Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1681-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1681-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocities
Letizia Anderlini
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
Enrico Serpelloni
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Cristiano Tolomei
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Paolo Marco De Martini
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Giuseppe Pezzo
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Adriano Gualandi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Giorgio Spada
DiSPeA, Urbino University, Urbino, Italy
Related authors
No articles found.
Lauro Chiaraluce, Richard Bennett, David Mencin, Wade Johnson, Massimiliano Rinaldo Barchi, Marco Bohnhoff, Paola Baccheschi, Antonio Caracausi, Carlo Calamita, Adriano Cavaliere, Adriano Gualandi, Eugenio Mandler, Maria Teresa Mariucci, Leonardo Martelli, Simone Marzorati, Paola Montone, Debora Pantaleo, Stefano Pucci, Enrico Serpelloni, Mariano Supino, Salvatore Stramondo, Catherine Hanagan, Liz Van Boskirk, Mike Gottlieb, Glen Mattioli, Marco Urbani, Francesco Mirabella, Assel Akimbekova, Simona Pierdominici, Thomas Wiersberg, Chris Marone, Luca Palmieri, and Luca Schenato
Sci. Dril., 33, 173–190, https://doi.org/10.5194/sd-33-173-2024, https://doi.org/10.5194/sd-33-173-2024, 2024
Short summary
Short summary
We built six observatory stations in central Italy to monitor a fault potentially capable of generating a strong earthquake. Each site has 80–160 m deep wells equipped with strainmeters and seismometers. At the surface, we placed GNSS antennas and seismic and meteorological sensors. All data, which are open access for the scientific community, will help us to better understand the complex physical and chemical processes that lead to the generation of the full range of slow and fast earthquakes.
Nicolaj Hansen, Louise Sandberg Sørensen, Giorgio Spada, Daniele Melini, Rene Forsberg, Ruth Mottram, and Sebastian B. Simonsen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-104, https://doi.org/10.5194/tc-2023-104, 2023
Preprint withdrawn
Short summary
Short summary
We use ICESat-2 to estimate the surface elevation change over Greenland and Antarctica in the period of 2018 to 2021. Numerical models have been used the compute the firn compaction and the vertical bedrock movement so non-mass-related elevation changes can be taken into account. We have made a parameterization of the surface density so we can convert the volume change to mass change. We find that Antarctica has lost 135.7±27.3 Gt per year, and the Greenland ice sheet 237.5±14.0 Gt per year.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Francesco Pintori, Enrico Serpelloni, and Adriano Gualandi
Solid Earth, 13, 1541–1567, https://doi.org/10.5194/se-13-1541-2022, https://doi.org/10.5194/se-13-1541-2022, 2022
Short summary
Short summary
We study time-varying vertical deformation signals in the European
Alps by analyzing GNSS position time series. We associate the deformation
signals to geophysical forcing processes, finding that atmospheric and
hydrological loading are by far the most important cause of seasonal
displacements. Recognizing and filtering out non-tectonic signals allows us
to improve the accuracy and precision of the vertical velocities.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Fu Wang, Yongqiang Zong, Barbara Mauz, Jianfen Li, Jing Fang, Lizhu Tian, Yongsheng Chen, Zhiwen Shang, Xingyu Jiang, Giorgio Spada, and Daniele Melini
Earth Surf. Dynam., 8, 679–693, https://doi.org/10.5194/esurf-8-679-2020, https://doi.org/10.5194/esurf-8-679-2020, 2020
Short summary
Short summary
Our new Holocene sea level curve is not only different to previously published data but also different to global glacio-isostatic adjustment (GIA) models. We see that as soon as ice melting has ceased, local processes control shoreline migration and coast evolution. This indicates that more emphasis should be placed on regional coast and sea-level change modelling under a global future of rising sea level as local government needs more specific and effective advice to deal with coastal flooding.
Giorgio Spada and Daniele Melini
Geosci. Model Dev., 12, 5055–5075, https://doi.org/10.5194/gmd-12-5055-2019, https://doi.org/10.5194/gmd-12-5055-2019, 2019
Short summary
Short summary
Accurate modeling of the complex physical interactions between solid Earth, oceans, and ice masses in response to deglaciation processes is of paramount importance in climate change and geodesy, since ongoing effects of the melting of Late Pleistocene ice sheets still affect present-day observations of sea-level change, uplift rates, and gravity field. In this paper, we present SELEN4, an open-source code that can compute a broad range of physical predictions for a given deglaciation model.
