Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2257-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2257-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of basement rocks on fluid evolution during multiphase deformation: the example of the Estamariu thrust in the Pyrenean Axial Zone
Department de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra,
Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028 Barcelona, Spain
Gemma Alías
Department de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra,
Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028 Barcelona, Spain
David Cruset
Group of Dynamics of the Lithosphere (GDL), Geosciences Barcelona,
GEO3BCN-CSIC,
Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain
Irene Cantarero
Department de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra,
Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028 Barcelona, Spain
Cédric M. John
Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
Anna Travé
Department de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra,
Universitat de Barcelona (UB), C/ Martí i Franquès s/n, 08028 Barcelona, Spain
Related authors
No articles found.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)
Mapping geochemical anomalies by accounting for the uncertainty of mineralization-related elemental associations
Rare Earth element distribution on the Fuerteventura Basal Complex (Canary Islands, Spain): a geochemical and mineralogical approach
Mineralogical and elemental geochemical characteristics of Taodonggou Group mudstone in the Taibei Sag, Turpan–Hami Basin: implication for its formation mechanism
Application of lithogeochemical and pyrite trace element data for the determination of vectors to ore in the Raja Au–Co prospect, northern Finland
Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA
Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions
Squirt flow due to interfacial water films in hydrate bearing sediments
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Jian Wang, Renguang Zuo, and Qinghai Liu
Solid Earth, 15, 731–746, https://doi.org/10.5194/se-15-731-2024, https://doi.org/10.5194/se-15-731-2024, 2024
Short summary
Short summary
This study improves geochemical mapping by addressing the uncertainty in defining element associations. It clusters the study area by element similarity, recognizes elemental associations for each cluster, and then detects anomalies indicating underlying geological processes. This method is applied to a region in China, confirming its effectiveness and consistency with the geology. This study can enhance geochemical mapping for mineral exploration and improve geological-process understanding.
Marc Campeny, Inmaculada Menéndez, Luis Quevedo, Jorge Yepes, Ramón Casillas, Agustina Ahijado, Jorge Méndez-Ramos, and José Mangas
Solid Earth, 15, 639–656, https://doi.org/10.5194/se-15-639-2024, https://doi.org/10.5194/se-15-639-2024, 2024
Short summary
Short summary
The Basal Complex unit on Fuerteventura island comprises magmatic rocks showing significant rare Earth element (REE) concentrations with values up to 10 300 ppm REY (REEs plus yttrium). We carried out mineralogical and geochemical analyses, but additional research is needed to fully understand their distribution due to structural complexities and environmental factors.
Huan Miao, Jianying Guo, Yanbin Wang, Zhenxue Jiang, Chengju Zhang, and Chuanming Li
Solid Earth, 14, 1031–1052, https://doi.org/10.5194/se-14-1031-2023, https://doi.org/10.5194/se-14-1031-2023, 2023
Short summary
Short summary
The Taodonggou Group mudstone was deposited in a warm, humid, and hot paleoclimate with strong weathering. The parent rocks of the Taodonggou Group mudstone are felsic volcanic rocks and andesites, with weak sedimentary sorting and recycling and with well-preserved source information. The Taodonggou Group mudstone was deposited in dyoxic fresh water–brackish water in intermediate-depth or deep lakes with stable inputs of terrigenous debris but at slower deposition rates.
Sara Raič, Ferenc Molnár, Nick Cook, Hugh O'Brien, and Yann Lahaye
Solid Earth, 13, 271–299, https://doi.org/10.5194/se-13-271-2022, https://doi.org/10.5194/se-13-271-2022, 2022
Short summary
Short summary
Orogenic gold deposits in Paleoproterozoic belts in northern Finland have been explored not only for gold but because of the occurrences of economically important concentrations of base metals, especially cobalt. In this study we are testing the vectoring capacities of pyrite trace element geochemistry, combined with lithogeochemical and sulfur isotopic data in the Raja gold–cobalt prospect (northern Finland), by using multivariate statistical data analysis.
Jace M. Koger and Dennis L. Newell
Solid Earth, 11, 1969–1985, https://doi.org/10.5194/se-11-1969-2020, https://doi.org/10.5194/se-11-1969-2020, 2020
Short summary
Short summary
The Hurricane fault is a major and active normal fault located in the southwestern USA. This study utilizes the geochemistry and dating of calcite veins associated with the fault to characterize ancient groundwater flow. Results show that waters moving along the fault over the last 540 000 years were a mixture of infiltrating fresh water and deep, warm salty groundwater. The formation of calcite veins may be related to ancient earthquakes, and the fault influences regional groundwater flow.
Elmar Albers, Wolfgang Bach, Frieder Klein, Catriona D. Menzies, Friedrich Lucassen, and Damon A. H. Teagle
Solid Earth, 10, 907–930, https://doi.org/10.5194/se-10-907-2019, https://doi.org/10.5194/se-10-907-2019, 2019
Short summary
Short summary
To understand the fate of carbon in subducted oceanic sediments and crust, we studied carbonate phases in rocks from the Mariana subduction zone. These show that carbon is liberated from the downgoing plate at depths less than 20 km. Some of the carbon is subsequently trapped in minerals and likely subducts to greater depths, whereas fluids carry the other part back into the ocean. Our findings imply that shallow subduction zone processes may play an important role in the deep carbon cycle.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Cited articles
Arndt, M., Virgo, S., Cox, S. F., and Urai, J. L.: Changes in fluid pathways
in a calcite vein mesh (Natih Formation, Oman Mountains): insights from
stable isotopes, Geofluids, 14, 391–418, https://doi.org/10.1111/gfl.12083, 2014.
