Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1511-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1511-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution analysis of the physicochemical characteristics of sandstone media at the lithofacies scale
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Sebastian Wiesler
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Jens Hornung
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Matthias Hinderer
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Related authors
Fei Liang, Jun Niu, Adrian Linsel, Matthias Hinderer, Dirk Scheuvens, and Rainer Petschick
Solid Earth, 12, 1165–1184, https://doi.org/10.5194/se-12-1165-2021, https://doi.org/10.5194/se-12-1165-2021, 2021
Short summary
Short summary
In this study, we conclude that surface weathering is a primary control on rock characteristics and also guides fluids through the system during deep burial process. We also find that the formation of the rock decomposition zone depends on rock composition, climatic conditions and the duration of the process. Finally and most importantly, we provide a workflow for data reliability analysis for paleoclimate research.
Maryam Mansouri, Laura Stutenbecker, Matthias Hinderer, Anna Lewin, and Enkurie L. Dawit
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-35, https://doi.org/10.5194/esurf-2022-35, 2022
Preprint withdrawn
Short summary
Short summary
The Permian-Triassic is well known for the most extensive mass extinction in the history of life caused by climatic, tectonic, and ecological disruptions. Due to the lack of studies on continental deposits in eastern Africa, we aim to use this continental archive to study the response of earth surface processes linked to perturbations around the PTB. Our results show a successive erosional process in East Africa due to extensional movements accompanied by recycling and then by basement erosion.
Fei Liang, Jun Niu, Adrian Linsel, Matthias Hinderer, Dirk Scheuvens, and Rainer Petschick
Solid Earth, 12, 1165–1184, https://doi.org/10.5194/se-12-1165-2021, https://doi.org/10.5194/se-12-1165-2021, 2021
Short summary
Short summary
In this study, we conclude that surface weathering is a primary control on rock characteristics and also guides fluids through the system during deep burial process. We also find that the formation of the rock decomposition zone depends on rock composition, climatic conditions and the duration of the process. Finally and most importantly, we provide a workflow for data reliability analysis for paleoclimate research.
C. M. Filomena, J. Hornung, and H. Stollhofen
Solid Earth, 5, 1–11, https://doi.org/10.5194/se-5-1-2014, https://doi.org/10.5194/se-5-1-2014, 2014
Related subject area
Subject area: Crustal structure and composition | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
Fold localization at pre-existing normal faults: field observations and analogue modelling of the Achental structure, Northern Calcareous Alps, Austria
Fault-controlled dolomitization in the Montagna dei Fiori Anticline (Central Apennines, Italy): record of a dominantly pre-orogenic fluid migration
Willemijn Sarah Maria Theresia van Kooten, Hugo Ortner, Ernst Willingshofer, Dimitrios Sokoutis, Alfred Gruber, and Thomas Sausgruber
Solid Earth, 15, 91–120, https://doi.org/10.5194/se-15-91-2024, https://doi.org/10.5194/se-15-91-2024, 2024
Short summary
Short summary
Extensional deformation creates structures that may be reactivated during subsequent shortening. The Achental structure within the Northern Calcareous Alps fold-and-thrust belt is a natural example of a basin margin that was inverted during Alpine orogeny. We have studied the influence of such inherited inhomogeneities in the field and as an analogue model. We find that oblique shortening can create structures outlining pre-existing faults within a single deformation event.
Mahtab Mozafari, Rudy Swennen, Fabrizio Balsamo, Hamdy El Desouky, Fabrizio Storti, and Conxita Taberner
Solid Earth, 10, 1355–1383, https://doi.org/10.5194/se-10-1355-2019, https://doi.org/10.5194/se-10-1355-2019, 2019
Short summary
Short summary
The dolomitized intervals of the Lower Jurassic deposits exposed in the Montagna dei Fiori Anticline (Central Apennines, Italy) have been investigated. Accordingly, two fault-related dolomitization events were recognised and interpreted as having occurred before and during the Apenninic orogeny. The analyses suggest significant involvement of evaporitic fluids in both events, most likely derived from the underlying Upper Triassic Burano Formation in the detachment level.
