Articles | Volume 11, issue 3
https://doi.org/10.5194/se-11-1079-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1079-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combined numerical and experimental study of microstructure and permeability in porous granular media
Philipp Eichheimer
CORRESPONDING AUTHOR
Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
Marcel Thielmann
Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
Wakana Fujita
Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Gregor J. Golabek
Bayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
Michihiko Nakamura
Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Satoshi Okumura
Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Takayuki Nakatani
Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
Maximilian O. Kottwitz
Institute of Geoscience, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, 55128 Mainz, Germany
Related authors
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Short summary
Prediction of rock permeability is of crucial importance for several research areas in geoscience. In this study, we enhance the finite difference code LaMEM to compute fluid flow on the pore scale using Newtonian and non-Newtonian rheologies. The accuracy of the code is demonstrated using several analytical solutions as well as experimental data. Our results show good agreement with analytical solutions and recent numerical studies.
Maximilian O. Kottwitz, Anton A. Popov, Steffen Abe, and Boris J. P. Kaus
Solid Earth, 12, 2235–2254, https://doi.org/10.5194/se-12-2235-2021, https://doi.org/10.5194/se-12-2235-2021, 2021
Short summary
Short summary
Upscaling fluid flow in fractured reservoirs is an important practice in subsurface resource utilization. In this study, we first conduct numerical simulations of direct fluid flow at locations where fractures intersect to analyze the arising hydraulic complexities. Next, we develop a model that integrates these effects into larger-scale continuum models of fracture networks to investigate their impact on the upscaling. For intensively fractured systems, these effects become important.
Maximilian O. Kottwitz, Anton A. Popov, Tobias S. Baumann, and Boris J. P. Kaus
Solid Earth, 11, 947–957, https://doi.org/10.5194/se-11-947-2020, https://doi.org/10.5194/se-11-947-2020, 2020
Short summary
Short summary
In this study, we conducted 3-D numerical simulations of fluid flow in synthetically generated fractures that statistically reflect geometries of naturally occurring fractures. We introduced a non-dimensional characterization scheme to relate fracture permeabilities estimated from the numerical simulations to their geometries in a unique manner. By that, we refined the scaling law for fracture permeability, which can be easily integrated into discrete-fracture-network (DFN) modeling approaches.
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Short summary
Prediction of rock permeability is of crucial importance for several research areas in geoscience. In this study, we enhance the finite difference code LaMEM to compute fluid flow on the pore scale using Newtonian and non-Newtonian rheologies. The accuracy of the code is demonstrated using several analytical solutions as well as experimental data. Our results show good agreement with analytical solutions and recent numerical studies.
Cited articles
Ahmadi, M. M., Mohammadi, S., and Hayati, A. N.: Analytical derivation of
tortuosity and permeability of monosized spheres: A volume averaging
approach, Phys. Rev. E, 83, 026312, https://doi.org/10.1103/PhysRevE.83.026312, 2011. a
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm,
Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger,
