Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2359-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-2359-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 2600-year-long paleoseismic record for the Himalayan Main Frontal Thrust (western Bhutan)
Romain Le Roux-Mallouf
CORRESPONDING AUTHOR
Geolithe, Research and Development Department, Rue des Becasses, 38920, Crolles, France
Matthieu Ferry
Géosciences Montpellier, CNRS, UMR5243, Université de Montpellier, Place E. Bataillon, 34095 Montpellier, France
Rodolphe Cattin
Géosciences Montpellier, CNRS, UMR5243, Université de Montpellier, Place E. Bataillon, 34095 Montpellier, France
Jean-François Ritz
Géosciences Montpellier, CNRS, UMR5243, Université de Montpellier, Place E. Bataillon, 34095 Montpellier, France
Dowchu Drukpa
Géosciences Montpellier, CNRS, UMR5243, Université de Montpellier, Place E. Bataillon, 34095 Montpellier, France
Seismology and Geophysics Division, Department of Geology and Mines, P.O. Box 173, 9 Thimphu, Bhutan
Phuntsho Pelgay
Seismology and Geophysics Division, Department of Geology and Mines, P.O. Box 173, 9 Thimphu, Bhutan
Related authors
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021, https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary
Short summary
Elevated low-relief regions and major river knickpoints have for long been noticed and questioned in the emblematic Bhutan Himalaya. We document the morphology of this region using morphometric analyses and field observations, at a variety of spatial scales. Our findings reveal a highly unstable river network, with numerous non-coeval river captures, most probably related to a dynamic response to local tectonic uplift in the mountain hinterland.
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Abeer Al-Ashkar, Antoine Schlupp, Matthieu Ferry, and Ulziibat Munkhuu
Solid Earth, 13, 761–777, https://doi.org/10.5194/se-13-761-2022, https://doi.org/10.5194/se-13-761-2022, 2022
Short summary
Short summary
We present first constraints for the Sharkhai active fault near the capital city of Mongolia. The fault length is ~ 40 km, and the last earthquake occurred between 775 CE and 1778 CE and the previous between 1605 BCE and 835 BCE. We propose two possible scenarios with likely magnitudes of 6.7 ± 0.2 or 7.1 ± 0.7 and derive preliminary estimates of long-term slip rates. The Sharkhai fault should be considered in the seismic hazard assessment for Ulaanbaatar.
Martine Simoes, Timothée Sassolas-Serrayet, Rodolphe Cattin, Romain Le Roux-Mallouf, Matthieu Ferry, and Dowchu Drukpa
Earth Surf. Dynam., 9, 895–921, https://doi.org/10.5194/esurf-9-895-2021, https://doi.org/10.5194/esurf-9-895-2021, 2021
Short summary
Short summary
Elevated low-relief regions and major river knickpoints have for long been noticed and questioned in the emblematic Bhutan Himalaya. We document the morphology of this region using morphometric analyses and field observations, at a variety of spatial scales. Our findings reveal a highly unstable river network, with numerous non-coeval river captures, most probably related to a dynamic response to local tectonic uplift in the mountain hinterland.
Oswald Malcles, Philippe Vernant, Jean Chéry, Pierre Camps, Gaël Cazes, Jean-François Ritz, and David Fink
Solid Earth, 11, 241–258, https://doi.org/10.5194/se-11-241-2020, https://doi.org/10.5194/se-11-241-2020, 2020
Short summary
Short summary
We aim to better understand the challenging areas that are the intraplate regions using one example: the southern French Massif Central and its numerous hundreds of meters deep valleys. We apply a multidisciplinary approach there using geomorphology, geochronology, and numerical modeling.
Our dating results show that the canyon incisions are part of the Plio-Quaternary evolution with incision rate of ~ 80 m Ma−1. We propose then that this incision is possible due to an active regional uplift.
Timothée Sassolas-Serrayet, Rodolphe Cattin, Matthieu Ferry, Vincent Godard, and Martine Simoes
Earth Surf. Dynam., 7, 1041–1057, https://doi.org/10.5194/esurf-7-1041-2019, https://doi.org/10.5194/esurf-7-1041-2019, 2019
Short summary
Short summary
The topographic steady-state assumption is often used in geomorphology. However, recent studies suggest that a drainage network is more mobile than previously thought. Using landscape evolution models, we show that those migrations have a significant impact on basin-wide denudation rates even if an overall topographic steady state is achieved at large scale. Our approach provides new tools to derive minimal uncertainties in basin-scale denudation rates due to this topographic disequilibrium.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Palaeoseismology
Palaeoseismic crisis in the Galera Fault (southern Spain): consequences in Bronze Age settlements?