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
Luisa Perini, Lorenzo Calabrese, Paolo Luciani, Marco Olivieri, Gaia Galassi, and Giorgio Spada
Nat. Hazards Earth Syst. Sci., 17, 2271–2287, https://doi.org/10.5194/nhess-17-2271-2017, https://doi.org/10.5194/nhess-17-2271-2017, 2017
Short summary
Short summary
The Emilia-Romagna coastal plain is a low-land, highly urbanised area that will be significantly impacted by climate change. To plan adequate mitigation measures, reliable sea-level scenarios are needed. Here we suggests a method for evaluating the combined effects of sea-level rise and land subsidence in the year 2100, in terms of the increase in floodable areas during sea storms. The results allow for a regional assessment and indicate a significant local variability in the factors involved.
Aladino Govoni, Luciana Bonatto, Marco Capello, Adriano Cavaliere, Claudio Chiarabba, Ezio D'Alema, Stefania Danesi, Sara Lovati, Lucia Margheriti, Marco Massa, Salvatore Mazza, Francesco Mazzarini, Stephen Monna, Milena Moretti, Anna Nardi, Davide Piccinini, Claudia Piromallo, Silvia Pondrelli, Simone Salimbeni, Enrico Serpelloni, Stefano Solarino, Massimiliano Vallocchia, Marco Santulin, and the AlpArray Working Group
Adv. Geosci., 43, 39–52, https://doi.org/10.5194/adgeo-43-39-2017, https://doi.org/10.5194/adgeo-43-39-2017, 2017
Short summary
Short summary
We describe here the contribution of Istituto Nazionale di Geofisica e Vulcanolgia (INGV) to the AlpArray Seismic Network (AASN) in the framework of the AlpArray project (http://www.alparray.ethz.ch), a large European collaborative research initiative.
The aim of AlpArray is carrying out cutting edge research to advance our understanding of the deep structure, geodynamics, tectonics and seismic hazard of the greater Alpine area (Alps-Apennines-Carpathians-Dinarides orogenic system).
R. Civico, C. A. Brunori, P. M. De Martini, S. Pucci, F. R. Cinti, and D. Pantosti
Nat. Hazards Earth Syst. Sci., 15, 2473–2483, https://doi.org/10.5194/nhess-15-2473-2015, https://doi.org/10.5194/nhess-15-2473-2015, 2015
Short summary
Short summary
The 2012 Emilia seismic sequence (Italy) caused significant liquefaction-related damage. We used a lidar DTM and the 2012 liquefaction data to (a) perform a geomorphological study of the Po River plain and (b) define the liquefaction susceptibility of the geomorphologic features. Results indicate that fluvial landforms acted as a preferential location for the occurrence of liquefaction. We quantitatively defined a hierarchy in terms of liquefaction susceptibility for an ideal fluvial environment
T. Howard, A. K. Pardaens, J. L. Bamber, J. Ridley, G. Spada, R. T. W. L. Hurkmans, J. A. Lowe, and D. Vaughan
Ocean Sci., 10, 473–483, https://doi.org/10.5194/os-10-473-2014, https://doi.org/10.5194/os-10-473-2014, 2014
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Asthenospheric anelasticity effects on ocean tide loading around the East China Sea observed with GPS
Extracting small deformation beyond individual station precision from dense Global Navigation Satellite System (GNSS) networks in France and western Europe
Junjie Wang, Nigel T. Penna, Peter J. Clarke, and Machiel S. Bos
Solid Earth, 11, 185–197, https://doi.org/10.5194/se-11-185-2020, https://doi.org/10.5194/se-11-185-2020, 2020
Short summary
Short summary
Changes in the Earth's elastic strength at increasing timescales of deformation affect predictions of its response to the shifting weight of the oceans caused by tides. We show that these changes are detectable using GPS and must be accounted for but that 3-D or locally-tuned models of the Earth's behaviour around the East China Sea provide only slightly better predictions than a simpler model which varies only with depth. Use of this model worldwide will improve precise positioning by GPS.
Christine Masson, Stephane Mazzotti, Philippe Vernant, and Erik Doerflinger
Solid Earth, 10, 1905–1920, https://doi.org/10.5194/se-10-1905-2019, https://doi.org/10.5194/se-10-1905-2019, 2019
Short summary
Short summary
In using dense geodetic networks and large GPS datasets, we are able to extract regionally coherent velocities and deformation rates in France and neighboring western European countries. This analysis is combined with statistical tests on synthetic data to quantify the deformation detection thresholds and significance levels.
Cited articles
Amoruso, A. and Crescentini, L.: Inversion of synthetic geodetic data for the
1997 Colfiorito events: clues on the effects of layering, assessment of
model parameter PDFs, and model selection criteria, Ann. Geophys., 51, 461–475,
https://doi.org/10.4401/ag-3027, 2008.
Anderlini, L., Serpelloni, E., Tolomei, C., De Martini, P. M., Pezzo, G., Gualandi, A., and Spada, G.: InSAR long-term velocities from Envisat satellites in the Venetian Southern Alps (Italy), EUDAT, https://doi.org/10.23728/b2share.486d3b553c564cc6826e24548e85ad1d, 2020.