E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital
rock physics benchmarks–Part II: Computing effective properties,
Comput. Geosci., 50, 33–43,
https://doi.org/10.1016/j.cageo.2012.09.008, 2013a. a, b, c
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm,
Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger,
E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital
rock physics benchmarks–Part I: Imaging and segmentation,
Comput. Geosci., 50, 25–32, https://doi.org/10.1016/j.cageo.2012.09.005,
2013b. a
Arns, C. H.: A comparison of pore size distributions derived by NMR and
X-ray-CT techniques, Physica A, 339, 159–165, https://doi.org/10.1016/j.physa.2004.03.033, 2004. a
Arns, C. H., Knackstedt, M. A., Pinczewski, M. V., and Lindquist, W.: Accurate
estimation of transport properties from microtomographic images, Geophys. Res. Lett., 28, 3361–3364, https://doi.org/10.1029/2001GL012987, 2001. a
Azar, J. H., Javaherian, A., Pishvaie, M. R., and Nabi-Bidhendi, M.: An
approach to defining tortuosity and cementation factor in carbonate reservoir
rocks, J. Petrol. Sci. Eng., 60, 125–131,
https://doi.org/10.1016/j.petrol.2007.05.010, 2008. a
Backeberg, N. R., Lacoviello, F., Rittner, M., Mitchell, T. M., Jones, A. P.,
Day, R., Wheeler, J., Shearing, P. R., Vermeesch, P., and Striolo, A.:
Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich
mudstones using models based on X-ray tomography, Sci. Rep.-UK, 7,
14838, https://doi.org/10.1038/s41598-017-14810-1, 2017. a
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D.,
Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp,
K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc
Users Manual, Tech. Rep. ANL-95/11 – Revision 3.12, Argonne National
Laboratory, available at: https://www.mcs.anl.gov/petsc, last access: 15 December 2019. a
Bekins, B. A. and Dreiss, S. J.: A simplified analysis of parameters
controlling dewatering in accretionary prisms,
Earth Planet. Sc. Lett., 109, 275–287, https://doi.org/10.1016/0012-821X(92)90092-A,
1992. a
Berg, R. R.: Capillary Pressures in Stratigraphic Traps, AAPG Bull., 59,
939–956, https://doi.org/10.1306/83D91EF7-16C7-11D7-8645000102C1865D, 1975. a
Bernabe, Y., Brace, W., and Evans, B.: Permeability, porosity and pore geometry
of hot-pressed calcite, Mech. Mater., 1, 173–183,
https://doi.org/10.1016/0167-6636(82)90010-2, 1982. a
Bernabé, Y., Li, M., and Maineult, A.: Permeability and pore connectivity: A
new model based on network simulations,
J. Geophys. Res.-Sol. Ea., 115, B10, https://doi.org/10.1029/2010JB007444, 2010. a
Bird, R., Stewart, W., and Lightfoot, E.: Transport Phenomena, New York,
London, Wiley, revised second Edition, 2006. a
Bird, M., Butler, S. L., Hawkes, C., and Kotzer, T.: Numerical modeling of
fluid and electrical currents through geometries based on synchrotron X-ray
tomographic images of reservoir rocks using Avizo and COMSOL, Comput. Geosci., 73, 6–16, https://doi.org/10.1016/j.cageo.2014.08.009, 2014. a
Bosl, W. J., Dvorkin, J., and Nur, A.: A study of porosity and permeability
using a lattice Boltzmann simulation, Geophys. Res. Lett., 25,
1475–1478, https://doi.org/10.1029/98GL00859, 1998. a
Bourbie, T., Coussy, O., Zinszner, B., and Junger, M. C.: Acoustics of Porous
Media, J. Acoust. Soc. Am., 91, 3080–3080,
1992. a
Brace, W. F.: Permeability of crystalline and argillaceous rocks, International
Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts, 17, 241–251, https://doi.org/10.1016/0148-9062(80)90807-4, 1980. a
Chapuis, R. P. and Aubertin, M.: On the use of the Kozeny–Carman equation to
predict the hydraulic conductivity of soils, Can. Geotech. J.,
40, 616–628, https://doi.org/10.1139/t03-013, 2003. a