Paleoearthquake reconstruction on an impure limestone fault scarp at Sparta, Greece
Ivan Martin-Rojas, Ivan Medina-Cascales, Francisco Juan García-Tortosa, Maria Oliva Rodríguez-Ariza, Fernando Molina González, Juan Antonio Cámara Serrano, and Pedro Alfaro
Solid Earth, 15, 837–860, https://doi.org/10.5194/se-15-837-2024, https://doi.org/10.5194/se-15-837-2024, 2024
Short summary
Short summary
We investigated prehistoric earthquakes produced by the Galera Fault (southern Spain) over the last 24 000 years. From this analysis, we deduced the basic parameters that allow for the characterization of the seismic hazard of this fault. Furthermore, we discuss how the Galera Fault is prone to producing seismic crises. We also propose that one of these crises could have been responsible for the abandonment of Bronze Age human settlements located near the fault.
Bradley Goodfellow, Marc Caffee, Greg Chmiel, Ruben Fritzon, Alasdair Skelton, and Arjen Stroeven
EGUsphere, https://doi.org/10.5194/egusphere-2023-1585, https://doi.org/10.5194/egusphere-2023-1585, 2023
Short summary
Short summary
Reconstructions of past earthquakes are useful for assessing earthquake hazard risks. We dated a limestone scarp that has been exposed by earthquakes along the Sparta fault, Greece. From this we identify a cluster of four earthquakes within a 1500 year period that culminated with the 464 B.C. event that devastated Spartan society. However, a large earthquake is not necessarily indicated as being overdue by the present ~2500 year period of inactivity on the Sparta fault.
Cited articles
Ader, T., Avouac, J. P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L.,
Galetzka, J., Genrich, J., Thomas, M., Chanard, K., and Sapkota, S. N.:
Convergence rate across the Nepal Himalaya and interseismic coupling on the
Main Himalayan Thrust: Implications for seismic hazard, J. Geophys. Res.,
117, B04403, https://doi.org/10.1029/2011JB009071, 2012
Allmendinger, R. W.: Inverse and forward numerical modeling of trishear
fault-propagation folds, Tectonics, 17, 640656, https://doi.org/10.1029/98tc01907, 1998.
Ambraseys, N. and Jackson, D.: A note on early earthquakes in northern
India and southern Tibet, Curr. Sci., 84, 570–582, 2003.
Avouac, J.-P., Meng, L., Wei, S., Wang, T., and Ampuero J.-P.: Lower edge of
locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nat. Geosci., 9, 708–711, https://doi.org/10.1038/ngeo2518, 2015.
Berthet, T., Ritz, J. F., Ferry, M., Pelgay, P., Cattin, R., Drukpa, D.,
Braucher, R., and Hetényi, G.: Active tectonics of the eastern Himalaya:
New constraints from the first tectonic geomorphology study in southern
Bhutan, Geology, 42, 427–430, https://doi.org/10.1130/G35162.1, 2014.
Bilham, R., Gaur, V. K., and Molnar, P.: Himalayan seismic hazard,
Science, 293, 1442–1444, 2001.
Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y., Rizza, M., Van
der Woerd, J., Tiwari, D. R., Pandey, R., Bitri, A., and Bes de Berc, S.:
Estimating the return times of great Himalayan earthquakes in eastern Nepal:
Evidence from the Patu and Bardibas strands of the Main Frontal Thrust, J. Geophys. Res.-Sol. Ea.,
119, 7123–7163, https://doi.org/10.1002/2014JB010970, 2014.
Burgess, W. P., Yin, A., Dubey, C. S., Shen, Z. K., and Kelty, T. K.:
Holocene shortening across the Main Frontal Thrust zone in the eastern
Himalaya, Earth Planet. Sc. Lett., 357, 152–167, 2012.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360,
2009.