Cited articles
Agemar, T., Weber, J., and Schulz, R.: Deep geothermal energy production in
Germany, Energies, 7, 4397–4416, https://doi.org/10.3390/en7074397, 2014. a
Allard, D., Senoussi, R., and Porcu, E.: Anisotropy models for spatial data,
Math. Geosci., 48, 305–328, https://doi.org/10.1007/s11004-015-9594-x, 2016. a
Aretz, A., Bär, K., Götz, A. E., and Sass, I.: Outcrop analogue study
of permocarboniferous geothermal sandstone reservoir formations (northern
Upper Rhine Graben, Germany): impact of mineral content, depositional
environment and diagenesis on petrophysical properties, Int. J. Earth Sci., 105, 1431–1452, https://doi.org/10.1007/s00531-015-1263-2, 2015. a, b
Armstrong, M.: Experimental variograms, Springer, Berlin, Heidelberg, Germany, 47–58, https://doi.org/10.1007/978-3-642-58727-6_4, 1998. a
Baiyegunhi, C., Liu, K., and Gwavava, O.: Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting, Open Geosci., 9, 340–360, https://doi.org/10.1515/geo-2017-0028, 2017. a
Becker, A., Schwarz, M., and Schäfer, A.: Lithostratigraphische Korrelation des Rotliegend im östlichen Saar–Nahe–Becken, Jber. Mitt. Oberrhein. Geol. Ver., 94, 105–133, https://doi.org/10.1127/jmogv/94/2012/105, 2012. a
Bhatia, M. R.: Plate Tectonics and Geochemical Composition of Sandstones, J. Geol., 91, 611–627, 1983. a
Bouma, A. H.: Sedimentology of some Flysch deposits; a graphic approach to
facies interpretation, Elsevier, Amsterdam, New York, 1962. a
Brigatti, M. F., Galan, E., and Theng, B. K. G.: Chapter 2 Structures and
Mineralogy of Clay Minerals, in: Handbook of Clay Science vol. 1, edited by: Bergaya, F., Theng, B. K. G., and Lagaly, G., Elsevier, 19–86, https://doi.org/10.1016/S1572-4352(05)01002-0, 2006. a
Carslaw, H. S. and Jaeger, J. C.: Conduction of Heat in Solids, Second Edition, Oxford University Press, Oxford, United Kingdom, 1959. a
Celisse, A.: Optimal cross-validation in density estimation with the L2-loss,
Ann. Stat., 42, 1879–1910, https://doi.org/10.1214/14-AOS1240, 2014. a
Corbett, P. and Jensen, J. L.: Estimating the mean permeability: how many
measurements do you need?, First Break, 10, 5,
https://doi.org/10.3997/1365-2397.1992006, 1992. a
Corbett, P. W. M., Hamdi, H., and Gurav, H.: Layered fluvial reservoirs with
internal fluid cross flow: a well-connected family of well test pressure
transient responses, Petrol. Geosci., 18, 219–229,
https://doi.org/10.1144/1354-079311-008, 2012. a
Costabel, S., Weidner, C., Müller-Petke, M., and Houben, G.: Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses, Hydrol. Earth Syst. Sci., 22, 1713–1729, https://doi.org/10.5194/hess-22-1713-2018, 2018. a, b
Deutsch, C. V. and Journel, A.: GSLIB: Geostatistical Software Library and
User's Guide, Oxford University Press, Oxford, United Kingdom,
https://books.google.de/books?id=CNd6QgAACAAJ (last access: 11 August 2020), 1998. a
Filomena, C. M., Hornung, J., and Stollhofen, H.: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices, Solid Earth, 5, 1–11, https://doi.org/10.5194/se-5-1-2014, 2014. a, b
Fongngern, R., Olariu, C., Steel, R., Mohrig, D., Krézsek, C., and Hess, T.:
Subsurface and outcrop characteristics of fluvial-dominated deep-lacustrine
clinoforms, Sedimentology, 65, 1447–1481, https://doi.org/10.1111/sed.12430, 2018. a
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford
University Press, Oxford, United Kingdom, 1997. a
Gu, Y., Rühaak, W., Bär, K., and Sass, I.: Using seismic data to