Banks, D., Da Vies, G., Yardley, B. W., McCaig, A., and Grant, N.: The
chemistry of brines from an Alpine thrust system in the Central Pyrenees: An
application of fluid inclusion analysis to the study of fluid behaviour in
orogenesis, Geochim. Cosmochim. Ac., 55, 1021–1030,
https://doi.org/10.1016/0016-7037(91)90160-7, 1991.
Baqués, V., Travé, A., Benedicto, A., Labaume, P., and Cantarero, I.: Relationships between carbonate fault rocks and fluid flow regime during propagation of the Neogene extensional faults of the Penedès basin (Catalan Coastal Ranges, NE Spain), J. Geochemical Explor., 106, 24–33, https://doi.org/10.1016/j.gexplo.2009.11.010, 2010.
Baqués, V., Travé, A., Roca, E., Marin, M., and Cantarero, I.: Geofluid
behaviour in successive extensional and compressional events: a case study
from the southwestern end of the Valles-Penedes Fault (Catalan Coastal
Ranges, NE Spain), Pet. Geosci., 18, 17–31, https://doi.org/10.1144/1354-079311-017,
2012.
Barker, S. L. L. and Cox, S. F.: Evolution of fluid chemistry and fluid-flow
pathways during folding and faulting: an example from Taemas, NSW,
Australia, J. Geol. Soc. London, Spec. Publ., 359, 203–227,
https://doi.org/10.1144/SP359.12, 2011.
Barker, S. L. L., Bennett, V. C., Cox, S. F., Norman, M. D., and Gagan, M.
K.: Sm-Nd, Sr, C and O isotope systematics in hydrothermal
calcite-fluorite veins: Implications for fluid-rock reaction and
geochronology, Chem. Geol., 268, 58–66,
https://doi.org/10.1016/j.chemgeo.2009.07.009, 2009.
Beaudoin, N., Bellahsen, N., Lacombe, O., Emmanuel, L., and Pironon, J.:
Crustal-scale fluid flow during the tectonic evolution of the Bighorn Basin
(Wyoming, USA), Basin Res., 26, 403–435, https://doi.org/10.1111/bre.12032, 2014.
Beaudoin, N., Huyghe, D., Bellahsen, N., Lacombe, O., Emmanuel, L.,
Mouthereau, F., and Ouanhnon, L.: Fluid systems and fracture development
during syn-depositional fold growth: An example from the Pico del Aguila
anticline, Sierras Exteriores, southern Pyrenees, Spain, J. Struct. Geol.,
70, 23–38, https://doi.org/10.1016/j.jsg.2014.11.003, 2015.
Bickle, M. J., Wickham, S. M., Chapman, H. J., and Taylor, H. P.: A
strontium, neodymium and oxygen isotope study of hydrothermal metamorphism
and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France,
Contrib. Mineral. Petr., 100, 399–417, https://doi.org/10.1007/BF00371371, 1988.
Bons, A.: Intracrystalline deformation and slaty cleavage development in
very low-grade slates from the Central Pyrenees, Geol. Ultraiectina, 56, 173 pp., ISBN 90715770909789071577093, 1988.
Breesch, L., Swennen, R., and Vincent, B.: Fluid flow reconstruction in
hanging and footwall carbonates: Compartmentalization by Cenozoic reverse
faulting in the Northern Oman Mountains (UAE), Mar. Petrol. Geol., 26,
113–128, https://doi.org/10.1016/j.marpetgeo.2007.10.004, 2009.
Burkhard, M., Kerrich, R., Maas, R., and Fyfe, W. S.: Stable and Sr-isotope
evidence for fluid advection during thrusting of the glarus nappe (swiss
alps), Contrib. Mineral. Petr., 112, 293–311,
https://doi.org/10.1007/BF00310462, 1992.
Caballero, Y., Gironde, C., and Le Goff, E.: Ressource en eau thermale de la
station d'Ameìlie-les-Bains, Etat des lieux, Rapport BRGM/RP-60618-FR, BRGM (French Geological Survey), Orleans, France, 56 pp., 2012.
Cabrera, L., Roca, E., and Santanach, P.: Basin formation at the end of a
strike-slip fault: the Cerdanya Basin (eastern Pyrenees), J. Geol. Soc.
London, 145, 261–268, https://doi.org/10.1144/gsjgs.145.2.0261, 1988.
Cantarero, I., Travé, A., Alías, G., and Baqués, V.: Polyphasic
hydrothermal and meteoric fluid regimes during the growth of a segmented
fault involving crystalline and carbonate rocks (Barcelona Plain, NE Spain),
Geofluids, 14, 20–44, https://doi.org/10.1111/gfl.12021, 2014.