Cattin, R. and Avouac, J. P.: Modeling mountain building and the seismic
cycle in the Himalaya of Nepal, J. Geophys. Res.-Sol.
Ea., 105, 13389–13407, 2000.
Coutand, I., Whipp Jr, D. M., Grujic, D., Bernet, M., Fellin, M. G.,
Bookhagen, B., Landry, K. R., Ghalley, S. K., and Duncan, C.: Geometry and
kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in
the Bhutanese Himalaya derived from inversion of multithermochronologic
data, J. Geophys. Res.-Sol. Ea., 119, 1446–1481,
https://doi.org/10.1002/2013JB010891, 2014.
Gansser, A.: Geology of the Himalayas, Wiley Interscience, 1964.
Ghazoui, Z., Bertrand, S., Vanneste, K., Yokoyama, Y., Nomade, J., Gajurel,
A. P., and van der Beek, P. A.: Potentially large post-1505 AD earthquakes
in western Nepal revealed by a lake sediment record, Nat. Commun.,
10, 1–9, 2019.
Grandin, R., Vallée, M., Satriano, C., Lacassin, R., Klinger, Y.,
Simoes, M., and Bollinger, L.: Rupture process of the Mw = 7.9 2015 Gorkha
earthquake (Nepal): Insights into Himalayan megathrust segmentation,
Geophys. Res. Lett., 42, 8373–8382, https://doi.org/10.1002/2015GL066044, 2015.
Grujic, D., Warren, C. J., and Wooden, J. L.: Rapid synconvergent exhumation
of Miocene-aged lower orogenic crust in the eastern Himalaya, Lithosphere, 3, 346–366,
https://doi.org/10.1130/L154.1, 2011.
Hetényi, G., Le Roux-Mallouf, R., Berthet, T., Cattin, R., Cauzzi, C.,
Phuntsho, K., and Grolimund, R.: Joint approach combining damage and
paleoseismology observations constrains the 1714 A.D. Bhutan earthquake at
magnitude 8±0.5, Geophys. Res. Lett., 43, 695–702, 2016.
Kumar, R., Suresh, N., Sangode, S. J., and Kumaravel, V.: Evolution of the
Quaternary alluvial fan system in the Himalayan foreland basin: Implications
for tectonic and climatic decoupling, Quaternary Int., 159, 6–20, 2007.
Kumar, S., Wesnousky, S. G., Jayangondaperumal, R., Nakata, T., Kumahara,
Y., and Singh, V.: Paleoseismological evidence of surface faulting along
the northeastern Himalayan front, India: Timing, size, and spatial extent of
great earthquakes, J. Geophys. Res.-Sol. Ea., 115, 1–20, https://doi.org/10.1029/2009JB006789, 2010.
Lavé, J. and Avouac, J. P.: Active folding of fluvial terraces across
the Siwaliks Hills, Himalayas of central Nepal, J. Geophys. Res.-Sol. Ea., 105, 5735–5770, 2000.
Lavé, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M., and
Pandey, R.: Evidence for a great medieval earthquake (∼ 1100
AD) in the central Himalayas, Nepal, Science, 307, 1302–1305,
https://doi.org/10.1126/science.1104804, 2005.
Lee, J.-C., Chen, Y.-G., Sieh, K., Mueller, K., Chen, W.-S., Chu, H.-T.,
Chan, Y.-C., Rubin, C., and Yeats, R.: A Vertical Exposure of the 1999 Surface
Rupture of the Chelungpu Fault at Wufeng, Western Taiwan: Structural and
Paleoseismic Implications for an Active Thrust Fault, Bull. Seism. Soc. Am., 91, 914–929, https://doi.org/10.1785/0120000742, 2001.
Le Fort, P.: Himalaya: the collided range. Present knowledge of the
continental arc, Am. J. Sci., 275, 1–44, 1975.
Le Roux-Mallouf, R., Godard, V., Cattin, R., Ferry, M., Gyeltshen, J., Ritz,
J. F., Drupka, D., Guillou, V., Arnold, M., Aumaître, G., Bourlès,
D. L., and Keddadouche, K.: Evidence for a wide and gently dipping Main
Himalayan Thrust in western Bhutan, Geophys. Res. Lett., 42, 3257–3265,
https://doi.org/10.1002/2015GL063767, 2015.