Anselmi, M., Govoni, A., De Gori, P., and Chiarabba, C.: Seismicity and
velocity structures along the south-Alpine thrust front of the Venetian Alps
(NE-Italy), Tectonophysics, 513, 37–48, https://doi.org/10.1016/j.tecto.2011.09.023,
2011.
Árnadóttir, T. and Segall, P.: The 1989 Loma Prieta earthquake
imaged from inversion of geodetic data, J. Geophys. Res.-Sol. Ea., 99, 21835–21855, https://doi.org/10.1029/94JB01256, 1994.
Árnadóttir, T., Segall, P., and Matthews, M.: Resolving the
discrepancy between geodetic and seismic fault models for the 1989 Loma
Prieta, California, earthquake, B. Seismol. Soc.
Am., 82, 2248–2255, 1992.
Barba, S., Finocchio, D., Sikdar, E., and Burrato, P.: Modelling the
interseismic deformation of a thrust system: seismogenic potential of the
Southern Alps, Terra Nova, 25, 221–227, https://doi.org/10.1111/ter.12026, 2013.
Barletta, V. R., Ferrari, C., Diolaiuti, G., Carnielli, T., Sabadini, R., and
Smiraglia, C.: Glacier shrinkage and modeled uplift of the Alps, Geophys.
Res. Lett., 33, L14307, https://doi.org/10.1029/2006GL026490, 2006.
Bechtold, M., Battaglia, M., Tanner, D. C., and Zuliani, D.: Constraints on
the active tectonics of the Friuli/NW Slovenia area from CGPS measurements
and three-dimensional kinematic modeling, J. Geophys. Res., 114, B03408,
https://doi.org/10.1029/2008JB005638, 2009.
Benedetti, L., Tapponnier, P., King, G. C. P., Meyer, B., and Manighetti, I.:
Growth folding and active thrusting in the Montello region, Veneto, northern
Italy, J. Geophys. Res.-Sol. Ea., 105, 739–766,
https://doi.org/10.1029/1999JB900222, 2000.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for
surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote Sens., 40, 2375–2383,
https://doi.org/10.1109/TGRS.2002.803792, 2002.
Bertotti, G., Picotti, V., Bernoulli, D., and Castellarin, A.: From rifting to
drifting: tectonic evolution of the South-Alpine upper crust from the
Triassic to the Early Cretaceous, Sediment. Geol., 86, 53–76, https://doi.org/10.1016/0037-0738(93)90133-P, 1993.
Biggs, J., Wright, T., Lu, Z., and Parsons, B.: Multi-interferogram method for
measuring interseismic deformation: Denali Fault, Alaska, Geophysical
Journal International, 170, 1165–1179,
https://doi.org/10.1111/j.1365-246X.2007.03415.x, 2007.
Blewitt, G. and Lavallée, D.: Effect of annual signals on geodetic
velocity, J. Geophys. Res., 107, 2145, https://doi.org/10.1029/2001JB000570, 2002.
Bock, Y., Wdowinski, S., Ferretti, A., Novali, F., and Fumagalli, A.: Recent
subsidence of the Venice Lagoon from continuous GPS and interferometric
synthetic aperture radar, Geochem. Geophy. Geosy., 13, Q03023,
https://doi.org/10.1029/2011GC003976, 2012.
Brambati, A., Carbognin, L., Quaia, T., Teatini, P., and Tosi, L.: The Lagoon of
Venice: Geological Setting, Evolution and Land Subsidence, Episodes, 26,
264–268, 2003.
Burrato, P., Poli, M. E., Vannoli, P., Zanferrari, A., Basili, R., and
Galadini, F.: Sources of Mw 5+ earthquakes in northeastern Italy and
western Slovenia: An updated view based on geological and seismological
evidence, Tectonophysics, 453, 157–176, https://doi.org/10.1016/j.tecto.2007.07.009,
2008.
Byrd, R. H., Hribar, M. E., and Nocedal, J.: An Interior Point Algorithm for
Large-Scale Nonlinear Programming, SIAM J. Optimiz., 9,
877–900, 1999.
Carbognin, L., Tosi, L., and Teatini, P.: Analysis of actual land subsidence in
Venice and its hinterland (Italy), in: Land Subsidence, edited by: Barends, J. F., Brouwer, F. J., and Schröder, F. H., 129–137, A. A. Balkema, Rotterdam, 1995.
Carbognin, L., Teatini, P., and Tosi, L.: Eustacy and land subsidence in the
Venice Lagoon at the beginning of the new millennium, J. Marine Syst.,
51, 345–353, https://doi.org/10.1016/j.jmarsys.2004.05.021, 2004.
