Articles | Volume 10, issue 3
https://doi.org/10.5194/se-10-907-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-10-907-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Department of Geosciences and MARUM – Center for Marine Environmental
Sciences, University of Bremen, Bremen, 28359, Germany
Wolfgang Bach
Department of Geosciences and MARUM – Center for Marine Environmental
Sciences, University of Bremen, Bremen, 28359, Germany
Frieder Klein
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA 02543, USA
Catriona D. Menzies
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, SO14 3ZH, UK
now at: Department of Geology and Petroleum Geology, University of
Aberdeen, Aberdeen, AB24 3FX, UK
Friedrich Lucassen
Department of Geosciences and MARUM – Center for Marine Environmental
Sciences, University of Bremen, Bremen, 28359, Germany
Damon A. H. Teagle
School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, SO14 3ZH, UK
Related authors
No articles found.
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Mathieu Rospabé, Fatma Kourim, Akihiro Tamura, Eiichi Takazawa, Manolis Giampouras, Sayantani Chatterjee, Keisuke Ishii, Matthew J. Cooper, Marguerite Godard, Elliot Carter, Natsue Abe, Kyaw Moe, Damon A. H. Teagle, and Oman Drilling Project “ChikyuOman2018 Leg 3” Science
Team
Sci. Dril., 30, 75–99, https://doi.org/10.5194/sd-30-75-2022, https://doi.org/10.5194/sd-30-75-2022, 2022
Short summary
Short summary
During ChikyuOman2018 Leg3, we adapted a sample preparation and analytical procedure in order to analyse (ultra-)trace element concentrations using the D/V Chikyu on-board instrumentation. This dry (acid-free) and safe method has been developed for the determination of 37 elements (lowest reachable concentrations: 1–2 ppb) in igneous rocks from the oceanic lithosphere and could be adapted to other materials and/or chemicals of interest in the course of future ocean drilling operations.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Tomoaki Morishita, Susumu Umino, Jun-Ichi Kimura, Mikiya Yamashita, Shigeaki Ono, Katsuyoshi Michibayashi, Masako Tominaga, Frieder Klein, and Michael O. Garcia
Sci. Dril., 26, 47–58, https://doi.org/10.5194/sd-26-47-2019, https://doi.org/10.5194/sd-26-47-2019, 2019
Short summary
Short summary
The architecture, formation, and modification of oceanic plates are fundamental to our of understanding key geologic processes of the Earth. Geophysical surveys were conducted around a site near the Hawaiian Islands (northeastern Hawaiian North Arch region). This workshop report describes scientific targets for 2 km deep ocean drilling in the Hawaiian North Arch region in order to provide information about the lower crust from unrecovered age and spreading rate gaps in previous ocean drillings.
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
Short summary
The northeast Atlantic encompasses archetypal examples of volcanic rifted margins. Twenty-five years after the last ODP leg on these volcanic margins, the reasons for excess melting are still disputed with at least three competing hypotheses being discussed. We are proposing a new drilling campaign that will constrain the timing, rates of volcanism, and vertical movements of rifted margins.
Marie D. Jackson, Magnús T. Gudmundsson, Tobias B. Weisenberger, J. Michael Rhodes, Andri Stefánsson, Barbara I. Kleine, Peter C. Lippert, Joshua M. Marquardt, Hannah I. Reynolds, Jochem Kück, Viggó T. Marteinsson, Pauline Vannier, Wolfgang Bach, Amel Barich, Pauline Bergsten, Julia G. Bryce, Piergiulio Cappelletti, Samantha Couper, M. Florencia Fahnestock, Carolyn F. Gorny, Carla Grimaldi, Marco Groh, Ágúst Gudmundsson, Ágúst T. Gunnlaugsson, Cédric Hamlin, Thórdís Högnadóttir, Kristján Jónasson, Sigurdur S. Jónsson, Steffen L. Jørgensen, Alexandra M. Klonowski, Beau Marshall, Erica Massey, Jocelyn McPhie, James G. Moore, Einar S. Ólafsson, Solveig L. Onstad, Velveth Perez, Simon Prause, Snorri P. Snorrason, Andreas Türke, James D. L. White, and Bernd Zimanowski
Sci. Dril., 25, 35–46, https://doi.org/10.5194/sd-25-35-2019, https://doi.org/10.5194/sd-25-35-2019, 2019
Short summary
Short summary
Three new cored boreholes through Surtsey volcano, an isolated island in southeastern Iceland, provide fresh insights into understanding how explosive submarine volcanism and the earliest alteration of basaltic deposits proceed in a pristine oceanic environment. The still-hot volcano was first sampled through a drill core in 1979. The time-lapse drill cores record the changing geochemical, mineralogical, microbiological, and material properties of the basalt 50 years after eruptions terminated.
Andreas Türke, Marie D. Jackson, Wolfgang Bach, Wolf-Achim Kahl, Brian Grzybowski, Beau Marshall, Magnús T. Gudmundsson, and Steffen Leth Jørgensen
Sci. Dril., 25, 57–62, https://doi.org/10.5194/sd-25-57-2019, https://doi.org/10.5194/sd-25-57-2019, 2019
Wolf-Achim Kahl, Christian Hansen, and Wolfgang Bach
Solid Earth, 7, 651–658, https://doi.org/10.5194/se-7-651-2016, https://doi.org/10.5194/se-7-651-2016, 2016
Short summary
Short summary
A new flow-through reaction cell consisting of an X-ray transparent semicrystalline thermoplastic has been developed for percolation experiments. Core holder, tubing and all confining parts are designed of PEEK (polyetheretherketone) to allow concomitant surveillance of the reaction progress by X-ray microtomography. The reaction progress of the flow-through experiment can be monitored without dismantling the sample from the core holder.