Le Roux-Mallouf, R., Ferry, M., Ritz, J. F., Berthet, T., Cattin, R., and
Drukpa, D.: First paleoseismic evidence for great surface-rupturing
earthquakes in the Bhutan Himalayas, J. Geophys. Res.-Sol. Ea., 121, 7271–7283, 2016.
Lienkaemper, J. J. and Bronk Ramsey, C.: OxCal: Versatile Tool for
Developing Paleoearthquake Chronologies – A Primer, Seismol. Res. Lett., 80, 431–434,
https://doi.org/10.1785/gssrl.80.3.431, 2009.
Long, S., McQuarrie, N., Tobgay, T., Grujic, D., and Hollister, L.: Geologic
Map of Bhutan, J. Maps, 7, 184–192, https://doi.org/10.4113/jom.2011.1159,
2011a.
Long, S., McQuarrie, N., Tobgay, T., Rose, C., Gehrels, G., and Grujic, D.:
Tectonostratigraphy of the Lesser Himalaya of Bhutan: Implications for the
along-strike stratigraphic continuity of the northern Indian margin,
Geol. Soc. Am. Bull., 123, 1406–1426, 2011b.
Malik, J. N., Naik, S. P., Sahoo, S., Okumura, K., and Mohanty, A.: Paleoseismic
evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone
of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT), India,
Tectonophysics, 714/715, 133–145, https://doi.org/10.1016/j.tecto.2016.07.026, 2017.
Marechal, A., Mazzotti, S., Cattin, R., Cazes, G., Vernant, P., Drukpa, D.,
Kinzang, T., Tarayoun, A., Le Roux-Mallouf, R., and Thapa, B. B.: Evidence of
interseismic coupling variations along the Bhutan Himalayan arc from new GPS
data, Geophys. Res. Lett., 43, 12399–12406, 2016.
McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., and
Ducea, M.: Preliminary stratigraphic and structural architecture of Bhutan:
Implications for the along strike architecture of the Himalayan system,
Earth Planet. Sc. Lett., 272, 105–117, https://doi.org/10.1016/j.epsl.2008.04.030, 2008.
Meghraoui, M., Aksoy, M. E., Akyüz, H. S., Ferry, M., Dikbaş, A.,
and Altunel, E.: Paleoseismology of the North Anatolian fault at
Güzelköy (Ganos segment, Turkey): Size and recurrence time of
earthquake ruptures west of the Sea of Marmara, Geochem. Geophy.
Geosy., 13, https://doi.org/10.1029/2011GC003960, 2012.
Miller, K. L., Reitz, M. D., and Jerolmack, D. J.: Generalized sorting profile
of alluvial fans, Geophys. Res. Lett., 41, 7191–7199. https://doi.org/10.1002/2014gl060991, 2014.
Mishra, R. L., Singh, I., Pandey, A., Rao, P. S., Sahoo, H. K., and
Jayangondaperumal, R.: Paleoseismic evidence of a giant medieval earthquake
in the eastern Himalaya, Geophys. Res. Lett., 43, 5707–5715, 2016.
Mugnier, J.-L., Gajurel, A., Huyghe, P., Jayangandaperumal, R., Jouanne, F., and
Upreti, B.: Structural interpretation of the great earthquakes of the last
millennium in the central Himalaya, Earth Sci. Rev., 127, 30–47, https://doi.org/10.1016/j.earscirev.2013.09.003, 2013.
Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., and Huang, B. S.: Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment, Science, 325, 1371–1374, 2009.
Nakata, T., Kumura, K., and Rockwell, T.: First successful paleoseismic
trench study on active faults in the Himalaya, Eos Trans. AGU, 79, 45, 1998.
Nelson, K. D., Zhao, W., Brown, L. D., and Kuo, J.: Partially molten middle
crust beneath southern Tibet: synthesis of project INDEPTH results,
Science, 274, 1684–1688, 1996.
Philip H. and Meghraoui, M.: Structural analysis and interpretation of the
surface deformations of the El Asnam Earthquake of October 10, 1980,
Tectonics, 2, 17–49, https://doi.org/10.1029/TC002i001p00017, 1983.
Rajendran, C. P. and Rajendran, K.: The status of central seismic gap: a
perspective based on the spatial and temporal aspects of the large Himalayan
earthquakes, Tectonophysics, 395, 19–39, https://doi.org/10.1016/j.tecto.2004.09.009, 2005.