Carminati, E. and Di Donato, G.: Separating natural and anthropogenic vertical
movements in fast subsiding areas: The Po plain (N. Italy) case, Geophys.
Res. Lett., 26, 2291–2294, https://doi.org/10.1029/1999GL900518, 1999.
Carminati, E. and Martinelli, G.: Subsidence rates in the Po Plain, northern
Italy: the relative impact of natural and anthropogenic causation,
Eng. Geol., 66, 241–255, https://doi.org/10.1016/S0013-7952(02)00031-5, 2002.
Carton, A., Bondesan, A., Fontana, A., Meneghel, M., Miola, A., Mozzi, P.,
Primon, S., and Surian, N.: Geomorphological evolution and sediment transfer
in the Piave River watershed (north-eastern Italy) since the LGM,
Géomorphologié, 3, 37–58, 2009.
Castaldini, D. and Panizza, M.: Inventario delle faglie attive tra i fiumi
Po e Piave e il lago di Como (Italia Settentrionale), Il Quaternario Italian
Journal of Quaternary Sciences, 4, 333–410, 1991.
Castellarin, A., Cantelli, L., Fesce, A. M., Mercier, J. L., Picotti, V., Pini,
G. A., Prosser, G., and Selli, L.: Alpine compressional tectonics in the
Southern Alps. Relationships with the N-Apennines, Annales Tectonicae, 6,
62–94, 1992.
Castellarin, A., Vai, G. B., and Cantelli, L.: The Alpine evolution of the
Southern Alps around the Giudicarie faults: A Late Cretaceous to Early
Eocene transfer zone, Tectonophysics, 414, 203–223,
https://doi.org/10.1016/j.tecto.2005.10.019, 2006.
Cervelli, P., Murray, M. H., Segall, P., Amelung, F., Aoki, Y., and Kato, T.:
Estimating source parameters from deformation data, with an application to
the March 1997 earthquake swarm off the Izu Peninsula, Japan, J. Geophys.
Res., 106, 11217–11237, 2001.
Cheloni, D., D'Agostino, N., and Selvaggi, G.: Interseismic coupling,
seismic potential, and earthquake recurrence on the southern front of the
Eastern Alps (NE Italy), J. Geophys. Res.-Sol. Ea., 119, 4448–4468,
https://doi.org/10.1002/2014jb010954, 2014.
Chen, W., Braitenberg, C., and Serpelloni, E.: Interference of tectonic
signals in subsurface hydrologic monitoring through gravity and GPS due to
mountain building, Global Planet. Change, 167, 148–159,
https://doi.org/10.1016/j.gloplacha.2018.05.003, 2018.
Chery, J., Genti, M., and Vernant, P.: Ice cap melting and low-viscosity
crustal root explain the narrow geodetic uplift of the Western Alps,
Geophys. Res. Lett., 43, 3193–3200, https://doi.org/10.1002/2016GL067821, 2016.
Cianflone, G., Tolomei, C., Brunori, C., and Dominici, R.: InSAR Time Series
Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of
Sibari (Southern Italy), Remote Sens., 7, 16004–16023,
https://doi.org/10.3390/rs71215812, 2015.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The
Last Glacial Maximum, Science, 325, 710–714, 2009.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook,
E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix,
A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M.,
Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry,
W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf,
V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J. W.: Global
climate evolution during the last deglaciation, P. Natl. Acad. Sci. USA, 109, E1134–E1142, 2012.
D'Agostino, N., Cheloni, D., Mantenuto, S., Selvaggi, G., Michelini, A., and
Zuliani, D.: Strain accumulation in the southern Alps (NE Italy) and
deformation at the northeastern boundary of Adria observed by CGPS
measurements, Geophys. Res. Lett., 32, L19306, https://doi.org/10.1029/2005GL024266,
2005.
Danesi, S., Pondrelli, S., Salimbeni, S., Cavaliere, A., Serpelloni, E.,
Danecek, P., Lovati, S., and Massa, M.: Active deformation and seismicity in
the Southern Alps (Italy): The Montello hill as a case study, Tectonophysics,
653, 95–108, https://doi.org/10.1016/j.tecto.2015.03.028, 2015.
Daout, S., Barbot, S., Peltzer, G., Doin, M. P., Liu, Z., and Jolivet, R.:
Constraining the kinematics of metropolitan Los Angeles faults with a
slip-partitioning model, Geophys. Res. Lett., 43, 11192–11201,
https://doi.org/10.1002/2016GL071061, 2016.
Devoti, R., Zuliani, D., Braitenberg, C., Fabris, P., and Grillo, B.:
Hydrologically induced slope deformations detected by GPS and clinometric
surveys in the Cansiglio Plateau, southern Alps, Earth Planet. Sc. Lett.,
419, 134–142, https://doi.org/10.1016/j.epsl.2015.03.023, 2015.