Clennell, M. B.: Tortuosity: A guide through the maze, Geological Society,
London, Special Publications, 122, 299–344, 1997. a
Collinson, A. and Neuberg, J.: Gas storage, transport and pressure changes in
an evolving permeable volcanic edifice,
J. Volcanol. Geoth. Res., 243–244, 1–13,
https://doi.org/10.1016/j.jvolgeores.2012.06.027, 2012. a
Comiti, J. and Renaud, M.: A new model for determining mean structure
parameters of fixed beds from pressure drop measurements: application to beds
packed with parallelepipedal particles, Chem. Eng. Sci., 44,
1539–1545, https://doi.org/10.1016/0009-2509(89)80031-4, 1989. a, b, c
Darcy, H. P. G.: Les Fontaines publiques de la ville de Dijon: exposition
et application des principes à suivre et des formules à employer dans
les questions de distribution d'eau, Paris, V. Dalamont, 1856. a
Domenico, P. A. and Schwartz, F. W.: Physical and chemical hydrogeology, Wiley,
New York, 1998. a
Du Plessis, J. P. and Masliyah, J. H.: Flow through isotropic granular porous
media, Transport Porous Med., 6, 207–221, https://doi.org/10.1007/BF00208950,
1991. a
Dvorkin, J., Derzhi, N., Diaz, E., and Fang, Q.: Relevance of computational
rock physics, Geophysics, 76, E141–E153, https://doi.org/10.1190/geo2010-0352.1, 2011. a
Eichheimer, P., Thielmann, M., Popov, A., Golabek, G. J., Fujita, W., Kottwitz, M. O., and Kaus, B. J. P.: Pore-scale permeability prediction for Newtonian and non-Newtonian fluids, Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, 2019a. a, b, c
Eichheimer, P., Thielmann, M., Fujita, W., Golabek, G. J., Nakamura, M., Okumura, S., Nakatani, T., and Kottwitz, M. O.: Detailed data tables for each sample and segmented CT images, Figshare, https://doi.org/10.6084/m9.figshare.11378517, 2019b. a
Fehn, U. and Cathles, L. M.: Hydrothermal convection at slow-spreading
mid-ocean ridges, Tectonophysics, 55, 239–260,
https://doi.org/10.1016/0040-1951(79)90343-3, 1979. a
Gerke, K. M., Vasilyev, R. V., Khirevich, S., Collins, D., Karsanina, M. V.,
Sizonenko, T. O., Korost, D. V., Lamontagne, S., and Mallants, D.:
Finite-difference method Stokes solver (FDMSS) for 3D pore geometries:
Software development, validation and case studies, Comput. Geosci., 114, 41–58, https://doi.org/10.1016/j.cageo.2018.01.005, 2018. a, b, c
Gerke, K. M., Karsanina, M. V., and Katsman, R.: Calculation of tensorial flow
properties on pore level: Exploring the influence of boundary conditions on
the permeability of three-dimensional stochastic reconstructions, Phys. Rev.
E, 100, 053312, https://doi.org/10.1103/PhysRevE.100.053312, 2019. a
Gleeson, T. and Ingebritsen, S. E.: Crustal Permeability, John Wiley & Sons,
Ltd, https://doi.org/10.1002/9781119166573, 2016. a
Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface,
Phys. Fluids, 8, 2182–2189, https://doi.org/10.1063/1.1761178, 1965. a
Hendraningrat, L., Li, S., and Torsæter, O.: A coreflood investigation of
nanofluid enhanced oil recovery, J. Petrol. Sci. Eng., 111, 128–138, https://doi.org/10.1016/j.petrol.2013.07.003, 2013. a
Hernández-López, M. F., Gironás, J., Braud, I., Suárez, F., and Muñoz,
J. F.: Assessment of evaporation and water fluxes in a column of dry saline
soil subject to different water table levels, Hydrol. Process., 28,
3655–3669, https://doi.org/10.1002/hyp.9912, 2014. a
Hölting, B. and Coldewey, W. G.: Hydrogeology, Springer-Verlag GmbH,
Berlin, https://doi.org/10.1007/978-3-662-56375-5, 2019. a
Honarpour, M. M.: Relative Permeability Of Petroleum Reservoirs: Boca Raton,
Florida, CRC press, 2018. a
Jang, J., Narsilio, G. A., and Santamarina, J. C.: Hydraulic conductivity in
spatially varying media–a pore-scale investigation, Geophys. J.