M. D. Jackson, M. T. Gudmundsson, W. Bach, P. Cappelletti, N. J. Coleman, M. Ivarsson, K. Jónasson, S. L. Jørgensen, V. Marteinsson, J. McPhie, J. G. Moore, D. Nielson, J. M. Rhodes, C. Rispoli, P. Schiffman, A. Stefánsson, A. Türke, T. Vanorio, T. B. Weisenberger, J. D. L. White, R. Zierenberg, and B. Zimanowski
Sci. Dril., 20, 51–58, https://doi.org/10.5194/sd-20-51-2015, https://doi.org/10.5194/sd-20-51-2015, 2015
Short summary
Short summary
A new drilling program at Surtsey Volcano, a 50-year-old oceanic island and UNESCO World Heritage site in Iceland, will undertake interdisciplinary investigations of rift zone volcanism, dynamic hydrothermal mineral assemblages in basaltic tephra, and subterrestrial microbial colonization and succession in altered tephra and hydrothermal fluids. Long-term monitoring of evolving hydrothermal and biological processes will occur through installation of a 200m deep Surtsey subsurface observatory.
K. Edwards, W. Bach, A. Klaus, and the IODP Expedition 336 Scientific Party
Sci. Dril., 17, 13–18, https://doi.org/10.5194/sd-17-13-2014, https://doi.org/10.5194/sd-17-13-2014, 2014
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Squirt flow due to interfacial water films in hydrate bearing sediments
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Marc Campeny, Inmaculada Menéndez, Luis Quevedo, Jorge Yepes, Ramón Casillas, Agustina Ahijado, Jorge Méndez-Ramos, and José Mangas
Solid Earth, 15, 639–656, https://doi.org/10.5194/se-15-639-2024, https://doi.org/10.5194/se-15-639-2024, 2024
Short summary
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023, https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Daniel Muñoz-López, Gemma Alías, David Cruset, Irene Cantarero, Cédric M. John, and Anna Travé
Solid Earth, 11, 2257–2281, https://doi.org/10.5194/se-11-2257-2020, https://doi.org/10.5194/se-11-2257-2020, 2020
Short summary
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Ague, J. J. and Nicolescu, S.: Carbon dioxide released from subduction zones
by fluid-mediated reactions, Nat. Geosci., 7, 355, https://doi.org/10.1038/ngeo2143, 2014.
Albers, E., Bach, W., Klein, F., Menzies, C. D., Lucassen, F., and Teagle, D. A. H.: Geochmistry and isotopic compositions of metavolcanic and metasedimentary rock-hosted minerals and serpentinite mud pore waters, recovered at the Mariana forearc during IODP Exp366, dataset, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.902648, 2019.
Alt, J. and Shanks III, W.: Stable isotope compositions of serpentinite
seamounts in the Mariana forearc: serpentinization processes, fluid sources
and sulfur metasomatism, Earth Planet. Sc. Lett., 242, https://doi.org/10.1016/j.epsl.2005.11.063, 272–285, 2006.
Alt, J. C. and Teagle, D. A. H.: The uptake of carbon during alteration of
ocean crust, Geochim. Cosmochim. Acta, 63, 1527–1535,
https://doi.org/10.1016/s0016-7037(99)00123-4, 1999.
Austrheim, H. and Prestvik, T.: Rodingitization and hydration of the oceanic
lithosphere as developed in the Leka ophiolite, north–central Norway,
Lithos, 104, 177–198, https://doi.org/10.1016/j.lithos.2007.12.006,
2008.
Bach, W. and Klein, F.: The petrology of seafloor rodingites: insights from
geochemical reaction path modeling, Lithos, 112, 103–117,
https://doi.org/10.1016/j.lithos.2008.10.022, 2009.
Bach, W., Garrido, C. J., Paulick, H., Harvey, J., and Rosner, M.:
Seawater–peridotite interactions: first insights from ODP Leg 209, MAR
15∘ N, Geochem. Geophys. Geosyst., 5, Q09F26-Q09F26,
https://doi.org/10.1029/2004gc000744, 2004.
Bach, W., Rosner, M., Jöns, N., Rausch, S., Robinson, L. F., Paulick, H.,
and Erzinger, J.: Carbonate veins trace seawater circulation during
exhumation and uplift of mantle rock: results from ODP Leg 209, Earth
Planet. Sc. Lett., 311, 242–252,
https://doi.org/10.1016/j.epsl.2011.09.021, 2011.
Ballirano, P., De Vito, C., Ferrini, V., and Mignardi, S.: The thermal
behaviour and structural stability of nesquehonite, MgCO3⚫3H2O,
evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new
constraints on CO2 sequestration within minerals, J. Hazard. Mater.,
178, 522–528, https://doi.org/10.1016/j.jhazmat.2010.01.113, 2010.
Barry, P. H., de Moor, J. M., Giovannelli, D., Schrenk, M., Hummer, D. R.,
Lopez, T., Pratt, C. A., Alpízar Segura, Y., Battaglia, A., Beaudry,
P., Bini, G., Cascante, M., d'Errico, G., di Carlo, M., Fattorini, D.,
Fullerton, K., Gazel, E., Gonzáles, G., Halldóorsson, S. A.,
Iacovino, K., Kulongoski, J. T., Manini, E., Martínez, M., Miller, H.,
Nakagawa, M., Ono, S., Patwardhan, S., Ramírez, C. J., Regoli, F.,
Smedile, F., Turner, S., Vetriani, C., Yücel, M., Ballentine, C. J.,
Fischer, T. P., Hilton, D. R., and Lloyd, K. G.: Forearc carbon sink reduces
long-term volatile recycling into the mantle, Nature, 568, 487–492,
https://doi.org/10.1038/s41586-019-1131-5, 2019.
Bebout, G. E. and Barton, M. D.: Fluid flow and metasomatism in a subduction
zone hydrothermal system: Catalina Schist terrane, California, Geology,
17, 976–980, https://doi.org/10.1130/0091-7613(1989)017<0976:ffamia>2.3.co;2, 1989.
Bird, D. K. and Spieler, A. R.: Epidote in geothermal systems, Rev. Miner.
Geochem., 56, 235–300, https://doi.org/10.2138/gsrmg.56.1.235, 2004.
Black, P. M.: Regional high-pressure metamorphism in new caledonia: phase
equilibria in the ouégoa district, Tectonophysics, 43, 89–107,
https://doi.org/10.1016/0040-1951(77)90007-5, 1977.