Doglioni, C.: Thrust tectonics example from the venetian alps, Studi
Geologici Camerti, special volume, 117–129, 1990.
Doglioni, C.: The Venetian Alps thrust belt, in: Thrust Tectonics, Springer
Netherlands, Dordrecht, 319–324,
https://doi.org/10.1007/978-94-011-3066-0_29, 1992.
Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.:
Corrections of stratified tropospheric delays in SAR interferometry:
Validation with global atmospheric models, J. Appl. Geophys., 69, 35–50,
2009.
Efron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors,
Confidence Intervals, and Other Measures of Statistical Accuracy, Stat.
Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986.
Elliott, J. R., Biggs, J., Parsons, B., and Wright, T. J.: InSAR slip rate
determination on the Altyn Tagh Fault, northern Tibet, in the presence of
topographically correlated atmospheric delays, Geophys. Res. Lett., 35, L12309,
https://doi.org/10.1029/2008GL033659, 2008.
Fantoni, R. and Franciosi, R.: Tectono-sedimentary setting of the Po Plain
and Adriatic foreland, Rend. Fis. Acc. Lincei, 21, 197–209,
https://doi.org/10.1007/s12210-010-0102-4, 2010.
Fantoni, R., Catellani, D., Merlini, S., Rogledi, S., and Venturini, S.: La
registrazione degli eventi deformativi cenozoici nell'avampaese
veneto-friulano, Mem. Soc. Geol. It., 57, 301–313, 2002.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Feng, G., Ding, X., Li, Z., Mi, J., Zhang, L., and Omura, M.: Calibration of
an InSAR-Derived Coseimic Deformation Map Associated With the 2011 Mw-9.0
Tohoku-Oki Earthquake, IEEE Geosci. Remote Sens. Lett., 9,
302–306, https://doi.org/10.1109/LGRS.2011.2168191, 2012.
Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F.,
Prati, C., and Rocca, F.: Submillimeter Accuracy of InSAR Time Series:
Experimental Validation, IEEE T. Geosci. Remote Sens., 45, 1142–1153,
https://doi.org/10.1109/TGRS.2007.894440, 2007.
Fontana, A., Mozzi, P., and Bondesan, A.: Alluvial megafans in the Veneto-Friuli
Plain: Evidence of aggrading and erosive phases during Late Pleistocene and
Holocene, Quaternary Int., 189, 71–90, 2008.
Fontana, A., Mozzi, P., and Marchetti, M.: Alluvial fans and megafans along
the southern side of the Alps, Sediment. Geol., 301, 150–171, 2014.
Frisch, W., Kuhlemann, J., Dunkl, I., and Brügel, A.: Palinspastic
reconstruction and topographic evolution of the Eastern Alps during late
Tertiary tectonic extrusion, Tectonophysics, 297, 1–15, https://doi.org/10.1016/S0040-1951(98)00160-7, 1998.
Gabriel, A., Goldstein, R., and Zebker, H.: Mapping Small Elevation Changes
Over Large Areas: Differential Radar Interferometry, J. Geophys.
Res., 94, 9183–9191, https://doi.org/10.1029/JB094iB07p09183, 1989.
Galadini, F., Meletti, C., and Vittori, E.: Major active faults in Italy:
available surficial data, Neth. J. Geosci., 80,
273–296, https://doi.org/10.1017/S001677460002388X, 2001.
Galadini, F., Poli, M. E., and Zanferrari, A.: Seismogenic sources
potentially responsible for earthquakes with M≥6 in the eastern
Southern Alps (Thiene-Udine sector, NE Italy), Geophys. J. Int., 161,
739–762, https://doi.org/10.1111/j.1365-246x.2005.02571.x, 2005.
Gatto, P. and Carbognin, L.: The Lagoon of Venice: Natural environmental trend
and man-induced modification, Hydrological Science Bulletin, 26, 379–391, 1981.
Ghulam, A., Amer, R., and Ripperdan, R.: A filtering approach to improve
deformation accuracy using large baseline, low coherence DInSAR phase
images, 2010 IEEE International Geoscience and Remote Sensing Symposium,
Honolulu, HI, IEEE, 3494–3497, https://doi.org/10.1109/IGARSS.2010.5652581, 2010.
Goldstein, R. M. and Werner, C. L.: Radar Interferogram Filtering for
Geophysical Applications, Geophys. Res. Lett., 25, 4035–4038,
https://doi.org/10.1029/1998GL900033, 1998.
Grandin, R., Doin, M.-P., Bollinger, L., Pinel-Puysségur, B., Ducret,
G., Jolivet, R., and Sapkota, S. N.: Long-term growth of the Himalaya
inferred from interseismic InSAR measurement, Geology, 40, 1059–1062,
https://doi.org/10.1130/G33154.1, 2012.