Cantarero, I., Alías, G., Cruset, D., Carola, E., Lanari, P., and
Travé, A.: Fluid composition changes in crystalline basement rocks from
ductile to brittle regimes, Global Planet. Change, 171, 273–292,
https://doi.org/10.1016/j.gloplacha.2018.03.002, 2018.
Cardellach, E., Canals, À., and Grandia, F.: Recurrent hydrothermal
activity induced by successive extensional episodes: the case of the Berta
F-(Pb-Zn) vein system (NE Spain), Ore Geol. Rev., 22, 133–141,
https://doi.org/10.1016/S0169-1368(02)00112-9, 2003.
Carmona, J. M., Bitzer, K., López, E., and Bouazza, M.: Isotopic
composition and origin of geothermal waters at Caldetes (Maresme-Barcelona),
J. Geochem. Explor., 69–70, 441–447, https://doi.org/10.1016/S0375-6742(00)00127-8,
2000.
Casas, J. M., Domingo, F., Poblet, J., and Soler, A.: On the role of the
Hercynian and Alpine thrusts in the Upper Paleozoic rocks of the Central and
Eastern Pyrenees, Geodin. Acta, 3, 135–147,
https://doi.org/10.1080/09853111.1989.11105181, 1989.
Cerling, T. E.: The stable isotopic composition of modern soil carbonate and its relationship to climate, Earth Planet. Sci. Lett., 71, 229–240, https://doi.org/10.1016/0012-821X(84)90089-X, 1984.
Choukroune, P.: The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt, Tectonics, 8, 23–39,
https://doi.org/10.1029/TC008i001p00023, 1989.
Cochelin, B., Lemirre, B., Denèle, Y., de Saint Blanquat, M., Lahfid, A.,
and Duchêne, S.: Structural inheritance in the Central Pyrenees: the
Variscan to Alpine tectonometamorphic evolution of the Axial Zone, J. Geol.
Soc. London, 175, 336–351, https://doi.org/10.1144/jgs2017-066, 2018.
Cox, S. F.: Structural and isotopic constraints on fluid flow regimes and
fluid pathways during upper crustal deformation: An example from the Taemas
area of the Lachlan Orogen, SE Australia, J. Geophys. Res., 112, B08208,
https://doi.org/10.1029/2006JB004734, 2007.
Crespo-Blanc, A., Masson, H., Sharp, Z., Cosca, M., and Hunziker, J.: A
stable and 40Ar/39Ar isotope study of a major thrust in the Helvetic nappes
(Swiss Alps): Evidence for fluid flow and constraints on nappe kinematics,
Geol. Soc. Am. Bull., 107, 1129–1144,
https://doi.org/10.1130/0016-7606(1995)107<1129:ASAAAI>2.3.CO;2, 1995.
Crognier, N., Hoareau, G., Aubourg, C., Dubois, M., Lacroix, B., Branellec,
M., Callot, J. P., and Vennemann, T.: Syn-orogenic fluid flow in the Jaca
basin (south Pyrenean fold and thrust belt) from fracture and vein analyses,
Basin Res., 30, 187–216, https://doi.org/10.1111/bre.12249, 2018.
Cruset, D.: Sequential fluid migration along a fold and thrust belt SE
pyrenees from late Cretaceous to Oligocene, PhD thesis, Universitat de
Barcelona, 352 pp., 2019.
Cruset, D., Cantarero, I., Travé, A., Vergés, J., and John, C. M.:
Crestal graben fluid evolution during growth of the Puig-reig anticline
(South Pyrenean fold and thrust belt), J. Geodyn., 101, 30–50,
https://doi.org/10.1016/j.jog.2016.05.004, 2016.
Cruset, D., Cantarero, I., Vergés, J., John, C. M., Muñoz-López,
D., and Travé, A.: Changes in fluid regime in syn-orogenic sediments
during the growth of the south Pyrenean fold and thrust belt, Global Planet. Change, 171, 207–224, https://doi.org/10.1016/j.gloplacha.2017.11.001,
2018.
Cruset, D., Cantarero, I., Benedicto, A., John, C. M., Vergés, J.,
Albert, R., Gerdes, A., and Travé, A.: From hydroplastic to brittle
deformation: Controls on fluid flow in fold and thrust belts. Insights from
the Lower Pedraforca thrust sheet (SE Pyrenees), Mar. Petrol. Geol., 120,
104517, https://doi.org/10.1016/j.marpetgeo.2020.104517, 2020a.
Cruset, D., Vergés, J., Albert, R., Gerdes, A., Benedicto, A.,
Cantarero, I., and Travé, A.: Quantifying deformation processes in the SE
Pyrenees using U-Pb dating of fracture-filling calcites, J. Geol. Soc.
London, 177, 1186–1196, https://doi.org/10.1144/jgs2020-014, 2020b.
Dewever, B., Swennen, R., and Breesch, L.: Fluid flow compartmentalization in the Sicilian fold and thrust belt: Implications for the regional aqueous fluid flow and oil migration history, Tectonophysics, 591, 194–209, https://doi.org/10.1016/j.tecto.2011.08.009, 2013.
Faulds, J., Coolbaugh, M., Bouchot, V., Moeck, I., Oğuz, K., and Cedex,
O.: Characterizing Structural Controls of Geothermal Reservoirs in the Great
Basin, USA, and Western Turkey: Developing Successful Exploration
Strategies in Extended Terranes, World Geothermal Congress 2010, 25–29, 2010.