Blundy, J., Cashman, K. V, Rust, A., and Witham, F.: A case for CO2-rich arc
magmas, Earth Planet. Sc. Lett., 290, 289–301,
https://doi.org/10.1016/j.epsl.2009.12.013, 2010.
Caciagli, N. C. and Manning, C. R.: The solubility of calcite in water at
6–16 kbar and 500–800 C, Contrib. Miner. Pet., 146, 275–285,
https://doi.org/10.1007/s00410-003-0501-y, 2003.
Cook-Kollars, J., Bebout, G. E., Collins, N. C., Angiboust, S., and Agard,
P.: Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence
from HP/UHP metasedimentary rocks, Italian Alps, Chem. Geol., 386, 31–48,
https://doi.org/10.1016/j.chemgeo.2014.07.013, 2014.
Craig, H.: The geochemistry of the stable carbon isotopes, Geochim.
Cosmochim. Acta, 3, 53–92,
https://doi.org/10.1016/0016-7037(53)90001-5, 1953.
Craw, D. and Landis, C. A.: Authigenic pectolite, stevensite, and pyroaurite
in a Quaternary debris flow, Southland, New Zealand, J. Sediment. Res.,
50, 497–503,
https://doi.org/10.1306/212f7a3b-2b24-11d7-8648000102c1865d, 1980.
Dasgupta, R. and Hirschmann, M. M.: The deep carbon cycle and melting in
Earth's interior, Earth Planet. Sc. Lett., 298, 1–13,
https://doi.org/10.1016/j.epsl.2010.06.039, 2010.
Dasgupta, R., Hirschmann, M. M., and Withers, A. C.: Deep global cycling of
carbon constrained by the solidus of anhydrous, carbonated eclogite under
upper mantle conditions, Earth Planet. Sc. Lett., 227, 73–85,
https://doi.org/10.1016/j.epsl.2004.08.004, 2004.
Dasgupta, R., Jackson, M. G., and Lee, C.-T. A.: Major element chemistry of
ocean island basalts – conditions of mantle melting and heterogeneity of
mantle source, Earth Planet. Sc. Lett., 289, 377–392,
https://doi.org/10.1016/j.epsl.2009.11.027, 2010.
Davies, P. J. and Bubela, B.: The transformation of nesquehonite into
hydromagnesite, Chem. Geol., 12, 289–300,
https://doi.org/10.1016/0009-2541(73)90006-5, 1973.
Debret, B., Albers, E., Walter, B., Price, R., Barnes, J. D., Beunon, H.,
Facq, S., Gillikin, D. P., Mattielli, N., and Williams, H.: Shallow forearc
mantle dynamics and geochemistry: new insights from IODP Expedition 366,
Lithos, 326–327, 230–245, https://doi.org/10.1016/j.lithos.2018.10.038,
2019.
Deniel, C. and Pin, C.: Single-stage method for the simultaneous isolation
of lead and strontium from silicate samples for isotopic measurements, Anal.
Chim. Acta, 426, 95–103, https://doi.org/10.1016/s0003-2670(00)01185-5,
2001.
D'Hondt, S., Rutherford, S., and Spivack, A. J.: Metabolic activity of
subsurface life in deep-sea sediments, Science, 295, 2067–2070,
https://doi.org/10.1126/science.1064878, 2002.
Diessel, C. F. K., Brothers, R. N., and Black, P. M.: Coalification and
graphitization in high-pressure schists in New Caledonia, Contrib. Miner.
Pet., 68, 63–78, https://doi.org/10.1007/bf00375447, 1978.
Essene, E. J., Fyfe, W. S., and Turner, F. J.: Petrogenesis of Franciscan
glaucophane schists and associated metamorphic rocks, California, Beitr.
Miner. Pet., 11, 695–704, https://doi.org/10.1007/bf01128709, 1965.
Esteban, J. J., Cuevas, J., Tubía, J. M., and Yusta, I.: Xonotlite in
rodingite assemblages from the Ronda peridotites, Betic Cordilleras,
Southern Spain, Can. Miner., 41, 161–170,
https://doi.org/10.2113/gscanmin.41.1.161, 2003.
Falk, E. S. and Kelemen, P. B.: Geochemistry and petrology of listvenite in
the Samail ophiolite, Sultanate of Oman: complete carbonation of peridotite
during ophiolite emplacement, Geochim. Cosmochim. Acta, 160, 70–90,
https://doi.org/10.1016/j.gca.2015.03.014, 2015.
Frezzotti, M. L., Selverstone, J., Sharp, Z. D., and Compagnoni, R.:
Carbonate dissolution during subduction revealed by diamond-bearing rocks
from the Alps, Nat. Geosci., 4, 703, https://doi.org/10.1038/ngeo1246,
2011.
Friedman, I. and O'Neil, J. R.: Compilation of stable isotope fractionation
factors of geochemical interest, in: Data of Geochemistry, edited by:
Fleischer, M., Geological Survey, 1977.
Fryer, P. and Fryer, G. J.: Origins of nonvolcanic seamounts in a forearc
environment, Seamounts, Islands, and Atolls, 43, 61–69,
https://doi.org/10.1029/gm043p0061, American Geophysical Union, Washington D.C., 1987.
Fryer, P., Ambos, E. L., and Hussong, D. M.: Origin and emplacement of
Mariana forearc seamounts, Geology, 13, 774–777,
https://doi.org/10.1130/0091-7613(1985)13<774:oaeomf>2.0.co;2, 1985.
Fryer, P., Pearce, J. A., and Stokking, L. B. (Eds.): Initial Reports of the
Ocean Drilling Program, vol. 125, Ocean Drilling Program, College Station
(TX), https://doi.org/10.2973/odp.proc.ir.125.1990, 1990.
Fryer, P., Mottl, M., Johnson, L., Haggerty, J., Phipps, S., and Maekawa, H.:
Serpentine bodies in the forearcs of western Pacific convergent margins:
origin and associated fluids, Geoph. Monog. Ser., 88, 259–279,
https://doi.org/10.1029/gm088p0259, 1995.
Fryer, P., Wheat, C. G., Williams, T., Albers, E., Bekins, B., Debret, B. P.