Int., 184, 1167–1179, https://doi.org/10.1111/j.1365-246X.2010.04893.x, 2011. a, b
Keller, T. and Katz, R. F.: The Role of Volatiles in Reactive Melt Transport
in the Asthenosphere, J. Petrol., 57, 1073–1108,
https://doi.org/10.1093/petrology/egw030, 2016. a
Keller, T. and Suckale, J.: A continuum model of multi-phase reactive
transport in igneous systems, Geophys. J. Int., 219,
185–222, https://doi.org/10.1093/gji/ggz287, 2019. a
Klug, C. and Cashman, K. V.: Permeability development in vesiculating magmas:
implications for fragmentation, B. Volcanol., 58, 87–100,
https://doi.org/10.1007/s004450050128, 1996. a
Koponen, A., Kataja, M., and Timonen, J.: Permeability and effective porosity
of porous media, Phys. Rev. E, 56, 3319–3325,
https://doi.org/10.1103/PhysRevE.56.3319, 1997. a
Kuczynski, G. C.: Study of the Sintering of Glass, J. Appl. Phys.,
20, 1160–1163, 1949. a
Lamur, A., Kendrick, J. E., Eggertsson, G. H., Wall, R. J., Ashworth, J. D.,
and Lavallée, Y.: The permeability of fractured rocks in pressurised
volcanic and geothermal systems, Sci. Rep.-UK, 7, 6173,
https://doi.org/10.1038/s41598-017-05460-4, 2017. a
Manickam, S. S., Gelb, J., and McCutcheon, J. R.: Pore structure
characterization of asymmetric membranes: Non-destructive characterization of
porosity and tortuosity, J. Membrane Sci., 454, 549–554,
https://doi.org/10.1016/j.memsci.2013.11.044, 2014. a
Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., and Timonen, J.:
Lattice-Boltzmann and finite-difference simulations for the permeability
for three-dimensional porous media, Phys. Rev. E, 66, 016702,
https://doi.org/10.1103/PhysRevE.66.016702, 2002. a, b
Miller, K. J., lu Zhu, W., Montési, L. G., and Gaetani, G. A.: Experimental
quantification of permeability of partially molten mantle rock, Earth Planet. Sc. Lett., 388, 273–282,
https://doi.org/10.1016/j.epsl.2013.12.003, 2014. a
Morais, A. F., Seybold, H., Herrmann, H. J., and Andrade, J. S.: Non-Newtonian
Fluid Flow through Three-Dimensional Disordered Porous Media, Phys. Rev.
Lett., 103, 194502, https://doi.org/10.1103/PhysRevLett.103.194502, 2009. a
Mostaghimi, P., Blunt, M. J., and Bijeljic, B.: Computations of Absolute
Permeability on Micro-CT Images, Math. Geosci., 45, 103–125,
https://doi.org/10.1007/s11004-012-9431-4, 2013. a
Mueller, S., Melnik, O., Spieler, O., Scheu, B., and Dingwell, D. B.:
Permeability and degassing of dome lavas undergoing rapid decompression: An
experimental determination, B. Volcanol., 67, 526–538,
https://doi.org/10.1007/s00445-004-0392-4, 2005. a, b
Nemati, R., Shahrouzi, J. R., and Alizadeh, R.: A stochastic approach for
predicting tortuosity in porous media via pore network modeling, Comput. Geotech., 120, 103406, https://doi.org/10.1016/j.compgeo.2019.103406, 2020. a
Norton, D. and Taylor Jr, H. P.: Quantitative Simulation of the Hydrothermal
Systems of Crystallizing Magmas on the Basis of Transport Theory and Oxygen
Isotope Data: An analysis of the Skaergaard intrusion, J. Petrol.,
20, 421–486, https://doi.org/10.1093/petrology/20.3.421, 1979. a
Okumura, S. and Sasaki, O.: Permeability reduction of fractured rhyolite in
volcanic conduits and its control on eruption cyclicity, Geology, 42,