Hammond, W. C., Li, Z., Plag, H. P., Kreemer, C., and Blewitt, G.: Integrated InSAR and
GPS studies of crustal deformation in the Western Great Basin, Western
United States, Int. A. of the Ph., Rem. Sens. and Spatial Information Sc.,
Kyoto Japan, XXXVIII, 39–43, 2010.
Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C.: Introduction to
GAMIT/GLOBK, Release 10.6, available at:
http://geoweb.mit.edu/gg/Intro_GG.pdf (last access: 31 August 2020), 2015.
Hsu, Y.-J., Simons, M., Yu, S.-B., Kuo, L.-C., and Chen, H.-Y.: A
two-dimensional dislocation model for interseismic deformation of the Taiwan
mountain belt, Earth Planet. Sc. Lett., 211, 287–294,
https://doi.org/10.1016/S0012-821X(03)00203-6, 2003.
Jolivet, R., Lasserre, C., Doin, M.-P., Guillaso, S., Peltzer, G., Dailu,
R., Sun, J., Shen, Z.-K., and Xu, X.: Shallow creep on the Haiyuan Fault (Gansu,
China) revealed by SAR Interferometry, J. Geophys. Res., 117, B06401,
https://doi.org/10.1029/2011JB008732, 2012.
Jolivet, R., Lasserre, C., Doin, M. P., Peltzer, G., Avouac, J. P., Sun, J.,
and Dailu, R.: Spatio-temporal evolution of aseismic slip along the Haiyuan
fault, China: Implications for fault frictional properties, Earth Planet.
Sc. Lett., 377–378, 23–33, https://doi.org/10.1016/j.epsl.2013.07.020, 2013.
Jònsson, S., Zebker, H. A., Segall, P., and Amelung, F.: Fault slip
distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake,
estimated from satellite radar and GPS measurements, B. Seismol. Soc.
Am., 92, 1377–1389, https://doi.org/10.1785/0120000922, 2002.
Lohman, R. and Simons, M.: Some thoughts on the use of InSAR data to
constrain models of surface deformation: Noise structure and data
downsampling, Geochem. Geophy. Geosy., 6, Q01007, https://doi.org/10.1029/2004GC000841, 2005.
Maurer, J. and Johnson, K.: Fault coupling and potential for earthquakes on the
creeping section of the central San Andreas Fault, J. Geophys. Res.-Sol.
Ea., 119, 4414–4428, https://doi.org/10.1002/2013JB010741, 2014.
Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M., Schildgen,
T. F., and Strecker, M. R.: Glacial isostatic uplift of the European Alps,
Nat. Commun., 7, 13382, https://doi.org/10.1038/ncomms13382, 2016.
Molinari, I., Verbeke, J., Boschi, L., Kissling, E., and Morelli, A.:
Italian and Alpine three-dimensional crustal structure imaged by
ambient-noise surface-wave dispersion, Geochem. Geophy. Geosy. 16,
4405–4421, https://doi.org/10.1002/2015GC006176, 2015.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The
Alpine LGM in the boreal ice-sheets game, Sci. Rep.-UK, 7, 2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Moulin, A. and Benedetti, L.: Fragmentation of the Adriatic Promontory: New
Chronological Constraints From Neogene Shortening Rates Across the Southern
Alps (NE Italy), Tectonics, 105, 739–721, https://doi.org/10.1029/2018TC004958, 2018.
Mozzi, P.: Alluvial plain formation during the Late Quaternary between the
southern Alpine margin and the Lagoon of Venice (northern Italy), Geografia
Fisica e Dinamica Quaternaria, 7, 219–230, 2005.
Nocquet, J. M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N., Vernant,
P., Cushing, M., Jouanne, F., Masson, F., Baize, S., Chery, J., and van der
Beek, P. A.: Present-day uplift of the western Alps, Sci. Rep.-UK, 6, 28404,
https://doi.org/10.1038/srep28404, 2016.
Norton, K. P. and Hampel, A.: Postglacial rebound promotes glacial re-advances
– a case study from the European Alps, Terra Nova, 22, 297–302, 2010.
Okada, Y.: Surface deformation due to shear and tensile faults in a
half-space, B. Seismol. Soc. Am., 75, 1135–1154,
1985.
Pedersen, R., Jònsson, S., Àrnadòttir, T., Sigmundsson, F., and
Feigl, K. L.: Fault slip distribution of two June 2000 Mw 6.5 earthquakes in
South Iceland estimated from joint inversion of InSAR and GPS measurements,
Earth. Planet. Sc. Lett., 213, 487–502,
https://doi.org/10.1016/S0012-821X(03)00302-9, 2003.