R., Deng, J., Dong, Y., Eickenbusch, P., Frery, E. A., Ichiyama, Y., Jonson,
K., Jonston, R. M., Kevorkian, R. T., Kurz, W., Magalhaes, V., Mantovanelli,
S. S., Menapace, W., Menzies, C. D., Michibayashi, K., Moyer, C. L.,
Mullane, K. K., Park, J.-W., Price, R. E., Ryan, J. G., Shervais, J. W.,
Sissmann, O. J., Suzuki, S., Takai, K., Walter, B., and Zhang, R.: Expedition
366 methods, in: Proceedings of the International Ocean Discovery Program,
vol. 366, edited by: Fryer, P., Wheat, C. G., Williams, T., and the
Expedition 366 Scientists, International Ocean Discovery Program, College
Station (TX), https://doi.org/10.14379/iodp.proc.366.102.2018, 2018a.
Fryer, P., Wheat, C. G., Williams, T., Albers, E., Bekins, B., Debret, B. P.
R., Deng, J., Dong, Y., Eickenbusch, P., Frery, E. A., Ichiyama, Y., Jonson,
K., Jonston, R. M., Kevorkian, R. T., Kurz, W., Magalhaes, V., Mantovanelli,
S. S., Menapace, W., Menzies, C. D., Michibayashi, K., Moyer, C. L.,
Mullane, K. K., Park, J.-W., Price, R. E., Ryan, J. G., Shervais, J. W.,
Sissmann, O. J., Suzuki, S., Takai, K., Walter, B., and Zhang, R.: Expedition
366 summary, in: Proceedings of the International Ocean Discovery Program,
vol. 366, edited by: Fryer, P., Wheat, C. G., Williams, T., and the
Expedition 366 Scientists, International Ocean Discovery Program, College
Station (TX), https://doi.org/10.14379/iodp.proc.366.101.2018, 2018b.
Fryer, P., Wheat, C. G., Williams, T., Albers, E., Bekins, B., Debret, B. P.
R., Deng, J., Dong, Y., Eickenbusch, P., Frery, E. A., Ichiyama, Y., Jonson,
K., Jonston, R. M., Kevorkian, R. T., Kurz, W., Magalhaes, V., Mantovanelli,
S. S., Menapace, W., Menzies, C. D., Michibayashi, K., Moyer, C. L.,
Mullane, K. K., Park, J.-W., Price, R. E., Ryan, J. G., Shervais, J. W.,
Sissmann, O. J., Suzuki, S., Takai, K., Walter, B., and Zhang, R.: Site
U1492, in: Proceedings of the International Ocean Discovery Program, vol.
366, edited by: Fryer, P., Wheat, C. G., Williams, T., and the Expedition 366
Scientists, International Ocean Discovery Program, College Station (TX),
https://doi.org/10.14379/iodp.proc.366.105.2018, 2018c.
Fryer, P., Wheat, C. G., Williams, T., Albers, E., Bekins, B., Debret, B. P.
R., Deng, J., Dong, Y., Eickenbusch, P., Frery, E. A., Ichiyama, Y., Jonson,
K., Jonston, R. M., Kevorkian, R. T., Kurz, W., Magalhaes, V., Mantovanelli,
S. S., Menapace, W., Menzies, C. D., Michibayashi, K., Moyer, C. L.,
Mullane, K. K., Park, J.-W., Price, R. E., Ryan, J. G., Shervais, J. W.,
Sissmann, O. J., Suzuki, S., Takai, K., Walter, B., and Zhang, R.: Site
U1496, in: Proceedings of the International Ocean Discovery Program, vol.
366, edited by: Fryer, P., Wheat, C. G., Williams, T., and the Expedition 366
Scientists, International Ocean Discovery Program, College Station (TX),
https://doi.org/10.14379/iodp.proc.366.107.2018, 2018d.
Fryer, P., Wheat, C. G., Williams, T., Albers, E., Bekins, B., Debret, B. P.
R., Deng, J., Dong, Y., Eickenbusch, P., Frery, E. A., Ichiyama, Y., Jonson,
K., Jonston, R. M., Kevorkian, R. T., Kurz, W., Magalhaes, V., Mantovanelli,
S. S., Menapace, W., Menzies, C. D., Michibayashi, K., Moyer, C. L.,
Mullane, K. K., Park, J.-W., Price, R. E., Ryan, J. G., Shervais, J. W.,
Sissmann, O. J., Suzuki, S., Takai, K., Walter, B., and Zhang, R.: Sites
U1493, U1494, and U1495, in: Proceedings of the International Ocean
Discovery Program, vol. 366, edited by: Fryer, P., Wheat, C. G., Williams,
T., and the Expedition 366 Scientists, International Ocean Discovery Program,
College Station (TX), https://doi.org/10.14379/iodp.proc.366.106.2018,
2018e.
Fryer, P., Wheat, C. G., Williams, T., Kelley, C., Johnson, K., Ryan, J.,
Kurz, W., Shervais, J., Albers, E., Bekins, B., Deng, J., Dong, Y.,
Eickenbusch, P., Frery, E., Ichiyama, Y., Johnson, R., Kevorkian, R.,
Magalhaes, V., Mantovanelli, S., Menapace, W., Menzies, C., Michibayashi,
K., Moyer, C., Mullane, K., Park, J.-W., Price, R., Sissman, O., Suzuki, S.,
Takai, K., Walter, B., Zhang, R., Amon, D., Glickson, D., and Pomponi, S.:
Mariana serpentinite mud volcanism exhumes subducted seamount materials:
implications for the origin of life, Phil. Trans. Soc. A, in review, 2019.
Fryer, P. B.: A synthesis of Leg 125 drilling of serpentinite seamounts on
the Mariana and Izu-Bonin forearcs, in: Proceedings of the Ocean Drilling
Program, vol. 125, edited by: Fryer, P., Pearce, J. A., and Stokking, L. B.,
International Ocean Discovery Program, College Station (TX), 593–614,
https://doi.org/10.2973/odp.proc.sr.125.168.1992, 1992.
Fryer, P. B.: Evolution of the Mariana convergent plate margin system, Rev.
