Articles | Volume 10, issue 3
Solid Earth, 10, 697–712, 2019
https://doi.org/10.5194/se-10-697-2019
Solid Earth, 10, 697–712, 2019
https://doi.org/10.5194/se-10-697-2019

Research article 23 May 2019

Research article | 23 May 2019

Joint analysis of the magnetic field and total gradient intensity in central Europe

Maurizio Milano et al.

Related subject area

Subject area: Crustal structure and composition | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Sequential inversion of GOCE satellite gravity gradient data and terrestrial gravity data for the lithospheric density structure in the North China Craton
Yu Tian and Yong Wang
Solid Earth, 11, 1121–1144, https://doi.org/10.5194/se-11-1121-2020,https://doi.org/10.5194/se-11-1121-2020, 2020
Short summary
Towards plausible lithological classification from geophysical inversion: honouring geological principles in subsurface imaging
Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 11, 419–436, https://doi.org/10.5194/se-11-419-2020,https://doi.org/10.5194/se-11-419-2020, 2020
Short summary
Topological analysis in Monte Carlo simulation for uncertainty propagation
Evren Pakyuz-Charrier, Mark Jessell, Jérémie Giraud, Mark Lindsay, and Vitaliy Ogarko
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019,https://doi.org/10.5194/se-10-1663-2019, 2019
Short summary
Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization
Jeremie Giraud, Mark Lindsay, Vitaliy Ogarko, Mark Jessell, Roland Martin, and Evren Pakyuz-Charrier
Solid Earth, 10, 193–210, https://doi.org/10.5194/se-10-193-2019,https://doi.org/10.5194/se-10-193-2019, 2019
Short summary

Cited articles

Artemieva, I. M. and Meissner, R.: Crustal thickness controlled by plate tectonics: a review of crust-mantle interaction processes illustrated by European examples, Tectonophysics, 530–531, 18–49, https://doi.org/10.1016/j.tecto.2011.12.037, 2012. 
BABEL Working Group: Deep seismic reflection/refraction interpretation of crustal structure along BABEL profiles A and B in the southern Baltic Sea, Geophys. J. Int., 112, 325–343, 1993. 
Banka, D., Pharaoh, T. C., Williamson, J. P., and TESZ Project Potential Field Core Group: Potential field imaging of Palaeozoic orogenic structures in northern and central Europe, Tectonophysics, 360, 23–45, 2002. 
Baranov, W.: Potential fields and their transformations in applied geophysics, pp. 1–72, Geoexploration monograph series, vol 6, 121 pp., Gebruder Borntraeger, Stuttgart, Germany, 1975. 
Bielik, M., Séfara, J., Sotak, J., Kováč, M., Bezák, V., and Plašienka, D.: The western Carpathians: Interaction of Hercynian and Alpine processes, Tectonophysics, 393, 63–86, 2004. 
Download
Short summary
In this work we aim to interpret the extended magnetic low visible at satellite altitudes above central Europe by performing a joint analysis of magnetic field and total gradient intensity maps at low and high altitudes. Here we demonstrate that such a magnetic anomaly is mainly a result of the contrast between two crustal platforms differing strongly in geological and magnetic properties. Synthetic model tests have been created to support our modeling.