Pellegrini, G. B. and Zambrano, R.: Il corso del Piave a Ponte nelle Alpi
nel Quaternario, Studi Trentini di Scienze Naturali, LVI, 69–100, 1979.
Pellegrini, G. B. and Zanferrari, A.: Inquadramento strutturale ed
evoluzione neotettonica dell'area compresa nei fogli 23-Belluno, 22-Feltre
(p.p.) e 24-Maniago (p.p.), C.N.R. Prog. Final. “Geodinamica”: contributi
alla realizzazione della carta neotettonica d'Italia, Pubbl. 356,
459–496, 1980.
Pellegrini, G. B., Albanese, D., Bertoldi, R., and Surian, N.: La
deglaciazione alpina nel Vallone Bellunese, Alpi meridionali orientali,
Geografia Fisica e Dinamica Quaternaria, Supplemento 7, 271–280, 2005.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth:
the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sc., 32,
111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.
Pondrelli, S., Ekstrom, G., and Morelli, A.: Seismotectonic re-evaluation
ofthe 1976 Friuli, Italy, seismic sequence, J. Seismol., 5, 73–83,
https://doi.org/10.1023/A:1009822018837, 2001.
Priolo, E., Romanelli, M., Plasencia Linares, M. P., Garbin, M., Peruzza, L.,
Romano, M. A., Marotta, P., Bernardi, P., Moratto, L., Zuliani, D., and
Fabris, P.: Seismic Monitoring of an Underground Natural Gas Storage
Facility: The Collalto Seismic Network, Seismol. Res. Lett., 86,
109–123, https://doi.org/10.1785/0220140087, 2015.
Ratschbacher, L., Merle, O., Davy, P., and Cobbold, P.: Lateral extrusion in
the eastern Alps, Part 1: Boundary conditions and experiments scaled for
gravity, Tectonics, 10, 245–256, https://doi.org/10.1029/90TC02622, 1991a.
Ratschbacher, L., Frisch, W., Linzer, H. G., and Merle, O.: Lateral extrusion in
the Eastern Alps, part 2: structural analysis, Tectonics, 10, 257–271, https://doi.org/10.1029/90TC02623, 1991b.
Robl, J., Heberer, B., Prasicek, G., Neubauer, F., and Hergarten, S.: The
topography of a continental indenter: The interplay between crustal
deformation, erosion, and base level changes in the eastern Southern Alps,
J. Geophys. Res.-Earth, 122, 310–334, https://doi.org/10.1002/2016JF003884, 2017.
Romano, M. A., Peruzza, L., Garbin, M., Priolo, E., and Picotti, V.:
Microseismic Portrait of the Montello Thrust (Southeastern Alps, Italy) from
a Dense High-Quality Seismic Network, Seismol. Res. Lett., 90, 1502–1517,
https://doi.org/10.1785/0220180387, 2019.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P. (Eds.): Italian Parametric Earthquake Catalogue (CPTI15), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome (Italy), https://doi.org/10.6092/INGV.IT-CPTI15, 2016.
Schmid, S. F., Genschuh, B., Kissling, E., and Schuster, R.: Tectonic map and
overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97, 93–117,
https://doi.org/10.1007/s00015-004-1113-x, 2004.
Segall, P. and Davis, J. L.: GPS applications for geodynamics and earthquake
studies, Annu. Rev. Earth Planet. Sc., 23, 201–336, 1997.
Serpelloni, E., Casula, G., Galvani, A., Anzidei, M., and Baldi, P.: Data
analysis of permanent GPS networks in Italy and surrounding regions:
application of a distributed processing approach, Ann. Geophys.-Italy, 49,
897–928, 2006.
Serpelloni, E., Faccenna, C., Spada, G., Dong, D., and Williams, S. D. P.:
Vertical GPS ground motion rates in the Euro-Mediterranean region: New
evidence of velocity gradients at different spatial scales along the
Nubia-Eurasia plate boundary, J. Geophys. Res.-Sol. Ea., 118, 6003–6024,
https://doi.org/10.1002/2013JB010102, 2013.
Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R. A.: Kinematics,
seismotectonics and seismic potential of the eastern sector of the European
Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181,
https://doi.org/10.1016/j.tecto.2016.09.026, 2016.
Serpelloni, E., Pintori, F., Gualandi, A., Scoccimarro, E., Cavaliere, A.,
Anderlini, L., Belardinelli, M. E., and Todesco, M.: Hydrologically-induced
karst deformation: insights from GPS measurements in the Adria-Eurasia plate
boundary zone, J. Geophys. Res.-Sol. Ea., 85, 457, https://doi.org/10.1002/2017jb015252,
2018.
Shirzaei, R. and Bürgmann, R.: Topography correlated atmospheric delay
correction in radar interferometry using wavelet transfoms, Geophys. Res.
Lett., 39, L01305, https://doi.org/10.1029/2011GL049971, 2012.
Slejko, D., Neri, G., Orozova, I., Renner, G., and Wyss, M.: Stress field in
Friuli (NE Italy) from fault plane solutions of activity following the 1976
main shock, B. Seismol. Soc. Am., 89,
1037–1052, 1999.
Spada, G., Antonioli, A., Boschi, L., Brandi, V., Cianetti, S., Galvani, G., Giunchi, C., Perniola, B., Piana Agostinetti, N., Piersanti, A., and Stocchi, P.: Modeling Earth's post-glacial
rebound, EOS T. Am. Geophys. Un., 85, 62–64, https://doi.org/10.1029/2004EO060007, 2004.
Spada, G., Stocchi, P., and Colleoni, F.: Glacio–isostatic Adjustment in
the Po Plain and in the Northern Adriatic Region, Pure Appl. Geophys., 166,
1303–1318, https://doi.org/10.1007/s00024-004-0498-9, 2009.
Spada, G., Barletta, V. R., Klemann, V., Riva, R. E. M., Martinec, Z.,
Gasperini, P., Lund, B., Wolf, D., Vermeersen, L. L. A., and King, M. A.: A
benchmark study for glacial isostatic adjustment codes, Geophys. J.
Int., 185, 106–132, https://doi.org/10.1111/j.1365-246X.2011.04952.x, 2011.
Sternai, P., Herman, F., Champagnac, J.-D., Fox, M., Salcher, B., and Willett,
S. D.: Preglacial topography of the European Alps, Geology, 40,
1067–1070, 2012.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett,
S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit,
C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift
of the European Alps: Evaluating mechanisms and models of their relative
contributions, Earth-Sci. Rev., 190, 589–604,
https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U., and
Rizzetto, F.: Mapping regional land displacements in the Venice coastland by
an integrated monitoring system, Remote Sens. Environ., 98, 403–413,
https://doi.org/10.1016/j.rse.2005.08.002, 2005.
Tosi, L., Carbognin, L., Teatini, P., Strozzi, T., and Wegmüller, U.: Evidence of the present relative land stability of Venice, Italy,
from land, sea, and space observations, Geophys. Res. Lett., 29, 1562,
https://doi.org/10.1029/2001GL013211, 2002.
Tsai, M.-C., Yu, S.-B., Hsu, Y.-J., Chen, H.-Y., and Chen, H.-W.: Interseismic
crustal deformation of frontal thrust fault system in the Chiayi–Tainan
area, Taiwan, Tectonophysics, 554–557, 169–184,
https://doi.org/10.1016/j.tecto.2012.05.014, 2012.
Vergne, J., Cattin, R., and Avouac, J. P.: On the use of dislocations to
model interseismic strain and stress build-up at intracontinental thrust
faults, Geophys. J. Int., 147, 155–162, 2001.
Waltz, R. A., Morales, J. L., Nocedal, J., and Orban, D.: An interior
algorithm for nonlinear optimization that combines line search and trust
region steps, Math. Programm., 107, 391–408,
2006.
Wang, H. and Wright, T. J.: Satellite geodetic imaging reveals internal
deformation of western Tibet, Geophys. Res. Lett., 39, L07303,
https://doi.org/10.1029/2012GL051222, 2012.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface
displacement, B. Seismol. Soc. Am., 84,
974–1002, 1994.
Wessel, P. and Smith, W. H. F.: New, improved version of Generic Mapping
Tools released, EOS T. Am. Geophys. Un., 79, p. 579, https://doi.org/10.1029/98EO00426, 1998.
Zanferrari, A., Pianetti, F., Mattana, U., Dall'Arche, L., and Tonielli, V.:
Evoluzione neotettonica e schema strutturale dell'area compresa nei Fogli 38
– Conegliano, 37 – Bassano del Grappa (p.p.) e 39 – Pordenone (p.p.), in: CNR
(1980) – Contributi alla realizzazione della Carta Neotettonica d'Italia,
P.F. Geodinamica, Pubbl. 356, 397–435, 1980.
Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., and Werner, C. L.:
On the derivation of coseismic displacement fields using differential radar
interferometry: the Landers earthquake, J. Geophys. Res., 99,
19617–19634, https://doi.org/10.1029/94JB01179, 1994.
Short summary
The Venetian Southern Alps (Italy) are located in a slowly deforming plate-boundary region where strong earthquakes occurred in the past even if seismological and geomorphological evidence is not conclusive about the specific thrust faults involved. In this study, we integrate and model different geodetic datasets of ground velocity to constrain the seismogenic potential of the studied faults, giving an example of the importance of using vertical geodetic data for seismic hazard estimates.
The Venetian Southern Alps (Italy) are located in a slowly deforming plate-boundary region where...