Geophys., 34, 89–125, https://doi.org/10.1029/95RG03476, 1996.
Fryer, P. B.: Serpentinite mud volcanism: observations, processes, and
implications, Ann. Rev. Mar. Sci., 4, 345–373,
https://doi.org/10.1146/annurev-marine-120710-100922, 2012.
Fryer, P. B. and Salisbury, M. H.: Leg 195 synthesis: Site
1200 – serpentinite seamounts of the Izu-Bonin Mariana convergent plate
margin (ODP Leg 125 and 195 drilling results), in: Proceedings of the Ocean
Drilling Program, vol. 195, edited by: Shinohara, M., Salisbury, M. H., and
Richter, C., Integrated Ocean Drilling Program, College Station (TX),
https://doi.org/10.2973/odp.proc.sr.195.112.2006, 2006.
Fryer, P. B., Wheat, C. G., and Mottl, M. J.: Mariana blueschist mud
volcanism: implications for conditions within the subduction zone, Geology,
27(2), 103–106, https://doi.org/10.1130/0091-7613(1999)027<0103:mbmvif>2.3.co;2, 1999.
Füri, E., Hilton, D. R., Tryon, M. D., Brown, K. M., McMurtry, G. M.,
Brückmann, W., and Wheat, C. G.: Carbon release from submarine seeps at
the Costa Rica fore arc: implications for the volatile cycle at the Central
America convergent margin, Geochem. Geophys. Geosyst., 11, Q04S21-Q04S21,
https://doi.org/10.1029/2009gc002810, 2010.
German, C. R. and Elderfield, H.: Application of the Ce anomaly as a
paleoredox indicator: the ground rules, Paleoceanography, 5, 823–833,
https://doi.org/10.1029/pa005i005p00823, 1990.
German, C. R., Holliday, B. P., and Elderfield, H.: Redox cycling of rare
earth elements in the suboxic zone of the Black Sea, Geochim. Cosmochim.
Acta, 55, 3553–3558, https://doi.org/10.1016/0016-7037(91)90055-a,
1991.
Gharib, J. J.: Clastic metabasites and authigenic minerals within
serpentinite protrusions from the Mariana forearc: implications for
sub-forearc subduction processes, Ph.D. thesis, University of Hawai'i, 209
pp., 2006.
Gorman, P. J., Kerrick, D. M., and Connolly, J. A. D.: Modeling open system
metamorphic decarbonation of subducting slabs, Geochem. Geophys. Geosyst.,
7, Q04007, https://doi.org/10.1029/2005gc001125, 2006.
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation in
biogenic aragonite: temperature effects, Chem. Geol., 59, 59–74,
https://doi.org/10.1016/0168-9622(86)90057-6, 1986.
Grozeva, N. G., Klein, F., Seewald, J. S., and Sylva, S. P.: Experimental
study of carbonate formation in oceanic peridotite, Geochim. Cosmochim.
Acta, 199, 264–286, https://doi.org/10.1016/j.gca.2016.10.052, 2017.
Hacker, B. R., Peacock, S. M., Abers, G. A. and Holloway, S. D.: Subduction
factory 2, Are intermediate-depth earthquakes in subducting slabs linked to
metamorphic dehydration reactions?, J. Geophys. Res., 108, 2030,
https://doi.org/10.1029/2001jb001129, 2003.
Haggerty, J. A.: Petrology and geochemistry of Neocene sedimentary rocks
from Mariana forearc seamounts: implications for emplacement of the
seamounts, Geoph. Monog. Ser., 4, 175–185,
https://doi.org/10.1029/gm043p0175, 1987.
Haggerty, J. A.: Evidence from fluid seeps atop serpentine seamounts in the
Mariana Forearc: Clues for emplacement of the seamounts and their
relationship to forearc tectonics, Mar. Geol., 102, 293–309,
https://doi.org/10.1016/0025-3227(91)90013-t, 1991.
Harris, M., Coggon, R. M., Smith-Duque, C. E., Cooper, M. J., Milton, J. A.,
and Teagle, D. A. H.: Channelling of hydrothermal fluids during the
accretion and evolution of the upper oceanic crust: Sr isotope evidence from
ODP Hole 1256D, Earth Planet. Sc. Lett., 416, 56–66,
https://doi.org/10.1016/j.epsl.2015.01.042, 2015.
Helgeson, H. C., Owens, C. E., Knox, A. M., and Richard, L.: Calculation of
the standard molal thermodynamic properties of crystalline, liquid, and gas
organic molecules at high temperatures and pressures, Geochim. Cosmochim.
Acta, 62, 985–1081, https://doi.org/10.1016/s0016-7037(97)00219-6, 1998.
Heling, D. and Schwarz, A.: Iowaite in serpentinite muds at Sites 778, 779,
780, and 784: a possible cause for the low chlorinity of pore waters, in:
Proceedings of the Ocean Drilling Program, vol. 125, edited by: Fryer, P.,
Pearce, J. A., and Stokking, L. B., International Ocean Discovery Program,
College Station (TX), 313–323,
https://doi.org/10.2973/odp.proc.sr.125.176.1992, 1992.
Hermann, J., Spandler, C., Hack, A., and Korsakov, A. V.: Aqueous fluids and
hydrous melts in high-pressure and ultra-high pressure rocks: implications
for element transfers in subduction zones, Lithos, 92, 399–317,
https://doi.org/10.1016/j.lithos.2006.03.055, 2006.
Hulme, S. M., Wheat, C. G., Fryer, P., and Mottl, M. J.: Pore water chemistry
of the Mariana serpentinite mud volcanoes: a window to the seismogenic zone,
Geochem. Geophys. Geosyst., 11, Q01X09,
https://doi.org/10.1029/2009GC002674, 2010.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and
Enzweiler, J.: Determination of reference values for NIST SRM 610–617
glasses following ISO guidelines, Geostand. Geoanal. Res., 35, 397–429,
https://doi.org/10.1111/j.1751-908x.2011.00120.x, 2011.