Faÿ-Gomord, O., Allanic, C., Verbiest, M., Honlet, R., Champenois, F.,
Bonifacie, M., Chaduteau, C., Wouters, S., Muchez, P., Lasseur, E., and
Swennen, R.: Understanding Fluid Flow during Tectonic Reactivation: An
Example from the Flamborough Head Chalk Outcrop (UK), Geofluids, vol. 2018,
1–17, https://doi.org/10.1155/2018/9352143, 2018.
Fernàndez, M. and Banda, E.: Geothermal anomalies in the Valles-Penedes
Graben Master Fault: Convection through the Horst as a possible mechanism,
J. Geophys. Res., 95, 4887, https://doi.org/10.1029/JB095iB04p04887, 1990.
Fitz-Diaz, E., Hudleston, P., Siebenaller, L., Kirschner, D., Camprubí,
A., Tolson, G., and Puig, T. P.: Insights into fluid flow and water-rock
interaction during deformation of carbonate sequences in the Mexican
fold-thrust belt, J. Struct. Geol., 33, 1237–1253,
https://doi.org/10.1016/j.jsg.2011.05.009, 2011.
Foden, J.: Sr-isotopic evidence for Late Neoproterozoic rifting in the
Adelaide Geosyncline at 586 Ma: implications for a Cu ore forming fluid
flux, Precambrian Res., 106, 291–308,
https://doi.org/10.1016/S0301-9268(00)00132-7, 2001.
Fontana, S., Nader, F. H., Morad, S., Ceriani, A., Al-Aasm, I. S., Daniel,
J. M., and Mengus, J. M.: Fluid-rock interactions associated with regional
tectonics and basin evolution, Sedimentology, 61, 660–690,
https://doi.org/10.1111/sed.12073, 2014.
Friedman, I. and O'Neil, J. R.: Compilation of stable isotope fractionation factors of geochemical interest, Data of Geochemistry, U. S. Gov. Print. Off, Washington D. C., p. 11, https://doi.org/10.3133/pp440KK, 1977.
García-Sansegundo, J., Poblet, J., Alonso, J. L., and Clariana, P.:
Hinterland-foreland zonation of the Variscan orogen in the Central Pyrenees:
comparison with the northern part of the Iberian Variscan Massif, Geol. Soc.
London, Spec. Publ., 349, 169–184, https://doi.org/10.1144/SP349.9, 2011.
Gasparrini, M., Ruggieri, G., and Brogi, A.: Diagenesis versus
hydrothermalism and fluid-rock interaction within the Tuscan Nappe of the
Monte Amiata CO2-rich geothermal area (Italy), Geofluids, 13,
159–179, https://doi.org/10.1111/gfl.12025, 2013.
Gomez-Rivas, E., Bons, P. D., Koehn, D., Urai, J. L., Arndt, M., Virgo, S.,
Laurich, B., Zeeb, C., Stark, L., and Blum, P.: The Jabal Akhdar dome in the
Oman Mountains: Evolution of a dynamic fracture system, Am. J. Sci., 314,
1104–1139, https://doi.org/10.2475/07.2014.02, 2014.
Goula, X., Olivera, C., Fleta, J., Grellet, B., Lindo, R., Rivera, L. A., Cisternas, A., and Carbon, D.: Present and recent stress regime in the eastern part of the Pyrenees, Tectonophysics, 308, 487–502, https://doi.org/10.1016/S0040-1951(99)00120-1, 1999.
Grant, N. T., Banks, D. A., McCaig, A. M., and Yardley, B. W. D.: Chemistry,
source, and behavior of fluids involved in alpine thrusting of the Central
Pyrenees, J. Geophys. Res., 95, 9123, https://doi.org/10.1029/JB095iB06p09123, 1990.
Grasby, S. E. and Hutcheon, I.: Controls on the distribution of thermal
springs in the southern Canadian Cordillera, Can. J. Earth Sci., 38,
427–440, https://doi.org/10.1139/cjes-38-3-427, 2001.
Hartevelt, J. J. A.: Geology of the Upper Segre and Valira Valleys, Central
Pyrenees, Andorra, Spain, Geological Institute, Leiden University, Leiden, 45, 167–236, 1970.
Henderson, I. H. C. and McCaig, A. M.: Fluid pressure and salinity
variations in shear zone-related veins, central Pyrenees, France:
Implications for the fault-valve model, Tectonophysics, 262, 321–348,
https://doi.org/10.1016/0040-1951(96)00018-2, 1996.
Kluge, T., John, C. M., Jourdan, A.-L., Davis, S., and Crawshaw, J.:
Laboratory calibration of the calcium carbonate clumped isotope thermometer
in the 25–250 ∘C temperature range, Geochim. Cosmochim. Ac.,
157, 213–227, https://doi.org/10.1016/j.gca.2015.02.028, 2015.
Krimissa, M., Chery, L., Fouillac, C., and Michelot, J. L.: Origin and
Recharge Altitude of the Thermo-Mineral Waters of the Eastern Pyrenees,
Isot Environ. Healt. S., 30, 317–331,
https://doi.org/10.1080/00211919408046747, 1994.