estimate the spatial distribution of rock thermal conductivity at reservoir
scale, Geothermics, 66, 61–72, https://doi.org/10.1016/j.geothermics.2016.11.007,
2017. a
Hamdi, H., Ruelland, P., Bergey, P., and Corbett, P. W.: Using geological well testing for improving the selection of appropriate reservoir models,
Petrol. Geosci., 20, 353–368, https://doi.org/10.1144/petgeo2012-074, 2014. a
Heap, M. J., Kushnir, A. R. L., Gilg, H. A., Wadsworth, F. B., Reuschlé, T.,
and Baud, P.: Microstructural and petrophysical properties of the
Permo-Triassic sandstones (Buntsandstein) from the Soultz-sous-Forêts
geothermal site (France), Geoth. Energy, 5, 26, https://doi.org/10.1186/s40517-017-0085-9, 2017. a
Henk, A.: Mächtigkeit und Alter der erodierten Sedimente im Saar–Nahe–Becken
(SW-Deutschland), Geologische Rundschau, 81, 323–331,
https://doi.org/10.1007/BF01828601, 1992. a
Herron, M. M.: Geochemical classification of terrigenous sands and shales from core or log data, J Sediment. Res., 58, 9,
https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D, 1988. a, b
Hornung, J. and Aigner, T.: Reservoir Architecture in a Terminal Alluvial
Plain: An Outcrop Analogue Study (Upper Triassic, Southern Germany) Part 1:
Sedimentology And Petrophysics, J Petrol. Geol., 25, 3–30,
https://doi.org/10.1111/j.1747-5457.2002.tb00097.x, 2002. a
Hornung, J., Linsel, A., Schröder, D., Gumbert, J., Ölmez, J., Scheid, M.,
and Pöppelreiter, M.: Understanding small-scale petrophysical
heterogeneities in sedimentary rocks – the key to understand pore geometry
variations and to predict lithofacies-dependent reservoir properties,
Digital Geology – Multi-scale analysis of depositional systems and their
subsurface modelling workflows, Special Volume, EAGE, Houten, the Netherlands, 71–90, ISBN: 9789462823372, 2020. a
Hudson, G. and Wackernagel, H.: Mapping temperature using kriging with external drift: Theory and an example from Scotland, Int. J. Climatol., 14, 77–91, https://doi.org/10.1002/joc.3370140107, 1994. a
Hurst, A. and Rosvoll, K. J.: Permeability Variations in Sandstones and their
Relationship to Sedimentary Structures, Academic Press, Inc.,
San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, 166–196,
https://doi.org/10.1016/B978-0-12-434066-4.50011-4,
1991. a, b
Ixer, R. A., Turner, P., and Waugh, B.: Authigenic iron and titanium oxides in triassic red beds: St. Bees Sandstone, Cumbria, Northern England,
Geol. J., 14, 179–192, https://doi.org/10.1002/gj.3350140214, 1979. a
Jackson, M. D., Muggeridge, A. H., Yoshida, S., and Johnson, H. D.: Upscaling
Permeability Measurements Within Complex Heterolithic Tidal Sandstones,
Math. Geol., 35, 499–520, https://doi.org/10.1023/A:1026236401104, 2003. a
Kiryukhin, A. V., Kaymin, E. P., and Zakharova, E. V.: Using TOUGHREACT to
Model Laboratory Tests on the Interaction of NaNO3–NaOH Fluids with Sandstone
Rock at a Deep Radionuclide Repository Site, Nucl. Technol., 164,
196–206, https://doi.org/10.13182/NT08-A4019, 2008. a
Kushnir, A. R. L., Heap, M. J., Baud, P., Gilg, H. A., Reuschlé, T., Lerouge,
C., Dezayes, C., and Duringer, P.: Characterizing the physical properties of
rocks from the Paleozoic to Permo-Triassic transition in the Upper Rhine
Graben, Geotherm. Energy, 6, 16, https://doi.org/10.1186/s40517-018-0103-6,
2018. a
Lake, L. W. and Srinivasan, S.: Statistical scale-up of reservoir properties:
concepts and applications, J. Petrol. Sci. Eng., 44,