John, T., Klemd, R., Gao, J., and Garbe-Schönberg, C.-D.: Trace-element
mobilization in slabs due to non steady-state fluid–rock interaction:
constraints from an eclogite-facies transport vein in blueschist (Tianshan,
China), Lithos, 103, 1–24, https://doi.org/10.1016/j.lithos.2007.09.005,
2008.
Johnson, J. W., Oelkers, E. H., and Helgeson, H. C.: SUPCRT92: a software
package for calculating the standard molal thermodynamic properties of
minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to
1000 C, Comput. Geosci., 18, 899–947,
https://doi.org/10.1016/0098-3004(92)90029-q, 1992.
Kahl, W.-A., Jöns, N., Bach, W., Klein, F., and Alt, J. C.: Ultramafic
clasts from the South Chamorro serpentine mud volcano reveal a polyphase
serpentinization history of the Mariana forearc mantle, Lithos, 227, 1–20,
https://doi.org/10.1016/j.lithos.2015.03.015, 2015.
Karpoff, A. M., France-Lanord, C., Lothe, F., and Karcher, P.: Miocene tuff
from Mariana basin, Leg 129, Site 802: a first deep-sea occurrence of
thaumasite, in: Scientific Results, vol. 129, edited by: Larson, R. L. and
Lancelot, Y., Ocean Drilling Program, College Station (TX), 119–135,
https://doi.org/10.2973/odp.proc.sr.129.113.1992, 1992.
Kastner, M.: Authigenic silicates in deep-sea sediments: formation and
diagensis, in: The sea, vol. 7: the oceanic lithosphere, edited by:
Emiliani, C., Wiley, London, 515–980, 1981.
Kawagucci, S., Miyazaki, J., Morono, Y., Seewald, J. S., Wheat, C. G., and
Takai, K.: Cool, alkaline serpentinite formation fluid regime with scarce
microbial habitability and possible abiotic synthesis beneath the South
Chamorro seamount, Prog. Earth Planet. Sci., 5, 74,
https://doi.org/10.1186/s40645-018-0232-3, 2018.
Kelemen, P. B. and Manning, C. E.: Reevaluating carbon fluxes in subduction
zones, what goes down, mostly comes up, P. Natl. Acad. Sci. USA, 112,
E3997–E4006, https://doi.org/10.1073/pnas.1507889112, 2015.
Kerrick, D. M. and Connolly, J. A. D.: Subduction of ophicarbonates and
recycling of CO2 and H2O, Geology, 26, 375–378,
https://doi.org/10.1130/0091-7613(1998)026<0375:sooaro>2.3.co;2, 1998.
Kerrick, D. M. and Connolly, J. A. D.: Metamorphic devolatilization of
subducted marine sediments and the transport of volatiles into the Earth's
mantle, Nature, 411, 293, https://doi.org/10.1038/35077056, 2001.
Klein, F., Humphris, S. E., Guo, W., Schubotz, F., Schwarzenbach, E. M., and
Orsi, W. D.: Fluid mixing and the deep biosphere of a fossil Lost City-type
hydrothermal system at the Iberia Margin, P. Natl. Acad. Sci. USA, 112,
12036–12041, https://doi.org/10.1073/pnas.1504674112, 2015.
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: The power of databases:
the RRUFF project, in: Highlights in mineralogical crystallography, de
Gruyter, 1–29, https://doi.org/10.1515/9783110417104-003, 2016.
Leterrier, J., Maury, R. C., Thonon, P., Girard, D., and Marchal, M.:
Clinopyroxene composition as a method of identification of the magmatic
affinities of paleo-volcanic series, Earth Planet. Sc. Lett., 59,
139–154, https://doi.org/10.1016/0012-821x(82)90122-4, 1982.
Maekawa, H., Masaya, S., Ishill, T., Fryer, P., and Pearce, J. A.: Blueschist
metamorphism in an active subduction zone, Nature, 364, 520–523,
https://doi.org/10.1038/364520a0, 1993.
Maekawa, H., Fryer, P. B., and Ozaki, A.: Incipient blueschist-facies
metamorphism in the active subduction zone beneath the Mariana forearc, in:
Active margins and marginal basins of the western Pacific, vol. 88, edited
by: Taylor, B. and Natland, J., 281–289,
https://doi.org/10.1029/gm088p0281, 1995.
McCollom, T. M. and Bach, W.: Thermodynamic constraints on hydrogen
generation during serpentinization of ultramafic rocks, Geochim. Cosmochim.
Acta, 73, 856–875, https://doi.org/10.1016/j.gca.2008.10.032, 2009.
McDonough, W. F. and Sun, S.-S.: The composition of the Earth, Chem. Geol.,
120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
Molina, J. F. and Poli, S.: Carbonate stability and fluid composition in
subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts,
Earth Planet. Sc. Lett., 176, 295–310,
https://doi.org/10.1016/s0012-821x(00)00021-2, 2000.
Mottl, M. J., Komor, S. C., Fryer, P., and Moyer, C. L.: Deep-slab fluids
fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano:
Ocean Drilling Program Leg 195, Geochem. Geophys. Geosyst., 4, 9009,
https://doi.org/10.1029/2003GC000588, 2003.
Mottl, M. J., Wheat, C. G., Fryer, P. B., Gharib, J., and Martin, J. B.:
Chemistry of springs across the Mariana forearc shows progressive
devolatilization of the subducting plate, Geochim. Cosmochim. Acta, 68,
4915–4933, https://doi.org/10.1016/j.gca.2004.05.037, 2004.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys.
Geosyst., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Newton, R. C. and Manning, C. E.: Experimental determination of calcite
solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and
temperatures: Implications for metasomatic processes in shear zones, Am.
Miner., 87, 1401–1409, https://doi.org/10.2138/am-2002-1016, 2002.
Noack, Y.: Occurrence of thaumasite in a seawater–basalt interaction,
Mururoa atoll (French Polynesia, South Pacific), Miner. Mag., 47,
47–50, https://doi.org/10.1180/minmag.1983.047.342.08, 1983.
Oakley, A. J., Taylor, B., Fryer, P. B., Moore, G. F., Goodliffe, A. M., and
Morgan, J. K.: Emplacement, growth, and gravitational deformation of
serpentinite seamounts on the Mariana forearc, Geophys. J. Int., 170,
615–634, https://doi.org/10.1111/j.1365-246X.2007.03451.x, 2007.