Lacroix, B., Buatier, M., Labaume, P., Travé, A., Dubois, M.,
Charpentier, D., Ventalon, S., and Convert-Gaubier, D.: Microtectonic and
geochemical characterization of thrusting in a foreland basin: Example of
the South-Pyrenean orogenic wedge (Spain), J. Struct. Geol., 33,
1359–1377, https://doi.org/10.1016/j.jsg.2011.06.006, 2011.
Lacroix, B., Travé, A., Buatier, M., Labaume, P., Vennemann, T., and
Dubois, M.: Syntectonic fluid-flow along thrust faults: Example of the
South-Pyrenean fold-and-thrust belt, Mar. Petrol. Geol., 49, 84–98,
https://doi.org/10.1016/j.marpetgeo.2013.09.005, 2014.
Lacroix, B., Baumgartner, L. P., Bouvier, A.-S., Kempton, P. D., and
Vennemann, T.: Multi fluid-flow record during episodic mode I opening: A
microstructural and SIMS study (Cotiella Thrust Fault, Pyrenees), Earth Planet. Sc. Lett., 503, 37–46, https://doi.org/10.1016/j.epsl.2018.09.016, 2018.
Lago, M., Arranz, E., Pocoví, A., Galé, C., and Gil-Imaz, A.:
Permian magmatism and basin dynamics in the southern Pyrenees: a record of
the transition from late Variscan transtension to early Alpine extension,
Geol. Soc. London, Spec. Publ., 223, 439–464,
https://doi.org/10.1144/GSL.SP.2004.223.01.19, 2004.
Liotta, D., Ruggieri, G., Brogi, A., Fulignati, P., Dini, A., and Nardini,
I.: Migration of geothermal fluids in extensional terrains: the ore deposits
of the Boccheggiano-Montieri area (southern Tuscany, Italy), Int. J. Earth
Sci., 99, 623–644, https://doi.org/10.1007/s00531-008-0411-3, 2010.
Marshall, J. D.: Climatic and oceanographic isotopic signals from the
carbonate rock record and their preservation, Geol. Mag., 129, 143–160,
https://doi.org/10.1017/S0016756800008244, 1992.
Martí, J.: Caldera-like structures related to Permo-Carboniferous
volcanism of the Catalan Pyrenees (NE Spain), J. Volcanol. Geoth. Res.,
45, 173–186, https://doi.org/10.1016/0377-0273(91)90057-7, 1991.
Martí, J.: Genesis of crystal-rich volcaniclastic facies in the Permian
red beds of the Central Pyrenees (NE Spain), Sediment. Geol., 106,
1–19, https://doi.org/10.1016/0037-0738(95)00143-3, 1996.
Martín-Martín, J. D., Travé, A., Gomez-Rivas, E., Salas, R.,
Sizun, J. P., Vergés, J., Corbella, M., Stafford, S. L., and Alfonso, P.:
Fault-controlled and stratabound dolostones in the Late Aptian-earliest
Albian Benassal Formation (Maestrat Basin, E Spain): Petrology and
geochemistry constrains, Mar. Petrol. Geol., 65, 83–102,
https://doi.org/10.1016/j.marpetgeo.2015.03.019, 2015.
Martinez Casas, L. F., Travé, A., Cruset, D., and Muñoz-López,
D.: The Montagut Fault System: Geometry and Fluid Flow Analysis (Southern
Pyrennes, Spain), in: Petrogenesis and Exploration of the Earth's Interior,
Proceedings of the 1st Springer Conference of the Arab. J. Geosci. (CAJG-1), Tunisia 2018, 211–214., 2019.
McArthur, J. M., Howarth, R. J., and Shields, G. A.: Strontium Isotope
Stratigraphy, in: The Geologic Time Scale, vol. 1–2,
Elsevier, 127–144, ISBN 9780444594259, 2012.
McCaig, A. M., Wayne, D. M., Marshall, J. D., Banks, D., and Henderson, I.:
Isotopic and fluid inclusion studies of fluid movement along the Gavarnie
Thrust, central Pyrenees; reaction fronts in carbonate mylonites, Am. J.
Sci., 295, 309–343, https://doi.org/10.2475/ajs.295.3.309, 1995.
McCaig, A. M., Tritlla, J., and Banks, D.: Fluid mixing and recycling during
Pyrenean thrusting: evidence from fluid inclusion halogen ratios, Geochim. Cosmochim. Ac., 64, 3395–3412, https://doi.org/10.1016/S0016-7037(00)00437-3, 2000a.
McCaig, A. M., Wayne, D. M., and Rosenbaum, J. M.: Fluid expulsion and
dilatancy pumping during thrusting in the Pyrenees: Pb and Sr isotope
evidence, Geol. Soc. Am. Bull., 112, 1199–1208,
https://doi.org/10.1130/0016-7606(2000)112<1199:FEADPD>2.0.CO;2, 2000b.
Mey, P. H. W.: The geology of the upper Ribagorzana and Baliera Valleys,
Central Pyrenees, Spain, Leidse Geol. Meded., 41, 153–220, 1967.
Mey, P. H. W., Nagtegaal, P. J. C., Roberti, K. J., and Hartevelt, J. J. A.:
Lithostratigraphic subdivision of Post-Hercynian deposits in the
South-Central Pyrenees, Spain, Leidse Geol. Meded., 41, 221–228, 1968.
Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O.,
Fellin, M. G., Castelltort, S., Christophoul, F., and Masini, E.: Placing
limits to shortening evolution in the Pyrenees: Role of margin architecture
and implications for the Iberia/Europe convergence, Tectonics, 33,
2283–2314, https://doi.org/10.1002/2014TC003663, 2014.
Mozafari, M., Swennen, R., Balsamo, F., El Desouky, H., Storti, F., and Taberner, C.: Fault-controlled dolomitization in the Montagna dei Fiori Anticline (Central Apennines, Italy): record of a dominantly pre-orogenic fluid migration, Solid Earth, 10, 1355–1383, https://doi.org/10.5194/se-10-1355-2019, 2019.
Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees
crustal balanced cross-section, in: Thrust Tectonics, Springer
Netherlands, Dordrecht, 235–246, ISBN 978-0-412-43900-1, 1992.
Muñoz, J. A.: Fault-related folds in the southern Pyrenees, Am. Assoc. Petr. Geol. B., 101, 579–587, https://doi.org/10.1306/011817DIG17037, 2017.
Muñoz, J. A., Martinez, A. and Verges, J.: Thrust sequences in the
eastern Spanish Pyrenees, J. Struct. Geol., 8, 399–405, 1986.
Muñoz-López, D., Cruset, D., Cantarero, I., Benedicto, A., John, C.
M., and Travé, A.: Fluid Dynamics in a Thrust Fault Inferred from
Petrology and Geochemistry of Calcite Veins: An Example from the Southern
Pyrenees, Geofluids, 2020, 8815729, https://doi.org/10.1155/2020/8815729, 2020.
Nardini, N., Muñoz-López, D., Cruset, D., Cantarero, I.,
Martín-Martín, J., Benedicto, A., Gomez-Rivas, E., John, C., and
Travé, A.: From Early Contraction to Post-Folding Fluid Evolution in the
Frontal Part of the Bóixols Thrust Sheet (Southern Pyrenees) as Revealed
by the Texture and Geochemistry of Calcite Cements, Minerals, 9, 117, 1–29,
https://doi.org/10.3390/min9020117, 2019.
Nelson, S. T., Mayo, A. L., Gilfillan, S., Dutson, S. J., Harris, R. A.,
Shipton, Z. K., and Tingey, D. G.: Enhanced fracture permeability and
accompanying fluid flow in the footwall of a normal fault: The Hurricane
fault at Pah Tempe hot springs, Washington County, Utah, Geol. Soc. Am.
Bull., 121, 236–246, https://doi.org/10.1130/B26285.1, 2009.
Pfeifer, H.-R., Oberhänsli, H., and Epprecht, W.: Geochemical evidence
for a synsedimentary hydrothermal origin of Jurassic iron-manganese deposits
at Gonzen (Sargans, Helvetic Alps, Switzerland), Mar. Geol., 84,
257–272, https://doi.org/10.1016/0025-3227(88)90105-3, 1988.
Piessens, K., Muchez, P., Dewaele, S., Boyce, A., De Vos, W., Sintubin, M.,
Debacker, T. N., Burke, E. A. J., and Viaene, W.: Fluid flow, alteration and
polysulphide mineralisation associated with a low-angle reverse shear zone
in the Lower Palaeozoic of the Anglo-Brabant fold belt, Belgium,
Tectonophysics, 348, 73–92, https://doi.org/10.1016/S0040-1951(01)00250-5, 2002.
Poblet, J.: Estructura herciniana i alpina del vessant sud de la zona axial
del Pirineu centra, Universitat de Barcelona, 604 pp., 1991.
Pomerol, B.: Geochemistry of the late Cenomanian-early Turonian chalks of
the Paris Basin: Manganese and carbon isotopes in carbonates as
paleooceanographic indicators, Cretaceous Res., 4, 85–93,
https://doi.org/10.1016/0195-6671(83)90025-3, 1983.
Pratt, L. M., Force, E. R., and Pomerol, B.: Coupled manganese and
carbon-isotopic events in marine carbonates at the Cenomanian-Turonian
boundary, J. Sediment. Petrol., 61, 370–383,
https://doi.org/10.1306/D4267717-2B26-11D7-8648000102C1865D, 1991.
Roca, E.: The Neogene Cerdanya and Seu d'Urgell intramontane basins (Eastern
Pyrenees), in: Tertiary basins of Spain, edited by: Friend, P. F. and
Dabrio, C. J., Cambridge University Press, Cambridge, 114–119, 1996.
Roca, E. and Guimerà, J.: The Neogene structure of the eastern Iberian
margin: Structural constraints on the crustal evolution of the Valencia
trough (western Mediterranean), Tectonophysics, 203, 203–218,
https://doi.org/10.1016/0040-1951(92)90224-T, 1992.
Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A.,
Matheron, P., Bareyt, M., Seguret, M., Camara, P., and Deramond, J.: Ecors
deep seismic data and balanced cross sections: Geometric constraints on the
evolution of the Pyrenees, Tectonics, 8, 41–50,
https://doi.org/10.1029/TC008i001p00041, 1989.