27–39, https://doi.org/10.1016/j.petrol.2004.02.003,
2004. a
Landa, J. L. and Strebelle, S.: Sensitivity Analysis of Petrophysical
Properties Spatial Distributions, and Flow Performance Forecasts to
Geostatistical Parameters Using Derivative Coefficients, Society of Petroleum Engineers, SPE Annual Technical Conference and Exhibition, 29 September–2 October, San Antonio, Texas,
https://doi.org/10.2118/77430-MS, 2002. a, b, c
Li, S., Li, S., Shan, X., Gong, C., and Yu, X.: Classification, formation, and
transport mechanisms of mud clasts, Int. Geol. Rev., 59,
1609–1620, https://doi.org/10.1080/00206814.2017.1287014, 2017. a
Linsel, A.: Physicochemical Characteristics of Sandstone Media, figshare, https://doi.org/10.6084/m9.figshare.11791407.v2, 2020b. a, b
Lu, G. Y. and Wong, D. W.: An adaptive inverse-distance weighting spatial
interpolation technique, Comput. Geosci., 34, 1044–1055,
https://doi.org/10.1016/j.cageo.2007.07.010, 2008. a
Malvić, T., Ivšinović, J., Velić, J., and Rajić, R.: Kriging with a Small
Number of Data Points Supported by Jack-Knifing, a Case Study in the Sava
Depression (Northern Croatia), Geosci., 9, 36, https://doi.org/10.3390/geosciences9010036, 2019. a
McKinley, J. M., Lloyd, C. D., and Ruffell, A. H.: Use of Variography in
Permeability Characterization of Visually Homogeneous Sandstone Reservoirs
with Examples from Outcrop Studies, Math. Geol., 36, 761–779,
https://doi.org/10.1023/b:Matg.0000041178.73284.88, 2004. a
McKinley, J. M., Atkinson, P. M., Lloyd, C. D., Ruffell, A. H., and Worden,
R. H.: How Porosity and Permeability Vary Spatially With Grain Size, Sorting,
Cement Volume, and Mineral Dissolution In Fluvial Triassic Sandstones: The
Value of Geostatistics and Local Regression, J. Sediment. Res.,
81, 844–858, https://doi.org/10.2110/jsr.2011.71, 2011. a, b, c, d
McKinley, J. M., Ruffell, A. H., and Worden, R. H.: An Integrated
Stratigraphic, Petrophysical, Geochemical and Geostatistical Approach to the
Understanding of Burial Diagenesis: Triassic Sherwood Sandstone Group, South
Yorkshire, UK, John Wiley & Sons, Inc., Chichester, United Kingdom, 231–255,
https://doi.org/10.1002/9781118485347.ch10, 2013. a
Medici, G., West, L. J., and Mountney, N. P.: Characterizing flow pathways in a
sandstone aquifer: Tectonic vs. sedimentary heterogeneities, J. Contam. Hydrol., 194, 36–58, https://doi.org/10.1016/j.jconhyd.2016.09.008, 2016. a
Medici, G., West, L. J., and Mountney, N. P.: Characterization of a fluvial
aquifer at a range of depths and scales: the Triassic St Bees Sandstone
Formation, Cumbria, UK, Hydrogeol. J., 26, 565–591,
https://doi.org/10.1007/s10040-017-1676-z, 2018. a
Medici, G., West, L. J., and Mountney, N. P.: Sedimentary flow heterogeneities
in the Triassic U.K. Sherwood Sandstone Group: Insights for hydrocarbon
exploration, Geol. J., 54, 1361–1378, https://doi.org/10.1002/gj.3233,
2019. a
Miall, A. D.: Architectural-element analysis: A new method of facies analysis
applied to fluvial deposits, Earth-Sci. Rev., 22, 261–308,
https://doi.org/10.1016/0012-8252(85)90001-7, 1985. a
Micromeritics: GeoPyc 1360 – Envelope Density Analyzer, available at: https://www.micromeritics.com/repository/files/geopyc_1360_reg_and_tap.pdf (last access: 8 August 2020), 1998. a
Middleton, G. V.: Sediment Deposition from Turbidity Currents, Annu. Rev. Earth Pl. Sc., 21, 89–114, https://doi.org/10.1146/annurev.ea.21.050193.000513, 1993. a