Oakley, A. J., Taylor, B., and Moore, G. F.: Pacific plate subduction beneath
the central Mariana and Izu-Bonin fore arcs: new insights from an old
margin, Geochem. Geophys. Geosyst., 9, Q06003,
https://doi.org/10.1029/2007GC001820, 2008.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K.: Oxygen isotope
fractionation in divalent metal carbonates, J. Chem. Phys., 51,
5547–5558, https://doi.org/10.1063/1.1671982, 1969.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K.,
Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C.,
Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, O. J.,
Delaney, M., Dewangan, P., Jones, T. D., Edgar, K. M., Evans, H., Fitch, P.,
Foser, G. L., Gussone, N., Hasegawa, H., Hathorne, E. D., Hayashi, H.,
Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T.,
Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno,
A., Moore Jr., T. C., Murphy, B. H., Murphy, D. P., Nakamura, H., Ogane, K.,
Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada,
K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto,
A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A.,
Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record
of the equatorial Pacific carbonate compensation depth, Nature, 488,
609–614, https://doi.org/10.1038/nature11360, 2012.
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H.: Seawater sulfur
isotope fluctuations in the Cretaceous, Science, 304, 1663–1665,
https://doi.org/10.1126/science.1095258, 2004.
Phipps, S. P. and Ballotti, D.: Rheology of serpentinite muds in the
Mariana-Izu-Bonin forearc, in: Proceedings of the Ocean Drilling Program,
vol. 125, edited by: Fryer, P. B., Pearce, J. A., and Stokking, L. B.,
International Ocean Discovery Program, College Station (TX), 363–372,
https://doi.org/10.2973/odp.proc.sr.125.154.1992, 1992.
Piccoli, F., Brovarone, A. V, Beyssac, O., Martinez, I., Ague, J. J., and
Chaduteau, C.: Carbonation by fluid-rock interactions at high-pressure
conditions: implications for carbon cycling in subduction zones, Earth Planet. Sc. Lett., 445, 146–159,
https://doi.org/10.1016/j.epsl.2016.03.045, 2016.
Piepgras, D. J. and Jacobsen, S. T.: The behavior of rare earth elements in
seawater: precise determination of variations in the North Pacific water
column, Geochim. Cosmochim. Acta, 56, 1851–1862,
https://doi.org/10.1016/0016-7037(92)90315-a, 1992.
Plank, T. and Langmuir, C. H.: The chemical composition of subducting
sediment and its consequences for the crust and mantle, Chem. Geol., 145,
325–394, https://doi.org/10.1016/s0009-2541(97)00150-2, 1998.
Poli, S., Franzolin, E., Fumagalli, P., and Crottini, A.: The transport of
carbon and hydrogen in subducted oceanic crust: an experimental study to 5
GPa, Earth Planet. Sc. Lett., 278, 350–360, https://doi.org/10.1016/j.epsl.2008.12.022,
2009.
Pons, M.-L., Quitté, G., Fujii, T., Rosing, M. T., Reynard, B., Moynier,
C. D., and Albarède, F.: Early Archean serpentine mud volcanoes at Isua,
Greenland, as a niche for early life, P. Natl. Acad. Sci. USA, 108, 17639–17643,
https://doi.org/10.1073/pnas.1108061108, 2011.
Rausch, S.: Carbonate veins as recorders of seawater evolution, CO2 uptake
by the ocean crust, and seawater-crust interaction during low-temperature
alteration, Ph.D. thesis, Department of Geosciences, University of Bremen,
156 pp., 2012.
Robie, R. A. and Hemingway, B. S.: Thermodynamic properties of minerals and
related substances at 298.15 K and 1 bar (105 pascals)
pressure and at higher temperatures, USGS Bull., 2131,
https://doi.org/10.3133/b2131, US Geological Survey, Washington D.C., 456 pp., 1995.
Robie, R. A., Hemingway, B. S., and Fisher, J. R.: Thermodynamic properties
of minerals and related substances at 298.15 K and 1 bar ((105 pascals) pressure and at higher temperatures, USGS Bull., 1452,
https://doi.org/10.3133/b1452, US Geological Survey, Washington D.C., 461 pp., 1978.
Schmidt, T., Lothenbach, B., Romer, M., Scrivener, K., Rentsch, D., and Figi,
R.: A thermodynamic and experimental study of the conditions of thaumasite
formation, Cem. Concr. Res., 38, 337–349,
https://doi.org/10.1016/j.cemconres.2007.11.003, 2008.
Schroeder, T., Bach, W., Jöns, N., Jöns, S., Monien, P., and
Klügel, A.: Fluid circulation and carbonate vein precipitation in the
footwall of an oceanic core complex, Ocean Drilling Program Site 1275,
Mid-Atlantic Ridge, Geochem. Geophys. Geosyst., 16, 3716–3732,
https://doi.org/10.1002/2015gc006041, 2015.
Schwarzenbach, E. M., Caddick, M. J., Petroff, M., Gill, B. C., Cooperdock,
E. H. G., and Barnes, J. D.: Sulphur and carbon cycling in the subduction
zone mélange, Sci. Rep., 8, 15517,
https://doi.org/10.1038/s41598-018-33610-9, 2018.
Shipboard Scientific Party: Site 780, in: Proceedings of the Ocean Drilling
Program, Init. Rep., vol. 125, edited by: Fryer, P., Pearce, J. A., and
Stokking, L. B., Ocean Drilling Program, College Station (TX), 147–178,
https://doi.org/10.2973/odp.proc.ir.125.108.1990, 1990.
Shipboard Scientific Party: Leg 185 summary: inputs to the Izu-Mariana
subduction system, in: Proceedings of the Ocean Drilling Program, Init.
Rep., vol. 185, edited by: Plank, T., Ludden, J. N., and Escutia, C., Ocean
Drilling Program, College Station (TX), 1–63,
https://doi.org/10.2973/odp.proc.ir.185.101.2000, 2000.