843–846, https://doi.org/10.1130/G35855.1, 2014. a
Okumura, S., Nakamura, M., Takeuchi, S., Tsuchiyama, A., Nakano, T., and
Uesugi, K.: Magma deformation may induce non-explosive volcanism via
degassing through bubble networks, Earth Planet. Sc. Lett., 281,
267–274, https://doi.org/10.1016/j.epsl.2009.02.036, 2009. a, b
Osorno, M., Uribe, D., Ruiz, O. E., and Steeb, H.: Finite difference
calculations of permeability in large domains in a wide porosity range,
Arch. Appl. Mech., 85, 1043–1054,
https://doi.org/10.1007/s00419-015-1025-4, 2015. a
Otsu, N.: A threshold selection method from gray-level histograms,
IEEE T. Syst. Man Cyb., 9, 62–66, 1979. a
Pape, H., Clauser, C., and Iffland, J.: Permeability prediction for reservoir
sandstones and basement rocks based on fractal pore space geometry,
Society of Exploration Geophysicists, 1032–1035, https://doi.org/10.1190/1.1820060,
2005. a
Popov, A. and Kaus, B. J. P.: LaMEM (Lithosphere and Mantle Evolution Model),
available at: https://bitbucket.org/bkaus/lamem/src/master/ (last access: 15 July 2019), 2016. a
Ramandi, H. L., Mostaghimi, P., and Armstrong, R. T.: Digital rock analysis for
accurate prediction of fractured media permeability, J. Hydrol.,
554, 817–826, https://doi.org/10.1016/j.jhydrol.2016.08.029, 2017. a
Ren, X., Zhao, Y., Deng, Q., Li, D., and Wang, D.: A relation of hydraulic
conductivity – Void ratio for soils based on Kozeny-Carman equation,
Eng. Geol., 213, 89–97, https://doi.org/10.1016/j.enggeo.2016.08.017, 2016. a
Rintoul, M. D.: Precise determination of the void percolation threshold for two
distributions of overlapping spheres, Phys. Rev. E, 62, 68–72,
https://doi.org/10.1103/PhysRevE.62.68, 2000. a
Sahimi, M.: Heterogeneous Materials I: Linear Transport and Optical Properties,
Interdisciplinary Applied Mathematics, Springer New York,
available at: https://books.google.de/books?id=Ex8RBwAAQBAJ (last access: 19 September 2019), 2006. a
Saxena, N., Mavko, G., Hofmann, R., and Srisutthiyakorn, N.: Estimating
permeability from thin sections without reconstruction: Digital rock study of
3D properties from 2D images, Comput. Geosci., 102, 79–99,
https://doi.org/10.1016/j.cageo.2017.02.014, 2017. a, b, c
Selvadurai, P. and Selvadurai, A.: On the effective permeability of a
heterogeneous porous medium: the role of the geometric mean,
Philos. Mag., 94, 2318–2338, https://doi.org/10.1080/14786435.2014.913111, 2014. a
Shabro, V., Kelly, S., Torres-Verdín, C., Sepehrnoori, K., and Revil, A.:
Pore-scale modeling of electrical resistivity and permeability in FIB-SEM
images of organic mudrock, Geophysics, 79, D289–D299,
https://doi.org/10.1190/geo2014-0141.1, 2014. a
Suleimanov, B. A., Ismailov, F. S., and Veliyev, E. F.: Nanofluid for enhanced
oil recovery, J. Petrol. Sci. Eng., 78, 431–437,
https://doi.org/10.1016/j.petrol.2011.06.014, 2011. a
Taheri, S., Ghomeshi, S., and Kantzas, A.: Permeability calculations in
unconsolidated homogeneous sands, Powder Technol., 321, 380–389,
https://doi.org/10.1016/j.powtec.2017.08.014, 2017. a
Takeuchi, S., Nakashima, S., and Tomiya, A.: Permeability measurements of
natural and experimental volcanic materials with a simple permeameter: toward
an understanding of magmatic degassing processes, J. Volcanol.