Rajendran, C. P., John, B., and Rajendran, K.: Medieval pulse of great
earthquakes in the central Himalaya: Viewing past activities on the frontal
thrust, J. Geophys. Res.-Sol. Ea., 120, 1623–1641 https://doi.org/10.1002/2014JB011015, 2015.
Rizza, M., Bollinger, L., Sapkota, S. N., Tapponnier, P., Klinger, Y.,
Karakaş, Ç., Kali, E., Etchebes, M., Tiwari, D. R., and Siwakoti, I.:
Post earthquake aggradation processes to hide surface ruptures in thrust
systems: The M8.3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola
(Eastern Nepal), J. Geophys. Res.-Sol. Ea., 124,
9182–9207, 2019.
Rockwell, T. K., Dawson, T. E., Ben-Horin, J. Y., and Seitz, G. A.:
21-event, 4,000-year history of surface ruptures in the Anza seismic gap,
San Jacinto Fault, and implications for long-term earthquake production on a
major plate boundary fault, Pure Appl. Geophys., 172, 1143–1165, 2015.
Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y.,
and Tiwari, D.: Primary surface ruptures of the great Himalayan earthquakes
in 1934 and 1255, Nat. Geosci., 6, 71–76, https://doi.org/10.1038/ngeo1669,
2013.
Srivastava, H. N., Bansal, B. K., and Verma, M.: Largest earthquake in
Himalaya: An appraisal, J. Geol. Soc. India, 82,
15–22, 2013.
Stevens, V. L. and Avouac, J.-P.: Millenary Mw > 9.0 earthquakes
required by geodetic strain in the Himalaya, Geophys. Res. Lett., 43, 1118–1123, https://doi.org/10.1002/2015GL067336, 2016.
Upreti, B. N., Nakata, T., Kumahara, Y., Yagi, H., Okumura, K., Rockwell, T.
K., Virdi, N. S., and Maemoku, H.: The latest active faulting in Southeast Nepal, in: Proceedings of the Hokudan International Symposium and School in Active Faulting, Awaji Island, Hyogo Japan, 533–536, 2000.
Wesnousky, S. G., Kumahara, Y., Chamlagain, D., Pierce, I. K., Karki, A.,
and Gautam, D.: Geological observations on large earthquakes along the
Himalayan frontal fault near Kathmandu, Nepal, Earth Planet. Sc. Lett., 457, 366–375, 2017a.
Wesnousky, S. G., Kumahara, Y., Chamlagain, D., Pierce, I. K., Reedy, T.,
Angster, S. J., and Giri, B.: Large paleoearthquake timing and displacement
near Damak in eastern Nepal on the Himalayan Frontal Thrust, Geophys.
Res. Lett., 44, 8219–8226, 2017b.
Wesnousky, S. G., Kumahara, Y., Chamlagain, D., and Neupane, P. C.: Large
Himalayan Frontal Thrust paleoearthquake at Khayarmara in Eastern Nepal,
J. Asian Earth Sci, 174, 346–351, 2019.
Yule, D., Lave, J., Sapkota, S. N., Tiwari, D., Kafle, B., Pandey, M. R.,
Dawson, S., Madden, C., and Attal, M.: Large surface rupture of the Main
Frontal Thrust in east-central and western Nepal-Evidence for an
unprecedented type of Himalayan earthquake, in: Proceedings on the International
Workshop on Seismology, seismotectonics and seismic hazard in the Himalayan
region, Kathmandu, India, 28–29 November 2006, 13–14, 2006.
Zhao, W., Nelson, K. D., Che, J., Quo, J., Lu, D., Wu, C., and Liu, X.: Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature, 366, 557–559, 1993.
Short summary
The chronology of historical earthquakes (from historical documents and geological evidence) is still poorly constrained in the western Himalaya. We carried out a field investigation in SW Bhutan along the India–Bhutan border. Our analysis reveals that Bhutan has experienced at least five great earthquakes during the last 2600 years. Coseismic slip values along the Main Himalayan Thrust for most events reach at least 13 m and suggest that associated magnitudes are in the range of Mw 8.5–9.
The chronology of historical earthquakes (from historical documents and geological evidence) is...