Rowland, J. V. and Sibson, R. H.: Structural controls on hydrothermal flow
in a segmented rift system, Taupo Volcanic Zone, New Zealand, Geofluids,
4, 259–283, https://doi.org/10.1111/j.1468-8123.2004.00091.x, 2004.
Rye, D. M. and Bradbury, H. J.: Fluid flow in the crust; an example from a
Pyrenean thrust ramp, Am. J. Sci., 288, 197–235,
https://doi.org/10.2475/ajs.288.3.197, 1988.
Saura, E.: Analisi estructural de la Zona de les Nogures (Pirineus
Centrals), PhD thesis, Universitat de Barcelona, 398 pp., 2004.
Saura, E. and Teixell, A.: Inversion of small basins: effects on structural
variations at the leading edge of the Axial Zone antiformal stack (Southern
Pyrenees, Spain), J. Struct. Geol., 28, 1909–1920,
https://doi.org/10.1016/j.jsg.2006.06.005, 2006.
Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T.
P., Laya, J. C., Perez-Huerta, A., Becker, S. P., and Lawson, M.: Clumped
isotope thermometry in deeply buried sedimentary carbonates: The effects of
bond reordering and recrystallization, Geol. Soc. Am. Bull., 127,
B31169.1, https://doi.org/10.1130/B31169.1, 2015.
Sibson, R. H.: Crustal stress, faulting and fluid flow, Geol. Soc. London,
Spec. Publ., 78, 69–84, https://doi.org/10.1144/GSL.SP.1994.078.01.07, 1994.
Sibson, R. H.: Selective fault reactivation during basin inversion:
potential for fluid redistribution through fault-valve action, Geol. Soc.
London, Spec. Publ., 88, 3–19, https://doi.org/10.1144/GSL.SP.1995.088.01.02, 1995.
Sibuet, J.-C., Srivastava, S. P. and Spakman, W.: Pyrenean orogeny and plate kinematics, J. Geophys. Res., 109, 1–18, https://doi.org/10.1029/2003JB002514, 2004.
Srivastava, S. P., Schouten, H., Roest, W. R., Klitgord, K. D., Kovacs, L.
C., Verhoef, J., and Macnab, R.: Iberian plate kinematics: A jumping plate
boundary between Eurasia and Africa, Nature, 344, 756–759, https://doi.org/10.1038/344756a0, 1990.
Stolper, D. A. and Eiler, J. M.: The kinetics of solid-state
isotope-exchange reactions for clumped isotopes: A study of inorganic
calcites and apatites from natural and experimental samples, Am. J. Sci.,
315, 363–411, https://doi.org/10.2475/05.2015.01, 2015.
Suchy, V., Heijlen, W., Sykorova, I., Muchez, P., Dobes, P., Hladikova, J.,
Jackova, I., Safanda, J., and Zeman, A.: Geochemical study of calcite veins
in the Silurian and Devonian of the Barrandian Basin (Czech Republic):
evidence for widespread post-Variscan fluid flow in the central part of the
Bohemian Massif, Sediment. Geol., 131, 201–219,
https://doi.org/10.1016/S0037-0738(99)00136-0, 2000.
Taillefer, A., Soliva, R., Guillou-Frottier, L., Le Goff, E., Martin, G., and
Seranne, M.: Fault-Related Controls on Upward Hydrothermal Flow: An
Integrated Geological Study of the Têt Fault System, Eastern
Pyrénées (France), Geofluids, vol. 2017, 1–19, https://doi.org/10.1155/2017/8190109, 2017.
Taillefer, A., Guillou-Frottier, L., Soliva, R., Magri, F., Lopez, S.,
Courrioux, G., Millot, R., Ladouche, B., and Le Goff, E.: Topographic and
Faults Control of Hydrothermal Circulation Along Dormant Faults in an
Orogen, Geochem. Geophy. Geosy., 19, 4972–4995,
https://doi.org/10.1029/2018GC007965, 2018.
Taylor, B. D.: Stable isotope geochemistry of the ore forming fluids, edited by: Kyser, T. K.: Mineralogical Association of Canada, 13, 337–445, 1987.
Travé, A., Labaume, P., Calvet, F., and Soler, A.: Sediment dewatering
and pore fluid migration along thrust faults in a foreland basin inferred
from isotopic and elemental geochemical analyses (Eocene southern Pyrenees,
Spain), Tectonophysics, 282, 375–398,
https://doi.org/10.1016/S0040-1951(97)00225-4, 1997.
Travé, A., Labaume, P., Calvet, F., Soler, A., Tritlla, J., Buatier, M.,
Potdevin, J.-L., Séguret, M., Raynaud, S., and Briqueu, L.: Fluid
migration during Eocene thrust emplacement in the south Pyrenean foreland
basin (Spain): an integrated structural, mineralogical and geochemical
approach, Geol. Soc. London, Spec. Publ., 134, 163–188,
https://doi.org/10.1144/GSL.SP.1998.134.01.08, 1998.
Travé, A., Calvet, F., Sans, M., Vergés, J., and Thirlwall, M.: Fluid
history related to the Alpine compression at the margin of the
south-Pyrenean Foreland basin: the El Guix anticline, Tectonophysics,
321, 73–102, https://doi.org/10.1016/S0040-1951(00)00090-1, 2000.