Shipboard Scientific Party: Explanatory notes, in: Proceedings of the Ocean
Drilling Program, Init. Rep., vol. 209, edited by: Kelemen, P. B., Kikawa, E.,
and Miller, D. J., Ocean Drilling Program, College Station (TX),
https://doi.org/10.2973/odp.proc.ir.209.102.2004, 2004.
Shock, E. L. and Helgeson, H. C.: Calculation of the thermodynamic and
transport properties of aqueous species at high pressures and temperatures:
correlation algorithms for ionic species and equation of state predictions
to 5 kb and 1000 C, Geochim. Cosmochim. Acta, 52, 2009–2036,
https://doi.org/10.1016/0016-7037(88)90181-0, 1988.
Shock, E. L., Sassani, D. C., Willis, M., and Sverjensky, D. A.: Inorganic
species in geologic fluids: correlations among standard molal thermodynamic
properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim.
Acta, 61, 907–950, https://doi.org/10.1016/s0016-7037(96)00339-0, 1997.
Sieber, M. J., Hermann, J., and Yaxley, G. M.: An experimental investigation
of C–O–H fluid-driven carbonation of serpentinites under forearc
conditions, Earth Planet. Sc. Lett., 496, 178–188,
https://doi.org/10.1016/j.epsl.2018.05.027, 2018.
Sleep, N. H. and Zahnle, K.: Carbon dioxide cycling and implications for
climate on ancient Earth, J. Geophys. Res., 106, 1373–1399,
https://doi.org/10.1029/2000je001247, 2001.
Spandler, C., Hermann, J., Arculus, R., and Mavrogenes, J.: Redistribution of
trace elements during prograde metamorphism from lawsonite blueschist to
eclogite facies; implications for deep subduction-zone processes, Contrib.
Mineral. Petrol., 146, 205–222, https://doi.org/10.1007/s00410-003-0495-5,
2003.
Stipp, M. and Kunze, K.: Dynamic recrystallization near the brittle-plastic
transition in naturally and experimentally deformed quartz aggregates,
Tectonophysics, 448, 77–97,
https://doi.org/10.1016/j.tecto.2007.11.041, 2008.
Suzuki, J. and Ito, M.: Nesquehonite from Yoshikawa, Aichi Prefecture,
Japan: Occurrence and thermal behaviour, J. Jap. Ass. Min. Petr. Econ.
Geol., 69, 275–284, https://doi.org/10.2465/ganko1941.69.275, 1974.
Sverjensky, D. A., Stagno, V., and Huang, F.: Important role for organic
carbon in subduction-zone fluids in the deep carbon cycle, Nat. Geosci.,
7, 909, https://doi.org/10.1038/ngeo2291, 2014.
Taetz, S., John, T., Bröcker, M., Spandler, C., and Stracke, A.: Fast
intraslab fluid-flow events linked to pulses of high pore fluid pressure at
the subducted plate interface, Earth Planet. Sc. Lett., 482, 33–43,
https://doi.org/10.1016/j.epsl.2017.10.044, 2018.
Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., and
Wood, R. A.: Effective use of cerium anomalies as a redox proxy in
carbonate-dominated marine settings, Chem. Geol., 438, 146–162,
https://doi.org/10.1016/j.chemgeo.2016.06.027, 2016.
Tran, T. H., Kato, K., Wada, H., Fujioka, K., and Matsuzaki, H.: Processes
involved in calcite and aragonite precipitation during carbonate chimney
formation on Conical Seamount, Mariana Forearc: evidence from geochemistry
and carbon, oxygen and strontium isotopes, J. Geochem. Explor., 137, 55–64,
https://doi.org/10.1016/j.gexplo.2013.11.013, 2014.
Uyeda, S. and Kanamori, H.: Back-arc opening and the mode of subduction, J.
Geophys. Res., 84, 1049, https://doi.org/10.1029/jb084ib03p01049, 1979.
van Keken, P. E., Kiefer, B., and Peacock, S. M.: High-resolution models of
subduction zones: implications for mineral dehydration reactions and the
transport of water into the deep mantle, Geochem. Geophys. Geosyst., 3,
1056, https://doi.org/10.1029/2001gc000256, 2002.
Wheat, C. G., Fournier, T., Paul, C., Menzies, C. D., Price, R. E., Ryan, J. G., and Sissman, O. J.: Data report: IODP Expedition 366 pore water trace element (V, Mo, Rb, Cs, U, Ba, and Li) compositions, in: Proceedings of the International Ocean Discovery Program, edited by: Fryer, P., Wheat, C. G., Williams, T. and the Expedition 366 Scientists, vol. 366, 1–8, International Ocean Discovery Program, College Station (TX), https://doi.org/10.14379/iodp.proc.366.201.2018, 2018.
White, W. M. and Klein, E. M.: Composition of the oceanic crust, in:
Treatise on geochemistry, edited by: Holland, H. and Turekian, K., 457–496, https://doi.org/10.1016/b978-0-08-095975-7.00315-6, Elsevier
Ltd., Amsterdam, 2014.
Wilson, S. A., Dipple, G. M., Power, I. M., Thom, J. M., Anderson, R. G.,
Raudsepp, M., Gabites, J. E., and Southam, G.: Carbon dioxide fixation within
mine wates of ultramafic-hosted ore deposits: examples from the Clinton
Creek and Cassiar Chrysotile deposits, Canada, Econ. Geol., 104, 95–112,
https://doi.org/10.2113/gsecongeo.104.1.95, 2009.
Zheng, Y.-F.: Calculation of oxygen isotope fractionation in anhydrous
silicate minerals, Geochim. Cosmochim. Acta, 57, 1079–1091,
https://doi.org/10.1016/0016-7037(93)90042-u, 1993a.
Zheng, Y.-F.: Calculation of oxygen isotope fractionation in
hydroxyl-bearing silicates, Earth Planet. Sc. Lett., 120, 247–263,
https://doi.org/10.1016/0012-821x(93)90243-3, 1993b.
Zheng, Y.-F.: Oxygen isotope fractionation in carbonate and sulfate
minerals., Geochem. J., 33, 109–126,
https://doi.org/10.2343/geochemj.33.109, 1999.
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate...