Articles | Volume 11, issue 1
https://doi.org/10.5194/se-11-199-2020
https://doi.org/10.5194/se-11-199-2020
Research article
 | 
21 Feb 2020
Research article |  | 21 Feb 2020

Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce)

Christian A. Bergemann, Edwin Gnos, Alfons Berger, Emilie Janots, and Martin J. Whitehouse

Related authors

Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite
Emmanuelle Ricchi, Christian A. Bergemann, Edwin Gnos, Alfons Berger, Daniela Rubatto, Martin J. Whitehouse, and Franz Walter
Solid Earth, 11, 437–467, https://doi.org/10.5194/se-11-437-2020,https://doi.org/10.5194/se-11-437-2020, 2020
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochronology
Temporospatial variation in the late Mesozoic volcanism in southeast China
Xianghui Li, Yongxiang Li, Jingyu Wang, Chaokai Zhang, Yin Wang, and Ling Liu
Solid Earth, 10, 2089–2101, https://doi.org/10.5194/se-10-2089-2019,https://doi.org/10.5194/se-10-2089-2019, 2019
Short summary
Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps)
Emilie Janots, Alexis Grand'Homme, Matthias Bernet, Damien Guillaume, Edwin Gnos, Marie-Christine Boiron, Magali Rossi, Anne-Magali Seydoux-Guillaume, and Roger De Ascenção Guedes
Solid Earth, 10, 211–223, https://doi.org/10.5194/se-10-211-2019,https://doi.org/10.5194/se-10-211-2019, 2019
Short summary

Cited articles

Aleinikoff, J. N., Schenk, W. S., Plank, M. O., Srogi, L., Fanning, C. M., Kamo, L., and Bosbyshell, H.: Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol. Soc. Am. Bull., 118, 39–64, https://doi.org/10.1130/B25659.1, 2006. 
Allaz, J., Engi, M., Berger, A., and Villa, I. M.: The effects of retrograde reactions and of diffusion on 40Ar∕39Ar ages of micas, J. Petrol., 52, 691–716, https://doi.org/10.1093/petrology/egq100, 2011. 
Beard, P.: Ueber den Wechsel der Mineralfazies in der Wurzelzone des Penninikums, Schweiz. Miner. Petrog., 38, 363–374, https://doi.org/10.5169/seals-29612, 1958. 
Bergemann, C., Gnos, E., Berger, A., Whitehouse, M., Mullis, J., Pettke, T., and Janots, E.: Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the central Alps, Switzerland, Tectonics, 36, 671–689, https://doi.org/10.1002/2016TC004407, 2017. 
Bergemann, C. A., Gnos, E., Berger, A., Whitehouse, M. J., Mullis, J., Walter, F., and Bojar, H. P.: Constraining long-term fault activity in the brittle domain through in-situ dating of hydrothermal monazite, Terra Nova, 30, 440–446, https://doi.org/10.1111/ter.12360, 2018. 
Download
Short summary
Metamorphic domes are areas in a mountain chain that were unburied and where deeper parts of the crust rose to the surface. The Lepontine Dome in the Swiss and Italian Alps is such a place, and it is additionally bordered on two sides by shear zones where crustal blocks moved past each other. To determine when these tectonic movements happened, we measured the ages of monazite crystals that form in fluid-filled pockets inside the rocks during these movements of exhumation and deformation.