Molenaar, N., Felder, M., Bär, K., and Götz, A. E.: What classic
greywacke (litharenite) can reveal about feldspar diagenesis: An example from Permian Rotliegend sandstone in Hessen, Germany, Sediment. Geol., 326, 79–93, https://doi.org/10.1016/j.sedgeo.2015.07.002, 2015. a, b
Nordahl, K., Messina, C., Berland, H., Rustad, A. B., Rimstad, E., Martinius,
A. W., Howell, J. A., and Good, T. R.: Impact of multiscale modelling on
predicted porosity and permeability distributions in the fluvial deposits of
the Upper Lunde Member (Snorre Field, Norwegian Continental Shelf), Geol. Soc. Lon., 387, 25, https://doi.org/10.1144/sp387.10, 2014. a, b
Pape, H., Clauser, C., and Iffland, J.: Permeability prediction based on
fractal pore‐space geometry, Geophysics, 64, 1447–1460,
https://doi.org/10.1190/1.1444649, 1999. a
Pettijohn, F. J., Potter, P. E., and Siever, R.: Mineral and Chemical
Composition, Springer New York, New York, NY, 25–67,
https://doi.org/10.1007/978-1-4612-1066-5_2, 1987. a
Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt,
H.: Characterization of rock thermal conductivity by high-resolution optical
scanning, Geothermics, 28, 253–276, https://doi.org/10.1016/S0375-6505(99)00007-3,
1999. a, b
Ringrose, P. and Bentley, M.: Reservoir Model Design, First Edition, Springer, the Netherlands, https://doi.org/10.1007/978-94-007-5497-3, 2015. a, b, c, d
Ringrose, P. S., Sorbie, K. S., Corbett, P. W. M., and Jensen, J. L.:
Immiscible flow behaviour in laminated and cross-bedded sandstones, J. Petrol. Sci. Eng., 9, 103–124, https://doi.org/10.1016/0920-4105(93)90071-L,
1993. a
Robertson, R. K., Mueller, U. A., and Bloom, L. M.: Direct sequential
simulation with histogram reproduction: A comparison of algorithms,
Comput. Geosci., 32, 382–395, https://doi.org/10.1016/j.cageo.2005.07.002,
2006. a
Rodrigo-Ilarri, J., Reisinger, M., and Gómez-Hernández, J. J.: Influence of
Heterogeneity on Heat Transport Simulations in Shallow Geothermal Systems,
Springer International Publishing, Cham, Germany, 849–862,
https://doi.org/10.1007/978-3-319-46819-8_59, 2017. a
Rühaak, W.: A Java application for quality weighted 3-d interpolation,
Comput. Geosci., 32, 43–51, https://doi.org/10.1016/j.cageo.2005.04.005, 2006. a
Rühaak, W.: 3-D interpolation of subsurface temperature data with
measurement error using kriging, Environ. Earth Sci., 73,
1893–1900, https://doi.org/10.1007/s12665-014-3554-5, 2015. a
Rühaak, W., Guadagnini, A., Geiger, S., Bär, K., Gu, Y., Aretz, A.,
Homuth, S., and Sass, I.: Upscaling thermal conductivities of sedimentary
formations for geothermal exploration, Geothermics, 58, 49–61,
https://doi.org/10.1016/j.geothermics.2015.08.004, 2015. a
Sass, I. and Götz, A. E.: Geothermal reservoir characterization: a
thermofacies concept, Terra Nova, 24, 142–147,
https://doi.org/10.1111/j.1365-3121.2011.01048.x, 2012. a
Shepard, D.: A Two-Dimensional Interpolation Function for Irregularly-Spaced
Data., in: Proceedings of the 1968 ACM National Conference, Association for Computing Machinery, New York, NY, USA, 517–524,
https://doi.org/10.1145/800186.810616, 1968. a, b
Stollhofen, H.: Facies architecture variations and seismogenic structures in
the Carboniferous–Permian Saar–Nahe Basin (SW Germany): evidence for
extension-related transfer fault activity, Sediment. Geol., 119, 47–83,
https://doi.org/10.1016/S0037-0738(98)00040-2, 1998. a
Tellam, J. H. and Barker, R. D.: Towards prediction of saturated-zone pollutant
movement in groundwaters in fractured permeable-matrix aquifers: the case of
the UK Permo-Triassic sandstones, Geol. Soc. Lon., Special
Publications, 263, 1–48, https://doi.org/10.1144/gsl.Sp.2006.263.01.01,
2006. a
Thomsen, L.: Weak elastic anisotropy, Geophysics, 51, 1954–1966,
https://doi.org/10.1190/1.1442051, 1986. a, b
Turner, P., Burley, S., Rey, D., and Prosser, J.: Burial history of the Penrith
Sandstone (Lower Permian) deduced from the combined study of fluid inclusion
and palaeomagnetic data, Geol. Soc. Lon., Special Publications,
98, 43–78, https://doi.org/10.1144/GSL.SP.1995.098.01.04, 1995. a
Tye, B. and Hickey, J.: Permeability characterization of distributary mouth bar
sandstones in Prudhoe Bay field, Alaska: How horizontal cores reduce risk in
developing deltaic reservoirs, AAPG Bull., 85, 459–475,
https://doi.org/10.1306/8626C91F-173B-11D7-8645000102C1865D, 2001. a
Verly, G.: Sequential Gaussian Simulation: A Monte Carlo Method for Generating
Models of Porosity and Permeability, in: Generation, Accumulation and
Production of Europe's Hydrocarbons III, edited by: Spencer, A. M., Springer, Berlin, Heidelberg, Germany, 345–356, 1993. a
Wackernagel, H.: Multivariate Geostatistics, Third Edition, Springer, Berlin, Heidelberg,
Germany, https://doi.org/10.1007/978-3-662-05294-5, 2003. a, b, c
Walker, T. R., Larson, E. E., and Hoblitt, R. P.: Nature and origin of hematite
in the Moenkopi Formation (Triassic), Colorado Plateau: A contribution to the
origin of magnetism in red beds, J. Geophys. Res.-Sol. Ea., 86, 317–333, https://doi.org/10.1029/JB086iB01p00317, 1981. a
Wang, J. and Zuo, R.: Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis, Comput. Geosci., 118, 52–64, https://doi.org/10.1016/j.cageo.2018.05.010,
2018. a
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming
minerals, Am. Mineral., 95, 185–187, https://doi.org/10.2138/am.2010.3371, 2010. a
Wilson, M. D. and Pittman, E. D.: Authigenic clays in sandstones; recognition
and influence on reservoir properties and paleoenvironmental analysis,
J. Sediment. Res., 47, 3–31, https://doi.org/10.1306/212f70e5-2b24-11d7-8648000102c1865d, 1977. a
Worden, R. H. and Burley, S. D.: Sandstone Diagenesis: The Evolution of Sand to
Stone, in: Sandstone Diagenesis, edited by: Burley, S. D. and Worden, R. H., 1–44, https://doi.org/10.1002/9781444304459.ch,
2003. a
Yang, J., Hua, B., Williamson, P., Zhu, H., McMechan, G., and Huang, J.:
Elastic Least-Squares Imaging in Tilted Transversely Isotropic Media for
Multicomponent Land and Pressure Marine Data, Surv. Geophys., 805–833,
https://doi.org/10.1007/s10712-020-09588-3, 2020. a
Zheng, S.-Y., Corbett, P. W. M., Ryseth, A., and Stewart, G.: Uncertainty in
Well Test and Core Permeability Analysis: A Case Study in Fluvial Channel
Reservoirs, Northern North Sea, Norway, AAPG Bull., 84, 1929–1954,
https://doi.org/10.1306/8626c72b-173b-11d7-8645000102c1865d, 2000. a
Short summary
We present a high-resolution 3D analysis of the physicochemical characteristics of two sandstone cubes at the submeter scale. Our study provides insight into the spatial distribution and the controlling factors of small-scale heterogeneity in sandstone media. A comprehensive physicochemical data set is provided, which may help to evaluate the degree of uncertainty that should be considered in field-scale property models.
We present a high-resolution 3D analysis of the physicochemical characteristics of two sandstone...