Geoth. Res., 177, 329–339, https://doi.org/10.1016/j.jvolgeores.2008.05.010,
2008. a, b, c
Thorat, I. V., Stephenson, D. E., Zacharias, N. A., Zaghib, K., Harb, J. N.,
and Wheeler, D. R.: Quantifying tortuosity in porous Li-ion battery
materials, J. Power Sources, 188, 592–600,
https://doi.org/10.1016/j.jpowsour.2008.12.032, 2009. a
Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic
Properties, Interdisciplinary Applied Mathematics, Springer New York,
available at: https://books.google.de/books?id=g0kAnwEACAAJ (last access: 25 October 2019), 2013. a
Van der Marck, S. C.: Network Approach to Void Percolation in a Pack of
Unequal Spheres, Phys. Rev. Lett., 77, 1785–1788,
https://doi.org/10.1103/PhysRevLett.77.1785, 1996. a
Wadsworth, F. B., Vasseur, J., von Aulock, F. W., Hess, K.-U., Scheu, B.,
Lavallée, Y., and Dingwell, D. B.: Nonisothermal viscous sintering of
volcanic ash, J. Geophys. Res.-Sol. Ea., 119, 8792–8804,
https://doi.org/10.1002/2014JB011453, 2014.
a, b
Wadsworth, F. B., Vasseur, J., Scheu, B., Kendrick, J. E., Lavallée, Y., and
Dingwell, D. B.: Universal scaling of fluid permeability during volcanic
welding and sediment diagenesis, Geology, 44, 219–222,
https://doi.org/10.1130/G37559.1, 2016. a
Wang, D., Han, D., Li, W., Zheng, Z., and Song, Y.: Magnetic-resonance imaging
and simplified Kozeny-Carman-model analysis of glass-bead packs as a frame of
reference to study permeability of reservoir rocks, Hydrogeol. J., 25,
1465–1476, https://doi.org/10.1007/s10040-017-1555-7, 2017. a
Warren, J. E. and Price, H. S.: Flow in Heterogeneous Porous Media,
S. Petrol. Eng. J., 1, 153–169, https://doi.org/10.2118/1579-G, 1961. a
Waxman, M. H. and Smits, L. J. M.: Electrical Conductivities in Oil-Bearing
Shaly Sands, Soc. Petrol. Eng. J., 8, 107–122,
https://doi.org/10.2118/1863-A, 1968. a, b
Wu, M., Xiao, F., Johnson-Paben, R. M., Retterer, S. T., Yin, X., and Neeves,
K. B.: Single- and two-phase flow in microfluidic porous media analogs based
on Voronoi tessellation, Lab Chip, 12, 253–261, https://doi.org/10.1039/C1LC20838A,
2012. a
Wyllie, M. R. J. and Gregory, A. R.: Fluid Flow through Unconsolidated Porous
Aggregates, Indust. Eng. Chem., 47, 1379–1388,
https://doi.org/10.1021/ie50547a037, 1955. a
Zhang, H., Nikolov, A., and Wasan, D.: Enhanced Oil Recovery (EOR) Using
Nanoparticle Dispersions: Underlying Mechanism and Imbibition Experiments,
Energ. Fuel., 28, 3002–3009, https://doi.org/10.1021/ef500272r, 2014. a
Short summary
To describe permeability, a key parameter controlling fluid flows in the Earth’s subsurface, an accurate determination of permeability on the pore scale is necessary. For this reason, we sinter artificial glass bead samples with various
porosities, determining the microstructure and permeability using both
experimental and numerical approaches. Based on this we provide
parameterizations of permeability, which can be used as input parameters for
large-scale numerical models.
To describe permeability, a key parameter controlling fluid flows in the Earth’s subsurface,...