evolution of mountain belts, with the Himalaya and Asian monsoon being classic examples. Sediments from the Arabian Sea show an increase in erosion from the Karakoram between 17 and 9.5 Ma, followed by an increase in the relative flux from the Himalaya after 5.7 Ma and especially from the Lesser Himalaya after 1.9 Ma. Lack of correlation with climate histories suggests that tectonic forces dominate control over erosion.
Surface processes driven by climate have been linked to the tectonic evolution of mountain...