Travé, A., Labaume, P., and Vergés, J.: Fluid Systems in Foreland
Fold-and-Thrust Belts: An Overview from the Southern Pyrenees, in: Thrust
Belts and Foreland Basins, edited by: Lacombe, O., Roure, F., Lavé, J., and Vergés, J., Springer Berlin Heidelberg, Berlin, Heidelberg, 93–115, ISBN 978-3-540-69426-7, 2007.
Travé, A., Roca, E., Playà, E., Parcerisa, D., Gómez-Gras, D.,
and Martín-Martín, J. D.: Migration of Mn-rich fluids through
normal faults and fine-grained terrigenous sediments during early
development of the Neogene Vallès-Penedès half-graben (NE Spain),
Geofluids, 9, 303–320, https://doi.org/10.1111/j.1468-8123.2009.00258.x, 2009.
Trincal, V., Buatier, M., Charpentier, D., Lacroix, B., Lanari, P., Labaume,
P., Lahfid, A., and Vennemann, T.: Fluid–rock interactions related to
metamorphic reducing fluid flow in meta-sediments: example of the
Pic-de-Port-Vieux thrust (Pyrenees, Spain), Contrib. Mineral. Petr.,
172, 78, https://doi.org/10.1007/s00410-017-1394-5, 2017.
Veizer, J.: Depositional and diagenetic history of limestones: Stable and
radiogenic isotopes, in: Isotopic Signatures and Sedimentary Records, edited by: Clauer, N. and Chaudhuri, S., Springer-Verlag, Berlin, Heidelberg, 43, 13–48, ISBN 978-3-540-47294-0, 1992.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden,
G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C.,
Pawellek, F., Podlaha, O. G., and Strauss, H.: 87Sr∕86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 59–88, https://doi.org/10.1016/S0009-2541(99)00081-9, 1999.
Vergés, J.: Estudi geològic del vessant Sud del Pirineu Oriental i
Central: Evolució cinemàtica en 3D, PhD thesis, University of
barcelona, Barcelona, 203 pp., 1993.
Vergés, J. and Fernàndez, M.: Tethys–Atlantic interaction along the
Iberia–Africa plate boundary: The Betic–Rif orogenic system,
Tectonophysics, 579, 144–172, https://doi.org/10.1016/j.tecto.2012.08.032, 2012.
Vergés, J. and Muñoz, J. A.: Thrust sequences in the southern
central Pyrenees, Bull. French Geol. Soc., 2, 265–271, 1990.
Vergés, J., Fernàndez, M., and Martìnez, A.: The Pyrenean
orogen: pre-, syn-, and post-collisional evolution, J. Virtual Explor., 8, p. 4, https://doi.org/10.3809/jvirtex.2002.00058, 2002.
Vilasi, N., Swennen, R., and Roure, F.: Diagenesis and fracturing of
Paleocene-Eocene carbonate turbidite systems in the Ionian Basin: The
example of the Kelçyra area (Albania), J. Geochem. Explor., Spec. Iss., 89, 409–413, https://doi.org/10.1016/j.gexplo.2005.11.018, 2006.
Voicu, G., Bardoux, M., Stevenson, R., and Jébrak, M.: Nd and Sr isotope
study of hydrothermal scheelite and host rocks at Omai, Guiana Shield:
implications for ore fluid source and flow path during the formation of
orogenic gold deposits, Miner. Deposita, 35, 302–314,
https://doi.org/10.1007/s001260050243, 2000.
Warren, J., Morley, C. K., Charoentitirat, T., Cartwright, I., Ampaiwan, P.,
Khositchaisri, P., Mirzaloo, M., and Yingyuen, J.: Structural and fluid
evolution of Saraburi Group sedimentary carbonates, central Thailand: A
tectonically driven fluid system, Mar. Petrol. Geol., 55, 100–121,
https://doi.org/10.1016/j.marpetgeo.2013.12.019, 2014.
Wayne, D. M. and McCaig, A. M.: Dating fluid flow in shear zones: Rb-Sr and
U-Pb studies of syntectonic veins in the Néouvielle Massif, Pyrenees,
Geol. Soc. London, Spec. Publ., 144, 129–135,
https://doi.org/10.1144/GSL.SP.1998.144.01.09, 1998.
Williams, R. T., Goodwin, L. B., Mozley, P. S., Beard, B. L., and Johnson, C.
M.: Tectonic controls on fault zone flow pathways in the rio grande rift,
New Mexico, USA, Geology, 43, 723–726, https://doi.org/10.1130/G36799.1, 2015.
Ziegler, P. A.: Evolution of te Arctic-North Atlantic and the Western Tethys, Am. Assoc. Petr. Geol. B., 43, 200 pp., ISBN 9781629811338, 1988.
Zwart, H. J.: The variscan geology of the Pyrenees, Tectonophysics,
129, 9–27, https://doi.org/10.1016/0040-1951(86)90243-X, 1986.
Short summary
This study assesses the influence of basement rocks on the fluid chemistry during deformation in the Pyrenees and provides insights into the fluid regime in the NE part of the Iberian Peninsula.
This study assesses the influence of basement rocks on the fluid chemistry during deformation in...
Special issue